Comment on the 2nd Order Seiberg Witten Maps

Σχετικά έγγραφα
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Non-commutative Gauge Theories and Seiberg Witten Map to All Orders 1

2 Composition. Invertible Mappings

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

EE512: Error Control Coding

derivation of the Laplacian from rectangular to spherical coordinates

Example Sheet 3 Solutions

Space-Time Symmetries

Matrices and Determinants

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Homework 3 Solutions

Reminders: linear functions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Congruence Classes of Invertible Matrices of Order 3 over F 2

C.S. 430 Assignment 6, Sample Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Concrete Mathematics Exercises from 30 September 2016

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Approximation of distance between locations on earth given by latitude and longitude

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

( ) 2 and compare to M.

Statistical Inference I Locally most powerful tests

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Every set of first-order formulas is equivalent to an independent set

Relativistic particle dynamics and deformed symmetry

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Higher Derivative Gravity Theories

CRASH COURSE IN PRECALCULUS

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Math221: HW# 1 solutions

On a four-dimensional hyperbolic manifold with finite volume

Partial Differential Equations in Biology The boundary element method. March 26, 2013

1 String with massive end-points

6.3 Forecasting ARMA processes

Inverse trigonometric functions & General Solution of Trigonometric Equations

Lecture 26: Circular domains

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Symmetric Stress-Energy Tensor

Homework 8 Model Solution Section

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Tutorial problem set 6,

Section 8.3 Trigonometric Equations

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Second Order Partial Differential Equations

The Simply Typed Lambda Calculus

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Non-Abelian Gauge Fields

Strain gauge and rosettes

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Finite Field Problems: Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Notes on the Open Economy

SPECIAL FUNCTIONS and POLYNOMIALS

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

D Alembert s Solution to the Wave Equation

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Lecture 34 Bootstrap confidence intervals

Variational Wavefunction for the Helium Atom

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

SOLVING CUBICS AND QUARTICS BY RADICALS

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

TMA4115 Matematikk 3

Solutions to Exercise Sheet 5

Lecture 15 - Root System Axiomatics

Higher spin gauge theories and their CFT duals

Math 6 SL Probability Distributions Practice Test Mark Scheme

Commutative Monoids in Intuitionistic Fuzzy Sets

( y) Partial Differential Equations

Empirical best prediction under area-level Poisson mixed models

w o = R 1 p. (1) R = p =. = 1

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Areas and Lengths in Polar Coordinates

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Differential equations

Parametrized Surfaces

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

The Pohozaev identity for the fractional Laplacian

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Exercises to Statistics of Material Fatigue No. 5

Modified Moyal-Weyl Star product in a Curved Non Commutative space-time

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ST5224: Advanced Statistical Theory II

Transcript:

ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Comment on the 2nd Order Seiberg Witten Maps Josip Trampetić Michael Wohlgenannt ienna, Preprint ESI 1964 2007 October 11, 2007 Supported by the Austrian Federal Ministry of Education, Science and Culture Available via http://www.esi.ac.at

Comment on the 2nd order Seiberg-Witten maps Josip Trampetić 1 and Michael Wohlgenannt 2 1 Theoretical Physics Division, Rudjer Bošković Institute, Zagreb, Croatia 2 Erwin Schrödinger International Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien, Austria Dated: October 11, 2007 In this comment, we discuss the Seiberg-Witten maps up to the second order in the noncommutative parameter θ. They add to the recently published solutions in [1]. Expressions for the vector, fermion and Higgs fields are given explicitly. PACS numbers: 11.10.Nx, 11.15.-q, 12.60.-i The main purpose of this comment is to complete the second order Seiberg-Witten SW maps constructed in [1, 2]. We consider canonically deformed space-time. The commutator of coordinates is given by the constant antisymmetric matrix θ µν, [x µ, x ν ] x µ x ν x ν x µ = iθ µν, 1 where we have used the Weyl-Moyal star product { i f gx = exp } 2 θµν fygx y µ x ν. 2 y x A prescription for constructing arbitrary gauge theories on a NC space-time was presented in [3]. Seiberg- Witten SW maps [3, 4] relate noncommutative NC gauge fields and ordinary fields in commutative theory via a power series expansion in θ. In simplest possible approach to the construction of NC gauge field theories all field products are replaced by -products. This approach, however, fails for general gauge theories. For example for SUN gauge theories, the -commutator of two infinitesimal gauge transformations does not close in the SUN Lie algebra. This is the reason one has to go to the enveloping algebra [5] of the Lie algebra of a given group. Higher-order SW terms are now expressed in terms of the zeroth-order commutative fields, and as a consequence we do have the same number of degrees of freedom as in the commutative case. The SW maps are not unique. The free parameters are chosen such that the non-commutative gauge fields are hermitian and the action is real. Still, there is some remaining freedom including the freedom of classical field redefinition and noncommutative gauge transformation. As already remarked in [1], the second order solution for the gauge field - and therefore also for the field strength - given in [2] are not correct. We will provide the corrected expressions. Most importantly, in this comment we want to add the second order expansion of the hybrid SW map for the Higgs field to the work [1]. This is necessary if one wants to consider the Noncommutative Standard Model NCSM [6 8] including the Yukawa couplings. We have computed a special solution and not the most general one, because of the complexness. The SW map of the gauge parameter is a solution of the relation i α Λ i Λ α + [ Λ α, Λ ] = i Λ α. 3 This relation has to be solved order by order. Therefore, we expand the noncommutative gauge parameter Λ α in θ and in terms of the commutative gauge parameter α, Λ α = α + Λ θ α[ ] + Λ θ2 α [ ] + Oθ 3. Noncommutative fields and gauge parameters are denoted by a hat throughout the paper. To first order in θ, the equivalence condition 3 reads i α Λ θ Λ θ + [α, Λθ ] + [Λθ α, ] iλθ α 4 and to second order = i 2 θµν { µ α, ν }, Λ 2 = 1 8 θµν θ κλ [ µ κ α, ν λ ] [Λ θ α, Λ θ ] i 2 θµν { µ Λ θ α, ν} { ν α, µ Λ θ }, 5 with α = i[α, ]. This is an inhomogeneous equation. The homogeneous part to order k is given by Λ k := i α Λ θk Λ θk α +[α, Λ θk ]+[Λ θk α, ] iλ θk α = 0. 6 The most general solution to first order, is given by Λ θ α = 1 2 θµν { ν, µ α} c, 7 where {A, B} c ca B + 1 cb A. The requirement of hermiticity fixes the free parameter c to c = 1/2. In this case, the general solution 7 becomes Λ θ α[ ] = 1 4 θµν { ν, µ α}. 8 A special solution for the second order equation reads: Λ θ2 α [ ] = 1 32 θµν θ κλ 9 { µ, { ν κ, λ α}} + { µ, { κ, ν λ α}} + {{ µ, ν κ }, λ α}} {{F µκ, ν }, λ α} 2i[ µ κ, ν λ α],

with the field strength F α = α α i[ α, ]. The NC gauge field transforms as α µ = µ Λ α i[ µ, Λ α ]. 10 The enveloping algebra valued gauge potential is therefore determined by the following consistency relations in first and second order α θ σ = σλ θ α i[ σ, Λ θ α ] + 1 2 θµν { µ σ, ν α}, 11 α θ2 σ = σ Λ θ2 α i[ σ, Λ θ2 α ] i[ θ σ, Λ θ α] + 1 2 θµν { µ θ σ, να} + 1 2 θµν { µ σ, ν Λ θ α } + i 8 θµν θ κλ [ µ κ σ, ν λ α], 12 where we have again used α σ θk = α σ θk i[α, σ θk ] and the expansion of the noncommutative gauge field µ [ ] = µ + µ θ θ2 [ ] + µ [ ] + Oθ3. The general solution in first order is θ µ = 1 2 θα {, α µ } c + 1 2 θα {, F αµ } c. 13 Choosing a hermitian gauge parameter Λ α, we obtain θ µ [ ] = 1 4 θα { α µ + F αµ, } 14 and µ θ2 [ ] = 1 64 θα θ 4[, [ µ, α ]] + 8{ α, {F µ, F }} + 8{ α, { F µ, }} + 2i{ α, { µ, }} 2{ α, { µ, }} { µ, {F α, F }} + 8{ α µ, {, }} + 2{ µ, { α, }} + 2{ α, {, µ }} 2{ µ α, {F, }} 2{ α, { µ, }} 4{ α, { µ, }} + 8{ α µ, } + 8i[ α µ, ] 2i[ µ F α, F ] 4i[ α µ, ] 4 α µ 4 µ α + 2i α µ 4i α µ 2i α µ 2i α µ + 4i α µ 2i µ α + 2i µ α + 2i µ α 2i µ α + 2i α µ + 4F α µ F. 15 Concerning Eq. 15, the second order of the SW map, we disagree with ref. [2]. The solution given there, does not satisfy the gauge equivalence relation 12. Next, by using the SW map of the gauge parameter, the expansion of the noncommutative gauge transformation for the NC fermion fields reads where α ψ = i Λ α ψ, 16 ψ[ψ, ] = ψ + ψ θ [ψ, ] + ψ θ2 [ψ, ] + Oθ 3. This leads to the first order in θ consistency relation, α ψ θ = iλ θ ψ 1 2 θµν µ α ν ψ, 17 where α ψ θk α ψ θk iαψ θk. To second order, we obtain α ψ θ2 = iλ θ2 α ψ + iλ θ ψ θ 1 2 θµν µ Λ θ α ν ψ 18 1 2 θµν µ α ν ψ θ i 8 θµν θ κλ µ κ α ν λ ψ. The general solution to first order is given by ψ θ = 1 2 θµν ν µ ψ + 1 c 2 θµν µ ν ψ + d θ µν F µν. 19 The hermicity requirement c = 1/2, and choice d = 1/8, leaves us with ψ θ [ψ, ] = 1 2 θα α i 4 [ α, ] ψ. 20 A solution to the second order consistency relation is given by [2] ψ θ2 [ψ, ] = 1 32 θµν θ κλ 4i κ µ ν λ + 4 κ µ ν λ 4 κ µ ν λ + 4F κµ ν λ 4 ν κ µ λ + 8 ν F κµ λ 8i µ κ ν λ + 4i µ ν κ λ 2 κ µ λ ν + κ λ µ ν + 2i κ µ λ ν 2i ν λ κ µ 2 κ µ ν λ i[[ κ µ, ν ], λ ] 4i ν F κµ λ ψ. 21 Finally we consider NC noncommutative Higgs field Φ, which is related to the commutative ones by the hybrid SW map expansion Φ Φ[Φ,, ] = Φ + Φ θ [, ] + Φ θ2 [, ] + Oθ 3. This generalizes the Seiberg-Witten maps of both gauge bosons and fermions. Φ is a functional of two gauge fields and, and it transforms covariantly under the following gauge transformations: Φ[Φ,, ] = i Λ Φ i Φ Λ, 22

where Λ and Λ are the corresponding gauge parameters. Hermitian conjugation yields Φ[Φ,, ] = Φ[Φ,, ]. The covariant derivative for the noncommutative Higgs field Φ is given by D µ Φ = µ Φ i µ Φ Φ µ. 23 As explained in [6], the precise representations of the gauge fields and in the Yukawa couplings are inherited from the fermions on the left ψ and on the right side ψ of the Higgs field, respectively. The hybrid SW map for the Higgs boson up to second order is of course only unique up to a solution of the homogeneous equation. The most general solution to first order reads Φ θ [Φ,, ] = 1 2 θα 24 [ α Φ i 2 a αφ Φ α + α Φ i 2 αφ bφ α + 1 4 1 a α Φ + 1 ] 4 1 bφ α Conventionally, we choose a = b = 1 and obtain to the first order in θ Φ θ [Φ,, ] = 1 2 θα 25 [ α Φ i 2 αφ Φ α + α Φ i2 ] αφ Φ α, while for the second order we have found the following lengthy expression: Φ θ2 Φ θ2 [Φ,, ] = i 32 θα θ { α 4 Φ 3i Φ + 4iΦ + 4 Φ 2iΦ [ + 4i Φ + 4 Φ + 2i Φ 2Φ + 4 Φ + 4iΦ + 3 Φ 4 Φ 4 Φ + Φ 4 8 + 4i 2 ] + 8i Φ + 5 Φ 8Φ + 4i Φ 3 Φ + Φ 4 i + i + + + 8i Φ + 4 Φ + 4Φ i + i + 2 + i } [ + α 4 Φ + 4i Φ + 4Φ Φ + 4Φ + 4i Φ 2i Φ 4i Φ + Φ 4i 4 + 8 ] [ + α Φ 4i + 4 4 + ] 8i 4i 4 + α Φ 4i 4 [ [ + Φ + 2i α + 3 5 3i ] + α 2i 3 ]. 26 The above expression may be written in a more convenient way as Φ θ2 [Φ,, ] = Φ θ2 [ ] + Φ θ2 r [ ] i 8 θµν θ κλ i κ λ µ Φ ν κ λ µ Φ ν i κ µ λ Φ ν +i κ µ ν Φ λ κ µ λ Φ ν κ µ ν Φ λ 2 κ µ Φ λ ν + κ µ Φ ν λ + i κ µ Φ λ ν 2i κ µ Φ ν λ 2 κ λ µ Φ ν 4i κ µ Φ λ ν + i κ µ Φ ν λ + κ µ Φ λ ν + κ µ Φ ν λ 2i κ λ µ Φ ν + κ λ Φ µ ν + κ Φ µ λ ν κ Φ µ ν λ i κ Φ µ λ ν + i κ Φ µ ν λ +2 κφ µ λ ν + i κ Φ λ µ ν + κ µ λ Φ ν κ µ ν Φ λ + i κ µ λ Φ ν i κ µ ν Φ λ + i κ µ Φ ν λ κ µ Φ λ ν + 2 κ µ Φ ν λ 1 32 θµν θ κλ 2 κ λ Φ µ ν, 27 where Φ θ2 [ ] and Φ θ2 r [ ] denote the second order expansion for fermion fields 21, Φ θ2 [ ] = ψ θ2 [ψ, ]ψ Φ, 28 in the latter case the gauge fields are supposed to act from the right, Φ θ2 r [ ] = 1 32 θµν θ κλ Φ 4i κ µ ν λ + 4 κ µ ν λ

4 κ µ ν λ + 4F κµ ν λ 4 ν κ µ λ + 8 ν F κµ λ 8i µ κ ν λ + 4i µ ν κ λ 2 κ µ λ ν + κ λ µ ν + 2i κ µ λ ν 2i ν λ κ µ 2 κ µ ν λ i[[ κ µ, ν ], λ ] 4i ν F κµ λ. 29 The solutions representing SW maps up to second order in θ for fermion fields and Higgs fields, i.e., Eqs. 21 and 26 or 27, are identical for = 0. Higher SW expansions of the NC gauge, fermion and Higgs fields up to second order in the noncommutative parameter θ, are important due to the further extension of previously published results. Specifically those are applications of the enveloping algebra based, θ expanded, approach to higher gauge groups [7] and to particular NCSM gauge sector representations [9]. Proof that SW noncommutative gauge theories are anomaly free and the properties of the gauge anomaly for general SW mapping as well as of the U1 A anomaly in noncommutative SUN theories [10] are certainly very important. This comment is very important regarding further investigations of renormalizability properties of the θ expanded NC field theories in general [11]. Certainly, recent results [12, 13], showing that gauge theories in the θ expanded, enveloping algebra based, approach are one-loop renormalizable at first order in θ are very encouraging. They give us hope that it would be possible to investigate higher-loop renormalizability up to the second order in the noncommutative parameter θ. Clearly, one may expect that the renormalizability principle should certainly help to minimize, or even cancel most of ambiguities of SW maps disucssed in [1, 2] and in this comment. Finally, it is necessary to comment that, due to the one-loop renormalizability [10 13], the associated high energy particle physics phenomenology [14, 15] becomes more robust [16]. We want to thank Fabian Bachmaier for contributing to this work and to H. Grosse and J. Wess for many fruitful discussions. M.W. also wants to acknowledge the support from Fonds zur Förderung der wissenschaftlichen Forschung Austrian Science Fund, project P18657- N16. The work of J.T. is supported by the project 098-0982930-2900 of the Croatian Ministry of Science, Education and Sport and in part by the ESF, received in the framework of the Research Networking Programme on Quantum Geometry and Quantum Gravity in the form of a short visit grant No.2012. [2] L. Möller, JHEP 10 2004 063. [3] N. Seiberg and E. Witten, JHEP 09 1999 032. [4] J. Madore, S. Schraml, P. Schupp and J. Wess, Eur. Phys. J. C16 2000 161. [5] B. Jurčo, S. Schraml, P. Schupp and J. Wess, Eur. Phys. J. C17 2000 521. B. Jurčo, L. Möller, S. Schraml, P. Schupp and J. Wess, Eur. Phys. J. C21 2001 383. [6] X. Calmet, B. Jurčo, P. Schupp, J. Wess and M. Wohlgenannt, Eur. Phys. J. C23 2002 363. [7] P. Aschieri, B. Jurčo, P. Schupp and J. Wess, Nucl. Phys. B651 2003 45. [8] B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp, and M. Wohlgenannt, Eur. Phys. J. C42 2005 483 497; Eur. Phys. J. C42 2005 499 504. [9] W. Behr, N.G. Deshpande, G. Duplančić, P. Schupp, J. Trampetić and J. Wess, Eur. Phys. J. C29 2003 441; G. Duplančić, P. Schupp and J. Trampetić, Eur. Phys. J. C32 2003 141. [10] C. P. Martin, Nucl. Phys. B 652, 72 2003; F. Brandt, C. P. Martin and F. R. Ruiz, JHEP 0307, 068 2003; C. P. Martin and C. Tamarit, Phys. Rev. D 72, 085008 2005. [11] R. Wulkenhaar, JHEP 0203 2002 024; J. M. Grimstrup and R. Wulkenhaar, Eur. Phys. J. C 26 2002 139; A. Bichl, J. Grimstrup, H. Grosse, L. Popp, M. Schweda and R. Wulkenhaar, JHEP 06 2001 013; H. Grosse and R. Wulkenhaar, Lett. Math. Phys. 71, 13 2005; J. Nonlin. Math. Phys. 11S1, 9 2004; Commun. Math. Phys. 256, 305 2005;. Rivasseau, F. ignes-tourneret and R. Wulkenhaar, Commun. Math. Phys. 262, 565 2006; H. Grosse and M. Wohlgenannt, Eur. Phys. J. C52 2007 435 450. [12] M. Buric and. Radovanovic, JHEP 0210 2002 074; JHEP 0402 2004 040; Class. Quant. Grav. 22 2005 525; M. Buric,. Radovanovic and J. Trampetic, JHEP 0703 2007 030; D. Latas,. Radovanovic and J. Trampetic, Phys. Rev. D 76 2007 085006. [13] C. P. Martin, D. Sanchez-Ruiz and C. Tamarit, JHEP 0702 2007 065; C. P. Martin and C. Tamarit, arxiv:0706.4052 [hep-th]. [14] J. Trampetić, Acta Phys. Polon. B33 2002 4317 [hepph/0212309]; P. Schupp, J. Trampetic, J. Wess and G. Raffelt, Eur. Phys. J. C 36 2004 405; P. Minkowski, P. Schupp and J. Trampetic, Eur. Phys. J. C 37 2004 123; B. Melic, K. Passek-Kumericki and J. Trampetic, Phys. Rev. D 72 2005 054004; Phys. Rev. D 72 2005 057502. [15] T. Ohl and J. Reuter, Phys. Rev. D70 2004; A. Alboteanu, T. Ohl and R. Ruckl, PoS HEP2005 2006 322 [arxiv:hep-ph/0511188]; Phys. Rev. D 74, 096004 2006; arxiv:0707.3595 [hep-ph]; arxiv:0709.2359 [hepph]. [16] M. Buric, D. Latas,. Radovanovic and J. Trampetic, Phys. Rev. D 75 2007 097701; J. Trampetić, arxiv:0704.0559v1 [hep-ph]. [1] A. Alboteanu, Th. Ohl and R. Rückl, 0707.3595[hep-th].