VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

Σχετικά έγγραφα
Tutorial Note - Week 09 - Solution

ANTENNAS and WAVE PROPAGATION. Solution Manual

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Fundamental Equations of Fluid Mechanics

Example 1: THE ELECTRIC DIPOLE

Laplace s Equation in Spherical Polar Coördinates

Curvilinear Systems of Coordinates

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Spherical Coordinates

The Laplacian in Spherical Polar Coordinates

Section 8.3 Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

derivation of the Laplacian from rectangular to spherical coordinates

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Problems in curvilinear coordinates

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Section 8.2 Graphs of Polar Equations

Analytical Expression for Hessian

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Matrix Hartree-Fock Equations for a Closed Shell System

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

4.2 Differential Equations in Polar Coordinates

Areas and Lengths in Polar Coordinates

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Answer sheet: Third Midterm for Math 2339

General Relativity (225A) Fall 2013 Assignment 5 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

r = x 2 + y 2 and h = z y = r sin sin ϕ

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

If we restrict the domain of y = sin x to [ π 2, π 2

Homework 8 Model Solution Section

CYLINDRICAL & SPHERICAL COORDINATES

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

1 String with massive end-points

Reminders: linear functions

Solutions Ph 236a Week 2

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Chapter 7a. Elements of Elasticity, Thermal Stresses

Parametrized Surfaces

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Chapter 7 Transformations of Stress and Strain

Strain and stress tensors in spherical coordinates

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

11.4 Graphing in Polar Coordinates Polar Symmetries

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Example Sheet 3 Solutions

Linearized Lifting Surface Theory Thin-Wing Theory

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Section 9.2 Polar Equations and Graphs

2 Composition. Invertible Mappings

Areas and Lengths in Polar Coordinates

Orbital angular momentum and the spherical harmonics

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Numerical Analysis FMN011

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Solutions to Exercise Sheet 5

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

D Alembert s Solution to the Wave Equation

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Homework 3 Solutions

1- Uzunluğu b olan (b > λ) tek kutuplu bir tel anten xy düzlemindeki iletken plakaya dik olan z ekseninde bulunmakta olup I

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

3.7 Governing Equations and Boundary Conditions for P-Flow

Finite Field Problems: Solutions

Variational Wavefunction for the Helium Atom

Inverse trigonometric functions & General Solution of Trigonometric Equations

3.5 - Boundary Conditions for Potential Flow

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Approximation of distance between locations on earth given by latitude and longitude

Course Reader for CHEN 7100/7106. Transport Phenomena I

CURVILINEAR COORDINATES

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Orbital angular momentum and the spherical harmonics

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Trigonometric Formula Sheet

Note: Please use the actual date you accessed this material in your citation.

Lecture 26: Circular domains

6.4 Superposition of Linear Plane Progressive Waves

Notes 6 Coordinate Systems

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Transcript:

VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11

TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt eˆ + eˆ 0 0 (in clindical cood.) F ams F We need to intoduce cuvilinea coodinates to descibe clindical coodinates to calculate the deivative of ê 1

Clindical coodinates ae an eample of cuvilinea coodinates catesian cood. P: 0, 0, 0 CYLINDRICAL COORDINATES ê P eˆ 0 ê clindical cood. P:,, 0 0 0 + tan / cos sin 0 0 π +

CYLINDRICAL COORDINATE SYSTEM: infomal intoduction cos sin (,, ) eˆ ˆ ˆ + e + e ( cos, sin, ) coseˆ + sineˆ + eˆ (it is still in a catesian coodinate sstem) (,, ) (1,0,0) e This is the ate of vaiation of with keeping and constant it is a vecto paallel to the -ais (,, ) (0,1, 0) e This is the ate of vaiation of with keeping and constant it is a vecto paallel to the -ais How to calculate in a clindical coodinate sstem the e ais and the e ais? ( cos, sin, ) (cos,sin, 0) coseˆ sin ˆ + e e This is the ate of vaiation of ( cos, sin, ) ( sin, cos, 0) sineˆ cos ˆ + e e This is the ate of vaiation of eˆ with keeping and constant it is a vecto paallel to the -ais with keeping and constant it is a vecto paallel to the -ais eˆ P ê P 1 ê EXERCISE: Plot and in P e e EXERCISE: Epess in a clindical coodinate sstem (i.e. using ê and ê ) the vecto: v eˆ + eˆ 3

CURVILINEAR COORDINATE SYSTEMS Conside a catesian coodinate sstem,, The sufaces c c and c ae the coodinate sufaces. Thei intesection defines the -ais, -ais and -ais Conside anothe coodinate sstem defined b the vaiables u 1, u, u 3 u c u 3 u 1 c We assume that thee is a one-to-one elationship u 1 u 3 c u between i and u i, so that i can be epessed as a function of u i (and vice-vesa): - The sufaces defined b u i c ae called coodinate sufaces - The cuves defined b the intesection of the coodinate sufaces ae called coodinate cuves - The 3 cuves u 1, u, u 3 ae the coodinate aes u (, u, u) 1 3 u (, u, u) 1 3 u (, u, u) 1 3 DEFINITION A sstem of cuvilinea coodinates is othogonal if the coodinate cuves ae pependicula to each othe whee the intesect u u δ i j ik 4

Point P,, u 1, u, u 3 DEFINITION CURVILINEAR COORDINATES the basis is defined b the unit vectos: eˆ ˆ ˆ e e?? d ( d, d, d) eˆ eˆ eˆ An othogonal cuvilinea coodinate sstem has an othonomal basis { eˆ1, eˆ, eˆ3} in each point and 1 eˆi with scale facto h i h u u i i i u 3 ê 3 u ê ê 1 P (,,) u 1 1 1 eˆ 1 magnitude 1 i hi ui hi ui Othonomal: eˆ ˆ i ej δij 1 1 othogonal eˆ ˆ i e j 0 fo i j h u h u i i j j d du + du + du h eˆdu + h eˆ du + h eˆ du u u u 1 3 1 1 1 3 3 3 1 3 d h du eˆ i i i i Konecke delta 5

SURFACE ELEMENT AND VOLUME ELEMENT In a Catesian coodinate sstem: ( ) ˆ ˆ ˆ d d, d, d de + de + de ds ds ds dd dd dd dv ddd S S d S d d In a othogonal cuvilinea coodinate sstem: d h du eˆ + h du eˆ + h du eˆ 1 1 1 3 3 3 u 3 ds ds ds h h du du 1 3 3 h h du du 1 3 1 3 h h du du 3 1 1 dv h h h du du du 1 3 1 3 u 1 S 3 S 1 S h 3 du 3 h du h 1 du 1 u 6

Othonomal basis CYLINDRICAL COORDINATES cos sin coseˆ + sineˆ + eˆ 1 eˆi with h i h u u i i i 0 ê P 0 eˆ 0 ê (cos,sin, 0) ( sin, cos, 0) (0, 0,1) h cos + sin 1 h ( sin) + ( cos) h 1 1 eˆ (cos,sin, 0) cos ˆ sin ˆ e + e h 1 eˆ ( sin, cos, 0) sin eˆ cos ˆ + e h 1 eˆ (0, 0,1) ˆ e h EXERCISE: wite using eˆ, ˆ, ˆ e e ds dv ds dd dd ddd 7

Fams F ma F dv a v dt d v dt eˆ + e 0 0ˆ TARGET PROBLEM (in clindical cood.) Fams ma mv m 0 (the length does not change) d d ( ˆ ˆ. ˆ ˆ. 0e + 0e + e 0 + e 0 ) dt dt. d eˆ ( cos,sin,0) ( sin, cos,0) ( sin,cos,0) eˆ dt. d eˆ ( 0, 0,1) 0 dt. d + + + dt. d eˆ ( sin,cos,0) ( cos, sin,0) ( cos,sin,0) ( ) ( ) ( ) ( 0 eˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0 e 0 e 0 e 0 e 0 e 0 e 0 e e) dt ( ) F ˆ ˆ ams m m 0 e e 0 (the hamme otates on a plane constant) eˆ 8

PRACTICAL EXAMPLE: THE BIOT-SAVART LAW The magnetic field in a point P of a stead line cuent is given b the Biot-Savat law: B() ( ') µ ' 0I dl 3 4 π ' L Whee dl ' is an infinitesimal length along the wie, I is the position vecto of the point P and dl ' ' is a vecto fom the oigin to dl ' Theefoe, ' is a vecto fom dl ' to P ' P ' 9

PRACTICAL EXAMPLE: THE BIOT-SAVART LAW The magnetic field in a point P of a stead line cuent is given b the Biot-Savat law: B() ( ') µ ' 0I dl 3 4 π ' L Calculate the magnetic field in P eˆ ˆ 0 + e 0 poduced b a staight wie along the -ais with cuent I and length b and cented at 0. SOLUTION: + 0 0 If is the distance fom the oigin to P, c in clindical coodinates: ( ) ˆ l( ') 0,0, ' e ' with ': b + b eˆ c dl ' d eˆ ' dl ' ' b -b ' eˆ c ' eˆ ' ' eˆ ' eˆ ' + ' c c ( ) ( ) dl ' ' d ' eˆ eˆ ' eˆ d ' eˆ c c b 0I b ˆ cd ' e 0I b d ' 0I ' 0I b ˆ ˆ ˆ b 3/ c b 3/ c π ( ' ) ( ' ) c c ' c π + c + π π + c b c + b µ µ µ µ B() e e e 4 4 4 4 If the wie is infinitel long,we need to calculate the limit fo b B() µ I 0 eˆ π c 10

WHICH STATEMENT IS WRONG? ê 1- does not depend on the position (ellow) e - is constant evewhee (ed) ˆ 3- Clindical coodinates ae appopiate with a clindical smmet (geen) 4- Clindical coodinates ae a cuvilinea coodinate sstem (blue) 11

TARGET PROBLEM The electic field is consevative. The electostatic potential φ is defined b: E φ E φ E 0 fist Mawell s equation with no chage ( φ) φ 0 Laplace s equation Calculate the electostatic potential geneated outside a spheical chage. E Due to the spheical smmet, the solution will depend onl on the adius: φ φ() with + We need to: intoduce spheical coodinates calculate gadient and divegence in spheical coodinates solve the equation 1

spheical coodinates ae an eample of cuvilinea coodinates catesian cood. P: 0, 0, 0 SPHERICAL COORDINATES θ P 0 spheical cood. P:, θ, + + + tanθ tan / 0 0 θ π 0 π 0 0 sinθcos sinθsin cosθ 13

Othonomal basis SPHERICAL COORDINATES ê ê θ P eˆ sinθcos sinθsin cosθ θ 0 sinθcoseˆ + sinθsineˆ + cosθeˆ 0 1 eˆi with h i h u u i i i 0 (sinθcos,sinθsin,cos θ) ( cosθcos, cosθsin, sin θ) θ ( sinθsin, sinθcos,0) h sin θcos + sin θsin + cos θ 1 hθ ( cosθcos) + ( cosθsin) + ( sinθ) h ( sinθsin) + ( sinθcos) sinθ 1 eˆ (sinθcos,sinθsin,cos θ) h 1 eˆ θ (cosθcos, cosθsin, sin θ) hθ θ 1 eˆ ( sin,cos,0) h EXERCISE: wite using eˆ, eˆ, eˆ ds sinθdθd θ dv sinθddθd 14

GRADIENT IN CURVILINEAR COORDINATES In catesian coodinates: φ φ φ φ φ φ gadφ,, eˆ ˆ ˆ + e + e And in a cuvilinea coodinate sstem? We must epess gadφ in tems of the cuvilinea basis eˆ, eˆ, eˆ : gadφ g eˆ + g eˆ + g eˆ 1 1 3 3 1 3 since dφ gadφ d and d h du eˆ + h du eˆ + h du eˆ 1 1 1 3 3 3 ( ˆ ˆ ˆ ) ( ˆ ˆ ˆ ) dφ g e + g e + g e h du e + h du e + h du e g h du + g h du + g h du 1 1 3 3 1 1 1 3 3 3 1 1 1 3 3 3 φ φ φ dφ du + du + du u u u But also, witing φ as a function of u i : 1 3 1 φ 1 φ 1 φ Theefoe: g1, g, g3 h u h u h u 1 1 3 3 1 3 gadφ 1 h φ e u i i i ˆi 15

GRADIENT IN CURVILINEAR COORDINATES THE GRADIENT in clindical coodinates: 1 φ 1 φ 1 φ φ 1 φ φ gadφ eˆ eˆ eˆ ˆ ˆ ˆ + + e + e + e h h h in spheical coodinates: 1 φ 1 φ 1 φ φ 1 φ 1 φ gadφ eˆ ˆ ˆ ˆ ˆ ˆ + e + e e + e + e h h θ h θ sinθ θ θ θ EXERCISE: calculate in spheical coodinates 1 DIVERGENCE IN CURVILINEAR COORD. 1 diva A h h + A h h + A h h hhh u u u ( ) ( ) ( ) 1 3 3 1 3 1 1 3 1 3 Poof: see theoem 10.4, page 109 CURL IN CURVILINEAR COORD. heˆ heˆ heˆ 1 1 3 3 1 ota hhh u u u 1 3 1 3 ha ha ha 1 1 3 3 EXERCISE: calculate in spheical coodinates A Poof: see theoem 10.5, page 11 16

Due to spheical smmet φ φ() φ 0 Which can be witten as: ( φ) φ 0 TARGET PROBLEM with Due to spheical smmet, the solution is eas in spheical coodinates + E φ 1 φ 1 φ φ 1 φ 1 φ gadφ,, eˆ ˆ ˆ + eθ + e θ sinθ θ sinθ 1 1 diva ( A1h h3) ( Ah 3h1) ( A3h 1h) + + ( A sinθ) + ( Aθ sinθ) + ( A) hhh 1 3 u1 u u3 sinθ θ div( gadφ) θ + θ + + sinθ θ θ sinθ 1 φ 1 φ 1 φ φ φ sin sin 0 0 φ φ() No θ and no dependence φ φ c + 0 φ() + d c E gadφ e ˆ 17

WHICH STATEMENT IS WRONG? 1- The scale facto is necessa to calculate the gadient (ellow) - The scale facto is necessa to calculate the divegence (ed) 3- Spheical coodinates ae a cuvilinea coodinate sstem (blue) 4- In spheical coodinates the position vecto is (geen) (, θ, ) 18