Multiple partitioning of flight data for manoeuvrable aircraft aerodynamic modeling and parameter estimation

Σχετικά έγγραφα
Motion analysis and simulation of a stratospheric airship

High order interpolation function for surface contact problem

ER-Tree (Extended R*-Tree)

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

CorV CVAC. CorV TU317. 1

Research on Economics and Management

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Buried Markov Model Pairwise

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

ADVANCED STRUCTURAL MECHANICS

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo


Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

PLATEAU METEOROLOGY. X 6 min. 6 min Vol. 34 No. 4 August doi /j. issn X X / cosθcosφ P412.

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Applying Markov Decision Processes to Role-playing Game

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ADT

Table of Contents 1 Supplementary Data MCD

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

A research on the influence of dummy activity on float in an AOA network and its amendments

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

L.R. Alejano, 1* J. Muralha, 2 R. Ulusay, 3 C.C. Li, 4 I. Pérez-Rey, 1 H. Karakul, 5 P. Chryssanthakis, 6 Ö. Aydan, 7 J. Martínez 8 & N.

Approximation Expressions for the Temperature Integral

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Numerical Analysis FMN011

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

ALUMINUM ELECTROLYTIC CAPACITORS LKG

Gain self-tuning of PI controller and parameter optimum for PMSM drives

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ- ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ & ΣΤΑΤΙΣΤΙΚΑ ΠΑΚΕΤΑ (ΣΤ3) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΣT3 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 2 ο

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CAP A CAP


An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Eight Examples of Linear and Nonlinear Least Squares

Α ιθ EL. 3. Κα ασ ασ ής: fischerwerke GmbH & Co. KG, Klaus-Fischer-Straße 1, Waldachtal, α ία. Tumlingen,

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

A Model Generator for Multidisciplinary Design Optimization

Identificatio n of No n2uniformly Perio dically Sa mpled Multirate Syste ms

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

A summation formula ramified with hypergeometric function and involving recurrence relation

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

,,, (, ) , ;,,, ; -

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Εθνικό Μετσόβιο Πολυτεχνείο National Technical University of Athens. Aerodynamics & Aeroelasticity: Applications Σπύρος Βουτσινάς / Spyros Voutsinas

YOU Wen-jie 1 2 JI Guo-li 1 YUAN Ming-shun 2

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Forced Pendulum Numerical approach

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ

Simplex Crossover for Real-coded Genetic Algolithms

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

Mathematical model for HIV spreads control program with ART treatment

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική και µη γραµµική συµπεριφορά

4.6 Autoregressive Moving Average Model ARMA(1,1)

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

Development of a basic motion analysis system using a sensor KINECT

Second Order RLC Filters

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

Section 7.6 Double and Half Angle Formulas

Quick algorithm f or computing core attribute

3.8.1 J (7) (1883~1906) (1907~1931) A ~ (10) i J C-1 ~1973 C-2

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΕΤΟΙΜΑΣΙΑ ΔΕΛΤΙΟΥ ΠΟΣΟΤΗΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΛΟΓΙΣΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ

Transcript:

33 10 2016 10 DOI: 10.7641/CTA.2016.60260 Control Theory & Applications Vol. 33 No. 10 Oct. 2016, (, 100084) :,,..,,.,,,.,.. : ; ; ; : V212.1 : A Multiple partitioning of flight data for manoeuvrable aircraft aerodynamic modeling and parameter estimation HU Shuang, ZHU Ji-hong (Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China) Abstract: Under the quasi-steady assumption, aerodynamic characteristics show marked nonlinearity in high angle of attack or large amplitude maneuvers of manoeuvrable aircraft. A linear aerodynamic model generally identified from small amplitude maneuvers about trim conditions is no longer suitable for this case. In order to solve this problem, a method of multiple partitioning of flight data is proposed, which can characterize aerodynamic global nonlinearity by partitioned linearity. In each partitioned subset, a general aerodynamic model is formed by the Taylor s series expansion of static terms, dynamic stability derivatives and control derivatives of aerodynamic force and moment coefficients. The parameters in this aerodynamic model are estimated by using the class of least squares methods. According to the simulation flight test data of a modern fighter aircraft, the aerodynamic parameters are estimated which fit well with the true values. The test results verify the proposed multiple partitioning of flight data and the general aerodynamic model. Key words: aerodynamics; aerodynamic modeling; parameter estimation; multiple partitioning 1 (Introduction).,,,, [1 2].,, [3 4].,. [5],,,.,.,,.,,, [6].,,. [7],.,,. [8 9],,, 2., : 2016 04 27; : 2016 07 22.. E-mail: jhzhu@tsinghua.edu.cn; Tel.: +86 10-62796706. :. 973 (2012613189). Supported by National 973 Program (2012613189).

1290 33., [10].,.,,,.,.,,,.,.,,.,.,,,,,.,.,.,,,. 2 (Multiple partitioning of flight data) 2.1 (Multiple partitioning procedure), [8 9], 1,. ( 2 ),,. 5, 1 6,.,,.,,,,. 1 3, 2., 2, 3 6. 2., 1,. 2 3 Fig. 2 Subset 3 partitioning by sideslip angle, 1, 3,.,. 5, 2, 3,. 3 Fig. 3 Flight data multiple partitioning 1 Fig. 1 Flight data partitioning by angle of attack 2.2 (Multiple partitioning principle),.,,

10 : 1291 2.,,.,,.. 4 C nr, C nr., 10 30, 10. 30 40, 5.,.,, ±10.,,,., 2. 4 C nr Fig. 4 Damping-in-yaw derivate C nr wind-tunnel measurement 3 (Aerodynamic modeling and parameter estimation) 3.1 (Aerodynamic modeling), 3 C X,C Y,C Z 3 C l,c m,c n.,,., C a (α, β, V, q, δ lon ),a= X, Z, m, (1) C a (α, β, V, p, r, δ lat ),a= Y,l,n, (2) : α, β, V, p, q r, δ lon ( ), δ lat ( )., 3, : C a0 (α, β)+c aq (α, β) q c C aδlon (α, β)δ lon,a= X, Z, m, (3) C a0 (α, β)+c ap (α, β) pb C ar(α, β) rb C aδlat (α, β)δ lat,a= Y,l,n, (4) : c, b, C a0, C ap, C aq C ar, C aδlon C aδlat. (3) (4),..,, ᾱ β,, C a0 (α, β) = C a0 (ᾱ, β)+c aα (ᾱ, β)δα + C aβ (ᾱ, β)δβ, C aq (α, β) = C aq (ᾱ, β)+c aqα (ᾱ, β)δα + C aqβ (ᾱ, β)δβ, C aδlon (α, β) = C aδlon (ᾱ, β)+c aδlon α(ᾱ, β)δα+ C aδlon β(ᾱ, β)δβ, a = X, Z, m, (5) C a0 (α, β) = C a0 (ᾱ, β)+c aα (ᾱ, β)δα + C aβ (ᾱ, β)δβ, C ap (α, β) = C ap (ᾱ, β)+c apα (ᾱ, β)δα + C apβ (ᾱ, β)δβ, C ar (α, β) = C ar (ᾱ, β)+c arα (ᾱ, β)δα + C arβ (ᾱ, β)δβ, C aδlat (α, β) = C aδlat (ᾱ, β)+c aδlat α(ᾱ, β)δα+ C aδlat β(ᾱ, β)δβ, a = Y,l,n, (6) : Δα = α ᾱ, Δβ = β β. (5) (6) (3) (4) C a0 (ᾱ, β)+c aα (ᾱ, β)δα + C aβ (ᾱ, β)δβ +[C aq (ᾱ, β)+ C aqα (ᾱ, β)δα q c + C aqβ (ᾱ, β)δβ] [C aδlon (ᾱ, β)+c aδlon α(ᾱ, β)δα + C aδlon β(ᾱ, β)δβ]δ lon,a= X, Z, m, (7)

1292 33 C a0 (ᾱ, β)+c aα (ᾱ, β)δα + C aβ (ᾱ, β)δβ + [C ap (ᾱ, β)+c apα (ᾱ, β)δα + pb C apβ (ᾱ, β)δβ] [C ar(ᾱ, β)+ C arα (ᾱ, β)δα rb + C arβ (ᾱ, β)δβ] [C aδlat (ᾱ, β)+c aδlat α(ᾱ, β)δα + C aδlat β(ᾱ, β)δβ]δ lat,a= Y,l,n. (8) (7) (8). 3.2 (Parameter estimation), 3 C X,C Y,C Z 3 C l,c m,c n.,, : qsc X + X T = mgn x, qsc Y + Y T = mgn y, qsc Z + Z T = mgn z, qsbc l + L T = I x ṗ I xz (pq+ṙ)+(i z I y ) qr, qs cc m + M T = I y q+i xz (p 2 r 2 )+(I x I z ) pr, qsbc n + N T = I z ṙ I xz (ṗ qr)+(i y I x ) pq, (9) : q, S, m, g, I x,i y,i z,i xz, n x,n y,n z 3, X T,Y T,Z T,L T,M T,N T 3.,,.,,., (9). (7) (8), ᾱ β,. N, (7) (8) N, [11],., : 1),,. 2),. [12] 30,.,,. 4 (Simulation flight test), [13].,, [14] 16% [15].,.,. ( 0.6),.,,., (7) (8) : C a0 (ᾱ, β)+c aα (ᾱ, β)δα + C aβ (ᾱ, β)δβ +[C aq (ᾱ, β)+ C aqα (ᾱ, β)δα q c + C aqβ (ᾱ, β)δβ] [C aδe (ᾱ, β)+c aδeα(ᾱ, β)δα + C aδe β(ᾱ, β)δβ]δ e,a= X, Z, m, (10) C a0 (ᾱ, β)+c aα (ᾱ, β)δα + C aβ (ᾱ, β)δβ +[C ap (ᾱ, β)+ C apα (ᾱ, β)δα pb + C apβ (ᾱ, β)δβ] [C ar (ᾱ, β)+c arα (ᾱ, β)δα + rb C arβ (ᾱ, β)δβ] [C aδ a (ᾱ, β)+ C aδaα(ᾱ, β)δα + C aδaβ(ᾱ, β)δβ]δ a + [C aδr (ᾱ, β)+c aδr α(ᾱ, β)δα + C aδr β(ᾱ, β)δβ]δ r,a= Y,l,n, (11) : δ e, δ a, δ r.,,,,. 5 7.,., (9) 3 C X,C Y,C Z 3 C l,c m,c n.,.,

10 : 1293 [11].,,,. 5 Fig. 5 Angle of attack and sideslip angle variation,.,. 5, 2, C l C l0 C lp C lr C lδa C lδr 8 12,. (MSE), MSE = 1 N (C li N Ĉli) 2, (12) i=1 : N, C li, Ĉli. 1,., C lp C lr,.. 8 C l0 Fig. 8 Comparison of estimated results and true values of C l0 6 Fig. 6 Elevator, aileron and rudder variation 9 C lp Fig. 9 Comparison of estimated results and true values of C lp 7 Fig. 7 Roll, pitch and yaw angular velocity variation 5 (Result analysis) 5 7. ( 15) ( 30). (10) (11) 10 C lr Fig. 10 Comparison of estimated results and true values of C lr

1294 33 11 C lδa Fig. 11 Comparison of estimated results and true values of C lδa 12 C lδr Fig. 12 Comparison of estimated results and true values of C lδr ᾱ/( ) β/( ) MSE 11.85 16.86 21.86 26.87 1 Table 1 Comparison of estimated results and true values of roll moments parameters C l0 C lp C lr C lδa C lδr 0.40 2.69 10 6 0.0014 0.0014 0.3867 0.3905 0.1924 0.1996 0.1347 0.1363 0.0212 0.0218 2.40 5.01 10 6 0.0082 0.0082 0.3945 0.3905 0.1891 0.1996 0.1350 0.1336 0.0220 0.0218 5.56 4.79 10 6 0.0213 0.0214 0.3556 0.3585 0.2808 0.2881 0.1327 0.1330 0.0190 0.0192 3.56 5.80 10 6 0.0134 0.0135 0.3560 0.3585 0.2865 0.2881 0.1296 0.1299 0.0199 0.0195 1.54 6.79 10 6 0.0057 0.0057 0.3571 0.3585 0.2858 0.2881 0.1266 0.1268 0.0198 0.0197 0.47 4.64 10 6 0.0017 0.0017 0.3573 0.3585 0.2866 0.2881 0.1234 0.1238 0.0198 0.0200 2.48 7.72 10 6 0.0090 0.0089 0.3600 0.3585 0.2875 0.2881 0.1209 0.1207 0.0200 0.0202 6.06 4.36 10 6 0.0213 0.0214 0.3336 0.3175 0.3997 0.3864 0.1188 0.1188 0.0163 0.0164 4.04 2.82 10 6 0.0140 0.0141 0.3172 0.3175 0.3800 0.3864 0.1156 0.1155 0.0171 0.0170 2.02 4.66 10 6 0.0070 0.0070 0.3172 0.3175 0.3821 0.3864 0.1119 0.1123 0.0173 0.0175 0.01 2.60 10 6 0.0000 0.0000 0.3178 0.3175 0.3878 0.3864 0.1088 0.1091 0.0179 0.0180 1.97 5.54 10 6 0.0067 0.0067 0.3231 0.3175 0.3873 0.3864 0.1065 0.1059 0.0183 0.0184 3.97 3.31 10 6 0.0133 0.0133 0.3217 0.3175 0.3849 0.3864 0.1029 0.1027 0.0184 0.0188 1.68 1.91 10 6 0.0047 0.0047 0.2720 0.2703 0.4808 0.4664 0.0918 0.0945 0.0142 0.0155 0.32 2.25 10 6 0.0009 0.0009 0.2669 0.2703 0.4844 0.4664 0.0901 0.0914 0.0160 0.0162 2, 2, C lδa 13.,,.., 11, 13 11 1.,,,. 10, 2, C lδa 14.,,.,,,. 13 2 C lδa Fig. 13 Comparison of estimated results and true values of C lδa when 2 angle of attack variation in subsets 14 10 C lδa Fig. 14 Comparison of estimated results and true values of C lδa when 10 angle of attack variation in subsets

10 : 1295 6 (Conclusions),,,,, : 1),. 2),.,,. 3),.,.,,.,,,.,,.,,,,,. (References):(References): [1] KLEIN V, MORELLI E. Aircraft System Identification: Theory and Practice [M]. Reston, VA, USA: American Institute of Aeronautics and Astronautics, 2006. [2] CAI Jinshi. Aircraft System Identification [M]. Beijing: National Defend Industry Press, 2003. (. [M]. :, 2003.) [3] CHOWDHARY G, JATEGAONKAR R. Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter [J]. Aerospace Science and Technology, 2010, 14(2): 106-117. [4] KLEIN V, MURPHY P. Aerodynamic parameters of high performance aircraft estimated from wind tunnel and flight test data [R]. Hampton, VA, USA: NASA, 1998. [5] BATTERSON J G. Estimation of airplane stability and control derivatives from large-amplitude longitudinal maneuvers [R]. Hampton, VA, USA: NASA, 1981. [6] BESGAS Γ C. Aerodynamics and Flight Dynamics for Supersonic Aircraft [M]. Shanghai: Shanghai Jiao Tong University Press, 2009. ( Γ C. [M]. :, 2009.) [7] KLEIN V, NODERER K D. Modeling of aircraft unsteady aerodynamic characteristics, part 3: parameters estimated from flight data [R]. Hampton, VA, USA: NASA, 1996. [8] BATTERSON J G, KLEIN V. Partitioning of flight data for aerodynamic modeling of aircraft at high angles of attack [J]. Journal of Aircraft, 1989, 26(4): 334 339. [9] PARAMESWARAN V, GIRIJA G, RAOL J R. Estimation of parameters from large amplitude maneuvers with partitioned data for aircraft [C] //AIAA Atomospheric Flight Mechanics Conference and Exhibit. Austin, Texas, USA: AIAA, 2003: 5703. [10] KLEIN V, BATTERSON J G, MURPHY P C. Determination of airplane model structure from flight data by using modified stepwise regression [R]. Hampton, VA, USA: NASA, 1981. [11] XIAO Deyun. Theory of System Identification with Applications [M]. Beijing: Tsinghua University Press, 2014. (. [M]. :, 2014.) [12] BELSLEY D A, KUH E, WELSCH R E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity [M]. New Y- ork, USA: John Wiley & Sons, Inc, 2005. [13] SONNEVELDT L. Nonlinear F 16 model description [R]. Netherlands: Delft University of Technology, 2006. [14] MORELLI E. Global nonlinear parametric modelling with application to F 16 aerodynamics [C] //American Control Conference. New York, USA: IEEE, 1998: 997 1001. [15] STEVENS B L, LEWIS F L. Aircraft Control and Simulation [M]. 2nd Edition. New Jersey, USA: John Wiley & Sons, Inc, 2003. : (1990 ),,,, E-mail: hus13@mails.tsinghua.edu.cn; (1968 ),,,,, E-mail: jhzhu@tsinghua.edu.cn.