organic compounds 78 HeÂctor Novoa de Armas et al. C 24 H 36 O 6 Acta Cryst. (2000). C56, 78±79 Comment Experimental

Σχετικά έγγραφα
Experimental. Crystal data

metal-organic compounds

Triclinic, P1 a = (2) Å b = (3) Å c = (4) Å = (1) = (1) = (1) Data collection.

organic papers 7,8-Dihydroxy-3-methyl-10-oxo-1H,10Hpyrano[4,3-b]chromene-9-carboxylic

Supplementary Material

Experimental. Crystal data. C 37 H 38 N 4 O 6 M r = Monoclinic, P2 1 a = (2) Å b = (7) Å c = (2) Å = 112.

data reports 2-(4-Methylphenyl)-2-oxoethyl 3,4-dimethoxybenzoate Structure description Synthesis and crystallization Refinement

metal-organic compounds

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

metal-organic compounds

2. Experimental Crystal data. C 22 H 29 F 3 O 5 S M r = Orthorhombic, P a = (10) Å b = (12) Å c = 27.

IV. ANHANG 179. Anhang 178

Experimental. Crystal data. C 23 H 27 ClN 2 O M r = Triclinic, P1 a = (3) Å b = (6) Å c = (7) Å = (4) = 80.

2-Carboxyquinolinium-2,4,6-trinitrobenzenesulfonatequinolinium-2-carboxylate

metal-organic compounds

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

metal-organic compounds

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Single Crystal X-Ray Structure Determination of Compounds 8a, 8b and 11a

Supplementary information

metal-organic compounds

Supporting Information

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Supporting Information

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Experimental. Crystal data. C 37 H 24 N 2 O 3 M r = Orthorhombic, P a = (1) Å b = (2) Å c = 26.

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

organic compounds 5-Chloro-3-methyl-4-[3-(4-nitro- phenyl)-4,5-dihydro-1h-pyrazol-5-yl]- 1-phenyl-1H-pyrazole: a chain of fused hydrogen-bonded rings

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Electronic Supplementary Information (ESI)

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

2. Experimental Crystal data

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Experimental. Crystal data

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Experimental. Crystal data. C 15 H 12 BrN 3 O 2 S M r = Trigonal, R3 a = (9) Å c = (5) Å V = (4) Å 3.

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

metal-organic compounds

Mouhamadou Birame Diop, a * Libasse Diop a and Allen G. Oliver b

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

metal-organic compounds

Electronic Supplementary Information (ESI)

Supporting Information

Elizabeth M. Horstman, a Jeffery A. Bertke, b Toby J. Woods b * and Paul J. A. Kenis a

Table of Contents 1 Supplementary Data MCD

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

metal-organic compounds

Supporting Information-B. A Facile Iterative Synthesis of 2,5-Terpyrimidinylenes as Non-peptidic α-helical Mimics

2-(5-Bromo-1H-indol-3-yl)-4-(4-bromophenyl)-5- (4-chlorobenzoyl)-1H-pyrrole-3-carbonitrile dimethyl sulfoxide monosolvate

Supporting Information

data reports a molecular salt Structure description

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Mohamed Amedjkouh, Jacques Grimaldi, Jean-Pierre Reboul and Didier Siri

Electronic Supplementary Information:

Supporting Information

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Supplementary Materials: Exploration of vanadate selenites Solid Phase Space, crystal structures and polymorphism

Supporting Information

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supporting Information

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supplementary Information for

Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide derivatives as Bacterial Quorum Sensing and Biofilm Inhibitors

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Supporting Information

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Experimental. Crystal data. C 13 H 17 N 3 O 2 M r = Monoclinic, Cc a = (4) Å b = (4) Å c = (3) Å = 111.

Supporting Information

Supporting Information

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

metal-organic papers Aquaoxobis(quinoline-2-carboxylato-N,O)- vanadium(iv) ethanol hemisolvate Comment

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Electronic Supplementary Information

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

Electronic Supplementary Information

Transcript:

organic compounds Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701 In connection with our studies on the synthesis and characterization of bioactive steroids, we determined the molecular structure of 3-acetoxy-5,6-dihydroxybisnorcholanic acid 22!16 lactone, (I), an intermediate compound in the synthesis of the 3,5,6-triol and 3,5-diol-6-keto compounds. The starting material was the steroidal alkaloid solasodine, isolated from Solanum globiferum Dunae, a plant that grows in the elds of Cuba. These products will be tested as plant growth promoters. The absolute con guration was assumed to be the same as that of previous related structures (Novoa de Armas et al., 1999), and con rmed the one predicted beforehand from the synthetic route. Fig. 1 shows the molecular structure of the title compound, (I), with the corresponding numbering scheme. The C3ÐO31 bond of the acetoxy group is equatorially oriented and ( )- antiperiplanar to the C3ÐC4 bond. The presence of the acetoxy group bonded to C3 does not disturb the chair conformation of the ring A of the steroidal nucleus. Ring A has a highly symmetrical chair conformation with all asymmetry parameters below 6.4 (3) (Duax et al., 1976). Rotational symmetry is dominant, a pseudo-c 2 axis intercepts the C3ÐC4 bond with asymmetry parameters C 2 (C3ÐC4) = 3.2 (3), C S (C1) = 4.4 (2) and C S (C3) = 0.7 (2). The average magnitude of the torsion angles is 55.37 (12). Rings B 3b-Acetoxy-5a,6b-dihydroxybisnorcholanic acid 22!16 lactone HeÂctor Novoa de Armas, a *² Oswald M. Peeters, a Norbert M. Blaton, a Camiel J. De Ranter, a RamoÂn PomeÂs HernaÂndez, b Jose L. Mola, c Carlos SerafõÂn PeÂrez, c Leticia SuaÂrez GarcõÂa, c MartõÂn A. Iglesias c and Francisco Coll Manchado c a Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium, b Centro Nacional de Investigaciones CientõÂficas, DivisioÂn de QuõÂmica, Apartado 6990, La Habana, Cuba, and c Laboratorio de Productos Naturales, Facultad de QuõÂmica, Universidad de La Habana, Apartado 10400, La Habana, Cuba Correspondence e-mail: hector.novoa@farm.kuleuven.ac.be Received 6 July 1999 Accepted 1 September 1999 In the title compound, C 24 H 36 O 6, the ester linkage in ring A is equatorial. The six-membered rings A, B and C have chair conformations. The ve-membered ring D adopts a 13,14half-chair conformation and the E ring adopts an envelope conformation. The A/B, B/C and C/D ring junctions are trans, whereas the D/E junction is cis. and C have chair conformations, as expected (Pfeiffer et al., 1985). The ve-membered ring D adopts a 13,14-half-chair conformation (Altona et al., 1968) and the E ring, which has a carbonyl group instead of an additional spiro ring, adopts an envelope conformation with the ap at C17 on the opposite side of the mean plane of ring E to the methyl substituent C21. In related steroids reported in the Cambridge Structural Database (Allen & Kennard, 1993) that have a spirostan F ring (Novoa de Armas et al., 1999), the E ring has a half-chair conformation. The A/B, B/C and C/D ring junctions are trans, whereas the D/E junction is cis. The bond distances and valence angles are close to the expected values (Honda et al., 1996). The packing of the molecules is assumed to be dictated mainly by intermolecular OÐHO hydrogen bonds, and by intermolecular CÐHO interactions (Taylor & Kennard, Comment ² On leave from: Centro de QuõÂmica FarmaceÂutica, Departamento de AnaÂlisis, Apartado 16042, La Habana, Cuba. Figure 1 Plot showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-h atoms; H atoms have been omitted for clarity. 1982). The molecules are linked into an in nite two-dimensional network, with base vectors [100] and [010], by means of the OÐHO hydrogen bonds (Table 2). Experimental The starting material was the steroidal alkaloid solasodine. The alkaloid was transformed to 3,16-dihydroxy-5-bisnorcholenic acid 22!16 lactone, dissolved in dry pyridine with Ac 2 O, and converted to the 3-acetate. The acetate was treated with m-chloroperoxybenzoic acid in CH 2 Cl 2 to give a mixture of the and epoxides, with about 30% of the component. Upon treatment with 60% HClO 4 in aqueous acetone, the mixture yielded (I) with a melting point of 536± 538 K. Crystals were grown by slow evaporation from ethanol. 78 HeÂctor Novoa de Armas et al. C 24 H 36 O 6 Acta Cryst. (2000). C56, 78±79

organic compounds Crystal data C 24 H 36 O 6 M r = 420.53 Orthorhombic, P2 1 2 1 2 1 a = 6.3980 (4) A Ê b = 9.7142 (5) A Ê c = 35.119 (4) A Ê V = 2182.7 (3) A Ê 3 Z =4 D x = 1.280 Mg m 3 Cu K radiation Data collection Siemens P4 four-circle diffractometer!/2 scans Absorption correction: scan (North et al., 1968) T min = 0.679, T max = 0.877 3136 measured re ections 2865 independent re ections 2668 re ections with F 2 >2(F 2 ) Re nement Re nement on F 2 R[F 2 >2(F 2 )] = 0.0457 wr(f 2 ) = 0.1329 S = 1.051 2865 re ections 278 parameters H-atom parameters constrained = 1.54184 A Ê Cell parameters from 42 re ections = 5.03±28.80 = 0.730 mm 1 T = 293 K Prism, colourless 0.38 0.22 0.18 mm R int = 0.0243 max = 69.13 h = 1! 6 k = 1! 11 l = 1! 42 3 standard re ections every 100 re ections intensity decay: 4.0% w = 1/[ 2 (F o 2 ) + (0.0791P) 2 + 0.6321P] where P =(F o 2 +2F c 2 )/3 (/) max = 0.001 max = 0.39 e A Ê 3 min = 0.24 e A Ê 3 Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coef cient: 0.0037 (5) Table 2 Hydrogen-bonding geometry (A Ê, ). DÐHA DÐH HA DA DÐHA O5ÐH5O32 i 0.82 2.26 3.071 (4) 173 O6ÐH6O5 ii 0.82 2.25 2.986 (3) 150 C3ÐH3O6 iii 0.98 2.44 3.352 (4) 155 C16ÐH16O23 iv 0.98 2.42 3.146 (3) 131 Symmetry codes: (i) 1 x; y 1 2 ; 1 2 z; (ii) x 1; y; z; (iii) 1 x; y; z; (iv) 1 2 x; 3 2 y; 1 z. Data collection: XSCANS (Siemens, 1996); cell re nement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to re ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PLATON (Spek, 1990) and PARST (Nardelli, 1983, 1995). This work was supported in part by the `Administration Generale de la Cooperation au Developpement, AGCD' (Matricule: 911264) from the Belgian Government (ABOS-AGCD) and K. U. Leuven. Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1086). Services for accessing these data are described at the back of the journal. H atoms were calculated geometrically and included in the re nement, but were constrained to ride on their parent atoms. The isotropic displacement parameters of the H atoms were xed to 1.3 times U eq of their parent atoms. The number of unique re ections is 2291. The number of Friedel related pairs is 574. Table 1 Selected geometric parameters (A Ê, ). O5ÐC5 1.456 (3) O6ÐC6 1.431 (4) O22ÐC22 1.204 (4) O23ÐC16 1.463 (3) C16ÐO23ÐC22 110.9 (2) C3ÐO31ÐC32 119.6 (3) O31ÐC3ÐC2 111.4 (2) O31ÐC3ÐC4 103.4 (2) O5ÐC5ÐC10 107.14 (19) O5ÐC5ÐC4 107.7 (2) O5ÐC5ÐC6 104.4 (2) O6ÐC6ÐC7 111.9 (2) O6ÐC6ÐC5 109.4 (2) O23ÐC22 1.348 (3) O31ÐC3 1.470 (3) O31ÐC32 1.328 (5) O32ÐC32 1.191 (5) O23ÐC16ÐC17 105.39 (16) O23ÐC16ÐC15 111.7 (2) O22ÐC22ÐC20 128.6 (3) O23ÐC22ÐC20 110.8 (2) O22ÐC22ÐO23 120.6 (3) O32ÐC32ÐC33 123.0 (4) O31ÐC32ÐO32 124.6 (3) O31ÐC32ÐC33 112.4 (4) References Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31±37. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13±32. Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-Strasse 1, Bonn, Germany. Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271±283. New York: John Wiley. Honda, T., Fujii, I., Hirayama, N., Ishikawa, D., Kawagishi, H., Song, K.-S. & Yoo, I.-D. (1996). Acta Cryst. C52, 1550±1552. Nardelli, M. (1983). Comput. Chem. 7, 95±98. Nardelli, M. (1995). J. Appl. Cryst. 28, 659. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351± 359. Novoa de Armas, H., Blaton, N. M., Peeters, O. M., De Ranter, C. J., PomeÂs HernaÂndez, R., Iglesias Arteagas, M., PeÂrez Gil, R. & Coll Manchado, F. (1999). Acta Cryst. C55, 601±603. Pfeiffer, D., Kutschabsky, L., Kretschmer, R. G., Collect, F. & Adam, G. (1985). Z. Chem. 25, 183±184. Sheldrick, G. M. (1997). SHELXL97. Program for the Re nement of Crystal Structures. University of GoÈttingen, Germany. Siemens (1996). XSCANS. X-ray Single Crystal Analysis System. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Spek, A. L. (1990). Acta Cryst. A46, C-34. Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063±5070. Acta Cryst. (2000). C56, 78±79 HeÂctor Novoa de Armas et al. C 24 H 36 O 6 79

supporting information [doi:10.1107/s0108270199011300] 3β-Acetoxy-5α,6β-dihydroxybisnorcholanic acid 22[\rightarrow]16 lactone Héctor Novoa de Armas, Oswald M. Peeters, Norbert M. Blaton, Camiel J. De Ranter, Ramón Pomés Hernández, José L. Mola, Carlos Serafín Pérez, Leticia Suárez García, Martín A. Iglesias and Francisco Coll Manchado Computing details Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PLATON (Spek, 1990) and PARST (Nardelli, 1983, 1995). 3β-acetoxy-5α,6β-dihydroxy-bisnorcholanic acid 22\rigtharrow16 lactone Crystal data C 24 H 36 O 6 M r = 420.53 Orthorhombic, P2 1 2 1 2 1 a = 6.3980 (4) Å b = 9.7142 (5) Å c = 35.119 (4) Å V = 2182.7 (3) Å 3 Z = 4 F(000) = 912 Data collection Siemens P4 four-circle diffractometer ω/2θ scans Absorption correction: ψ scan (North et al., 1968) T min = 0.679, T max = 0.877 3136 measured reflections 2865 independent reflections Refinement Refinement on F 2 Least-squares matrix: full R[F 2 > 2σ(F 2 )] = 0.046 wr(f 2 ) = 0.133 S = 1.05 2865 reflections 278 parameters H-atom parameters constrained D x = 1.280 Mg m 3 Cu Kα radiation, λ = 1.54184 Å Cell parameters from 42 reflections θ = 5.0 28.8 µ = 0.73 mm 1 T = 293 K Prism, colourless 0.38 0.22 0.18 mm 2668 reflections with F 2 > 2σ(F 2 ) R int = 0.024 θ max = 69.1 h = 1 6 k = 1 11 l = 1 42 3 standard reflections every 100 reflections intensity decay: 4.0% w = 1/[σ 2 (F o2 ) + (0.0791P) 2 + 0.6321P] where P = (F o 2 + 2F c2 )/3 (Δ/σ) max = 0.001 Δρ max = 0.39 e Å 3 Δρ min = 0.24 e Å 3 Extinction correction: SHELXL97 (Sheldrick, 1997), Fc * =kfc[1+0.001xfc 2 λ 3 /sin((2θ)] -1/4 Extinction coefficient: 0.0037 (5) sup-1

Special details Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq C1 0.3186 (5) 1.0030 (3) 0.31552 (7) 0.0436 (8)* C2 0.3475 (5) 1.0009 (3) 0.27193 (7) 0.0491 (9)* C3 0.3361 (5) 0.8548 (3) 0.25668 (7) 0.0456 (8)* C4 0.1419 (5) 0.7783 (3) 0.27007 (7) 0.0455 (8)* O5 0.2977 (3) 0.7171 (2) 0.33032 (5) 0.0475 (6)* C5 0.1164 (4) 0.7840 (3) 0.31341 (6) 0.0376 (7)* O6 0.2547 (3) 0.7396 (3) 0.30701 (5) 0.0637 (8)* C6 0.0704 (5) 0.6974 (3) 0.32694 (7) 0.0444 (8)* C7 0.0985 (5) 0.7057 (3) 0.36998 (7) 0.0431 (9)* C8 0.1049 (4) 0.8534 (2) 0.38502 (6) 0.0342 (8)* C9 0.0950 (4) 0.9313 (2) 0.37262 (6) 0.0339 (7)* C10 0.1131 (4) 0.9353 (3) 0.32829 (6) 0.0341 (7)* C11 0.1160 (5) 1.0737 (3) 0.39139 (7) 0.0410 (8)* C12 0.0840 (4) 1.0711 (3) 0.43481 (7) 0.0414 (8)* C13 0.1236 (4) 1.0033 (2) 0.44505 (6) 0.0333 (7)* C14 0.1238 (4) 0.8566 (2) 0.42834 (6) 0.0337 (7)* C15 0.3109 (4) 0.7875 (3) 0.44763 (6) 0.0392 (7)* C16 0.3025 (4) 0.8466 (2) 0.48822 (7) 0.0366 (7)* C17 0.1469 (4) 0.9677 (2) 0.48789 (6) 0.0346 (7)* C18 0.3067 (5) 1.0908 (3) 0.43071 (7) 0.0410 (8)* C19 0.0674 (5) 1.0193 (3) 0.31126 (7) 0.0471 (8)* C20 0.2475 (4) 1.0717 (3) 0.51512 (6) 0.0387 (7)* C21 0.1645 (5) 1.0582 (3) 0.55596 (7) 0.0520 (9)* O22 0.6236 (4) 1.0970 (2) 0.52643 (7) 0.0641 (8)* C22 0.4762 (5) 1.0326 (3) 0.51471 (7) 0.0425 (8)* O23 0.5029 (3) 0.9064 (2) 0.49954 (5) 0.0433 (6)* O31 0.3162 (4) 0.8533 (2) 0.21499 (5) 0.0540 (7)* O32 0.6399 (5) 0.9319 (4) 0.20565 (8) 0.092 (1)* C32 0.4777 (7) 0.8905 (4) 0.19356 (9) 0.063 (1)* C33 0.4327 (8) 0.8781 (4) 0.15219 (9) 0.085 (2)* H1A 0.4349 0.9553 0.3273 0.054* H1B 0.3210 1.0977 0.3243 0.054* H2A 0.2395 1.0563 0.2601 0.061* H2B 0.4819 1.0407 0.2655 0.061* H3 0.4615 0.8038 0.2643 0.057* H4A 0.1510 0.6829 0.2621 0.057* H4B 0.0195 0.8184 0.2581 0.057* H5 0.3076 0.6384 0.3221 0.059* H6 0.3553 0.7362 0.3214 0.080* H6A 0.0425 0.6012 0.3203 0.055* sup-2

H7A 0.0156 0.6570 0.3822 0.054* H7B 0.2276 0.6596 0.3769 0.054* H8 0.2266 0.9001 0.3740 0.043* H9 0.2135 0.8764 0.3817 0.042* H11A 0.2538 1.1103 0.3859 0.051* H11B 0.0140 1.1355 0.3802 0.051* H12A 0.1976 1.0207 0.4466 0.052* H12B 0.0862 1.1645 0.4446 0.052* H14 0.0013 0.8109 0.4383 0.042* H15A 0.2959 0.6881 0.4478 0.049* H15B 0.4407 0.8117 0.4350 0.049* H16 0.2584 0.7759 0.5064 0.046* H17 0.0120 0.9376 0.4981 0.043* H18A 0.2963 1.1819 0.4411 0.051* H18B 0.4361 1.0497 0.4386 0.051* H18C 0.3025 1.0955 0.4034 0.051* H19A 0.0451 1.1154 0.3162 0.059* H19B 0.1968 0.9908 0.3226 0.059* H19C 0.0733 1.0043 0.2843 0.059* H20 0.2284 1.1658 0.5057 0.048* H21A 0.1808 0.9649 0.5645 0.065* H21B 0.2416 1.1185 0.5724 0.065* H21C 0.0192 1.0827 0.5565 0.065* H33A 0.4379 0.7829 0.1449 0.106* H33B 0.5350 0.9290 0.1380 0.106* H33C 0.2961 0.9143 0.1470 0.106* Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 C1 0.038 (2) 0.053 (1) 0.040 (1) 0.008 (1) 0.005 (1) 0.001 (1) C2 0.045 (2) 0.062 (2) 0.041 (1) 0.009 (2) 0.005 (1) 0.001 (1) C3 0.043 (2) 0.061 (2) 0.033 (1) 0.002 (2) 0.002 (1) 0.002 (1) C4 0.045 (2) 0.056 (1) 0.036 (1) 0.004 (1) 0.003 (1) 0.006 (1) O5 0.042 (1) 0.051 (1) 0.050 (1) 0.009 (1) 0.0009 (9) 0.0010 (8) C5 0.032 (1) 0.046 (1) 0.035 (1) 0.002 (1) 0.001 (1) 0.000 (1) O6 0.036 (1) 0.112 (2) 0.0427 (9) 0.015 (1) 0.0022 (9) 0.007 (1) C6 0.042 (2) 0.050 (1) 0.041 (1) 0.011 (1) 0.004 (1) 0.008 (1) C7 0.049 (2) 0.042 (1) 0.039 (1) 0.010 (1) 0.004 (1) 0.003 (1) C8 0.033 (1) 0.037 (1) 0.033 (1) 0.004 (1) 0.002 (1) 0.0004 (9) C9 0.028 (1) 0.041 (1) 0.033 (1) 0.002 (1) 0.002 (1) 0.0017 (9) C10 0.026 (1) 0.043 (1) 0.033 (1) 0.003 (1) 0.001 (1) 0.0007 (9) C11 0.040 (2) 0.043 (1) 0.040 (1) 0.012 (1) 0.004 (1) 0.002 (1) C12 0.036 (2) 0.048 (1) 0.040 (1) 0.010 (1) 0.001 (1) 0.007 (1) C13 0.030 (1) 0.037 (1) 0.033 (1) 0.005 (1) 0.000 (1) 0.0014 (9) C14 0.032 (1) 0.038 (1) 0.032 (1) 0.001 (1) 0.001 (1) 0.0012 (9) C15 0.041 (2) 0.038 (1) 0.038 (1) 0.009 (1) 0.005 (1) 0.000 (1) C16 0.037 (1) 0.036 (1) 0.037 (1) 0.002 (1) 0.006 (1) 0.0042 (9) sup-3

C17 0.032 (1) 0.039 (1) 0.033 (1) 0.002 (1) 0.001 (1) 0.0011 (9) C18 0.039 (2) 0.043 (1) 0.041 (1) 0.003 (1) 0.002 (1) 0.006 (1) C19 0.044 (2) 0.060 (2) 0.038 (1) 0.006 (2) 0.001 (1) 0.009 (1) C20 0.038 (2) 0.041 (1) 0.037 (1) 0.001 (1) 0.002 (1) 0.003 (1) C21 0.052 (2) 0.067 (2) 0.037 (1) 0.005 (2) 0.001 (1) 0.009 (1) O22 0.045 (1) 0.065 (1) 0.082 (1) 0.011 (1) 0.012 (1) 0.017 (1) C22 0.039 (2) 0.046 (1) 0.043 (1) 0.003 (1) 0.002 (1) 0.003 (1) O23 0.034 (1) 0.0434 (9) 0.0524 (9) 0.0022 (9) 0.0103 (9) 0.0041 (8) O31 0.057 (1) 0.072 (1) 0.0325 (8) 0.005 (1) 0.0100 (9) 0.0000 (8) O32 0.074 (2) 0.126 (3) 0.077 (2) 0.029 (2) 0.028 (2) 0.014 (2) C32 0.072 (3) 0.062 (2) 0.054 (2) 0.005 (2) 0.023 (2) 0.005 (1) C33 0.135 (4) 0.074 (2) 0.046 (2) 0.013 (3) 0.028 (2) 0.007 (2) Geometric parameters (Å, º) O5 C5 1.456 (3) C32 C33 1.486 (5) O6 C6 1.431 (4) C1 H1A 0.9699 O22 C22 1.204 (4) C1 H1B 0.9703 O23 C16 1.463 (3) C2 H2A 0.9698 O23 C22 1.348 (3) C2 H2B 0.9700 O31 C3 1.470 (3) C3 H3 0.9801 O31 C32 1.328 (5) C4 H4A 0.9702 O32 C32 1.191 (5) C4 H4B 0.9697 O5 H5 0.8195 C6 H6A 0.9797 O6 H6 0.8201 C7 H7A 0.9703 C1 C2 1.542 (4) C7 H7B 0.9698 C1 C10 1.537 (4) C8 H8 0.9799 C2 C3 1.518 (4) C9 H9 0.9804 C3 C4 1.523 (4) C11 H11A 0.9700 C4 C5 1.532 (3) C11 H11B 0.9702 C5 C10 1.560 (4) C12 H12A 0.9700 C5 C6 1.537 (4) C12 H12B 0.9704 C6 C7 1.524 (4) C14 H14 0.9799 C7 C8 1.529 (3) C15 H15A 0.9699 C8 C14 1.526 (3) C15 H15B 0.9698 C8 C9 1.549 (3) C16 H16 0.9800 C9 C11 1.538 (3) C17 H17 0.9797 C9 C10 1.562 (3) C18 H18A 0.9597 C10 C19 1.535 (4) C18 H18B 0.9601 C11 C12 1.539 (3) C18 H18C 0.9599 C12 C13 1.526 (4) C19 H19A 0.9601 C13 C18 1.532 (4) C19 H19B 0.9602 C13 C14 1.541 (3) C19 H19C 0.9600 C13 C17 1.551 (3) C20 H20 0.9795 C14 C15 1.531 (3) C21 H21A 0.9600 C15 C16 1.538 (3) C21 H21B 0.9600 C16 C17 1.541 (3) C21 H21C 0.9600 C17 C20 1.533 (3) C33 H33A 0.9604 sup-4

C20 C21 1.535 (3) C33 H33B 0.9599 C20 C22 1.512 (4) C33 H33C 0.9599 C16 O23 C22 110.9 (2) C4 C3 H3 109.68 C3 O31 C32 119.6 (3) C3 C4 H4A 109.18 C5 O5 H5 109.50 C3 C4 H4B 109.19 C6 O6 H6 109.46 C5 C4 H4A 109.19 C2 C1 C10 112.7 (2) C5 C4 H4B 109.20 C1 C2 C3 110.9 (2) H4A C4 H4B 107.90 C2 C3 C4 112.8 (2) O6 C6 H6A 107.89 O31 C3 C2 111.4 (2) C5 C6 H6A 107.90 O31 C3 C4 103.4 (2) C7 C6 H6A 107.90 C3 C4 C5 112.1 (2) C6 C7 H7A 108.91 O5 C5 C10 107.14 (19) C6 C7 H7B 108.93 O5 C5 C4 107.7 (2) C8 C7 H7A 108.90 O5 C5 C6 104.4 (2) C8 C7 H7B 108.94 C6 C5 C10 113.7 (2) H7A C7 H7B 107.74 C4 C5 C10 111.6 (2) C7 C8 H8 108.61 C4 C5 C6 111.7 (2) C9 C8 H8 108.64 O6 C6 C7 111.9 (2) C14 C8 H8 108.63 O6 C6 C5 109.4 (2) C8 C9 H9 106.35 C5 C6 C7 111.7 (2) C10 C9 H9 106.33 C6 C7 C8 113.3 (2) C11 C9 H9 106.36 C7 C8 C9 109.8 (2) C9 C11 H11A 108.91 C9 C8 C14 109.62 (18) C9 C11 H11B 108.87 C7 C8 C14 111.43 (17) C12 C11 H11A 108.88 C8 C9 C11 113.0 (2) C12 C11 H11B 108.85 C8 C9 C10 110.72 (19) H11A C11 H11B 107.71 C10 C9 C11 113.48 (19) C11 C12 H12A 109.47 C1 C10 C9 111.4 (2) C11 C12 H12B 109.45 C1 C10 C5 107.1 (2) C13 C12 H12A 109.49 C5 C10 C19 112.4 (2) C13 C12 H12B 109.47 C9 C10 C19 110.2 (2) H12A C12 H12B 108.02 C5 C10 C9 108.15 (19) C8 C14 H14 106.39 C1 C10 C19 107.6 (2) C13 C14 H14 106.39 C9 C11 C12 113.5 (2) C15 C14 H14 106.38 C11 C12 C13 110.9 (2) C14 C15 H15A 111.21 C12 C13 C18 110.4 (2) C14 C15 H15B 111.22 C12 C13 C14 108.1 (2) C16 C15 H15A 111.24 C12 C13 C17 114.1 (2) C16 C15 H15B 111.24 C17 C13 C18 111.7 (2) H15A C15 H15B 109.17 C14 C13 C17 99.39 (15) O23 C16 H16 110.70 C14 C13 C18 112.8 (2) C15 C16 H16 110.69 C8 C14 C13 113.47 (16) C17 C16 H16 110.71 C8 C14 C15 119.62 (19) C13 C17 H17 109.75 C13 C14 C15 103.75 (19) C16 C17 H17 109.78 C14 C15 C16 102.7 (2) C20 C17 H17 109.74 C15 C16 C17 107.49 (19) C13 C18 H18A 109.50 sup-5

O23 C16 C17 105.39 (16) C13 C18 H18B 109.45 O23 C16 C15 111.7 (2) C13 C18 H18C 109.46 C13 C17 C20 119.91 (18) H18A C18 H18B 109.48 C13 C17 C16 103.86 (18) H18A C18 H18C 109.49 C16 C17 C20 103.1 (2) H18B C18 H18C 109.44 C17 C20 C22 103.6 (2) C10 C19 H19A 109.48 C17 C20 C21 112.4 (2) C10 C19 H19B 109.47 C21 C20 C22 108.8 (2) C10 C19 H19C 109.49 O22 C22 C20 128.6 (3) H19A C19 H19B 109.44 O23 C22 C20 110.8 (2) H19A C19 H19C 109.47 O22 C22 O23 120.6 (3) H19B C19 H19C 109.47 O32 C32 C33 123.0 (4) C17 C20 H20 110.62 O31 C32 O32 124.6 (3) C21 C20 H20 110.60 O31 C32 C33 112.4 (4) C22 C20 H20 110.60 C2 C1 H1A 109.04 C20 C21 H21A 109.49 C2 C1 H1B 109.01 C20 C21 H21B 109.48 C10 C1 H1A 109.07 C20 C21 H21C 109.45 C10 C1 H1B 109.07 H21A C21 H21B 109.47 H1A C1 H1B 107.79 H21A C21 H21C 109.47 C1 C2 H2A 109.46 H21B C21 H21C 109.47 C1 C2 H2B 109.46 C32 C33 H33A 109.47 C3 C2 H2A 109.45 C32 C33 H33B 109.49 C3 C2 H2B 109.45 C32 C33 H33C 109.51 H2A C2 H2B 108.05 H33A C33 H33B 109.43 O31 C3 H3 109.66 H33A C33 H33C 109.44 C2 C3 H3 109.72 H33B C33 H33C 109.49 C22 O23 C16 C17 15.4 (2) C14 C8 C9 C11 48.9 (2) C16 O23 C22 O22 178.5 (2) C14 C8 C9 C10 177.48 (18) C22 O23 C16 C15 131.8 (2) C7 C8 C9 C10 59.8 (2) C16 O23 C22 C20 0.0 (3) C8 C9 C10 C19 64.8 (3) C32 O31 C3 C4 168.3 (3) C8 C9 C10 C5 58.4 (2) C3 O31 C32 C33 178.0 (3) C11 C9 C10 C1 55.8 (3) C32 O31 C3 C2 70.3 (4) C8 C9 C10 C1 175.9 (2) C3 O31 C32 O32 3.4 (6) C10 C9 C11 C12 176.3 (2) C2 C1 C10 C19 62.5 (3) C11 C9 C10 C5 173.2 (2) C2 C1 C10 C9 176.6 (2) C8 C9 C11 C12 49.1 (3) C10 C1 C2 C3 56.5 (3) C11 C9 C10 C19 63.6 (3) C2 C1 C10 C5 58.5 (3) C9 C11 C12 C13 53.9 (3) C1 C2 C3 O31 167.3 (2) C11 C12 C13 C17 167.4 (2) C1 C2 C3 C4 51.5 (3) C11 C12 C13 C14 57.9 (3) C2 C3 C4 C5 52.1 (3) C11 C12 C13 C18 65.9 (3) O31 C3 C4 C5 172.6 (2) C18 C13 C17 C20 34.3 (3) C3 C4 C5 O5 61.6 (3) C18 C13 C14 C15 70.4 (2) C3 C4 C5 C10 55.8 (3) C18 C13 C14 C8 61.0 (3) C3 C4 C5 C6 175.7 (2) C18 C13 C17 C16 80.0 (2) C4 C5 C10 C19 60.2 (3) C17 C13 C14 C8 179.4 (2) C4 C5 C6 O6 54.3 (3) C17 C13 C14 C15 48.0 (2) sup-6

C10 C5 C6 O6 73.1 (3) C12 C13 C17 C16 153.9 (2) C4 C5 C6 C7 178.7 (2) C14 C13 C17 C20 153.5 (2) C6 C5 C10 C1 174.7 (2) C14 C13 C17 C16 39.2 (2) O5 C5 C6 C7 65.1 (3) C12 C13 C14 C15 167.33 (18) C10 C5 C6 C7 51.3 (3) C12 C13 C17 C20 91.8 (3) C4 C5 C10 C9 178.0 (2) C12 C13 C14 C8 61.3 (3) C4 C5 C10 C1 57.8 (3) C8 C14 C15 C16 165.29 (19) O5 C5 C10 C1 59.9 (2) C13 C14 C15 C16 37.7 (2) O5 C5 C6 O6 170.5 (2) C14 C15 C16 O23 127.42 (19) O5 C5 C10 C9 60.3 (2) C14 C15 C16 C17 12.3 (2) O5 C5 C10 C19 177.84 (19) C15 C16 C17 C20 142.97 (19) C6 C5 C10 C19 67.3 (3) O23 C16 C17 C20 23.7 (2) C6 C5 C10 C9 54.6 (3) C15 C16 C17 C13 17.2 (2) C5 C6 C7 C8 51.4 (3) O23 C16 C17 C13 102.1 (2) O6 C6 C7 C8 71.6 (3) C16 C17 C20 C21 94.1 (2) C6 C7 C8 C9 55.9 (3) C13 C17 C20 C21 151.2 (2) C6 C7 C8 C14 177.5 (2) C16 C17 C20 C22 23.2 (2) C7 C8 C9 C11 171.7 (2) C13 C17 C20 C22 91.5 (3) C9 C8 C14 C13 56.3 (3) C21 C20 C22 O22 73.9 (4) C7 C8 C14 C13 178.1 (2) C21 C20 C22 O23 104.5 (2) C9 C8 C14 C15 179.3 (2) C17 C20 C22 O23 15.3 (3) C7 C8 C14 C15 58.9 (3) C17 C20 C22 O22 166.3 (3) Hydrogen-bond geometry (Å, º) D H A D H H A D A D H A O5 H5 O32 i 0.82 2.26 3.071 (4) 173 O6 H6 O5 ii 0.82 2.25 2.986 (3) 150 C3 H3 O6 iii 0.98 2.44 3.352 (4) 155 C16 H16 O23 iv 0.98 2.42 3.146 (3) 131 Symmetry codes: (i) x+1, y 1/2, z+1/2; (ii) x 1, y, z; (iii) x+1, y, z; (iv) x+1/2, y+3/2, z+1. sup-7