Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Σχετικά έγγραφα
Robust Network Interdiction with Invisible Interdiction Assets

Rational Ligand Design for Potential Applications in Transition Metal Catalysis

Approach: Romancing the Inanimate

Follow this and additional works at:

The Great Recession and the Pressure on Workplace Rights

ISM 868 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3013

Decision-Making in the Dark: How Pre-Trial Errors Change the Narrative in Criminal Jury Trials

ISM 900 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3012

YAGEO CORPORATION SMD INDUCTOR / BEADS. CLH Series. Lead-free / For High Frequency Applications. CLH1005-H series CLH1608-H series ~1.4 0.

Reforming the Regulation of Political Advocacy by Charities: From Charity Under Siege to Charity Under Rescue?

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ

RF series Ultra High Q & Low ESR capacitor series

14.5mm 14.5mm

Metal Oxide Varistors (MOV) Data Sheet

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

SMD Transient Voltage Suppressors

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

INPAQ Global RF/Component Solutions

RoHS 555 Pb Chip Ferrite Inductor (MFI Series) Engineering Spec.

MCB and MHC Series Chip Ferrite Bead for Automotive Applications Qualified based on AEC-Q200

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Buried Markov Model Pairwise

Spectrum Representation (5A) Young Won Lim 11/3/16

Ammonium, nitrate, and nitrite in the oligotrophic ocean: Detection methods and usefulness as tracers

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ

the total number of electrons passing through the lamp.

Elements of Information Theory

SMD Power Inductor-VLH

Pb Chip Ferrite Inductor (MFI Series) Engineering Spec.


QUICKTRONIC PROFESSIONAL QTP5

Feature. 8. High reliability. Application. 1. Series name. 2. Dimension. ( See Details ) 3. Material ± ± ± ± 0.

Anti-Corrosive Thin Film Precision Chip Resistor-SMDR Series. official distributor of

Bluetooth / WLAN / WiFi Ceramic Chip Antenna Ground cleared under antenna, clearance area 4.00 x 4.25/6.25 mm. Pulse Part Number W3008, W3008C

SMD Power Inductor-VLH

ITU-R P (2012/02) &' (

CMOS Technology for Computer Architects

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL

Configurations: Dimension (mm) 0.60 ±0.03 IMCH ±0.1 IMCH ±0.2 IMCH IMCH ± IMCH ±0.

WiFi 2.4 GHz Typical performance (Test board size 80 x 37 mm, PWB top surface ground removal area x 6.25 mm, position 1 on PWB)

Automatic extraction of bibliography with machine learning

Siemens AG Rated current 1FK7 Compact synchronous motor Natural cooling. I rated 7.0 (15.4) 11.5 (25.4) (2.9) 3.3 (4.4)

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Low Value Multilayer Inductors (LMCI Series)

High Current Chip Ferrite Bead MHC Series

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

Anti-Corrosive Thin Film Precision Chip Resistor (PR Series)

SPBW06 & DPBW06 series

RSDW08 & RDDW08 series

COMPONENTS LIST BASE COMPONENTS

* * GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009

1.575 GHz GPS Ceramic Chip Antenna Ground cleared under antenna, clearance area 4.00 x 4.25 mm / 6.25 mm. Pulse Part Number: W3011 / W3011A

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Metal thin film chip resistor networks

!!! )!)(!,!! )!! )! (!!)!

RC series Thick Film Chip Resistor

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Feature. 8. High reliability. Application. 1. Series name. 2. Dimension. ( See Details ) 3. Material. D a b a 0.25 ± ± ± 0.

Part Numbering. Chip Ferrite Bead for Automotive. D q. (Part Number)

SAMSUNG ELECTRONICS CO., LTD TEST REPORT SAMSUNG ELECTRONICS CO., LTD. 1, Samsung-Ro, Giheung-Gu, Yongin-Si, Gyeonggi-Do 17113, Korea

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

FP series Anti-Bend (Soft termination) capacitor series

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Review of Single-Phase AC Circuits

Melf Carbon Film Resistor MMC Series

Gradient Descent for Optimization Problems With Sparse Solutions

SMD - Resistors. TThin Film Precision Chip Resistor - SMDT Series. Product : Size: 0201/0402/0603/0805/1206/1210/2010/2512. official distributor of

YJM-L Series Chip Varistor

Sampling Basics (1B) Young Won Lim 9/21/13

Lecture 21: Scattering and FGR

TECNICAL BOOKLET ANTENNES amateur radio antennas

60W AC-DC High Reliability Slim Wall-mounted Adaptor. SGA60E series. File Name:SGA60E-SPEC

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

Computing the Gradient

[1] P Q. Fig. 3.1

SAW FILTER - RF RF SAW FILTER

High Frequency Chip Inductor / CF TYPE

TYJX Series Rare Earth Permanent Magnet Excited Three Phase Synchronous Motor

Configurations: Dimension (mm) B (max) A (max) 0.20 IWCCG1005. Inductance Range IWCCG ~ IWCCG ~ 1000 IWCCG

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)

IWCSeries FEATURES APPLICATION ORDERING CODE TRIGON COMPONENTS. Configurations: Dimension (mm) IWC C G 1608 K 22N T (1) (2) (3) (4) (5) (6) (7)

Multilayer Ferrite Chip Beads / CM Series Feature Application Product Identification CM 1608 RL 120 Configurations & Dimensions Series Name Unit: mm

Homework 8 Model Solution Section

Ferrite Chip Bead(Lead Free)

Chip Ferrite Bead MCB-S/B Series

ΟΙ Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΤΗΝ ΛΕΚΑΝΗ ΠΟΤΑΜΙΑΣ ΚΑΙ Η ΑΛΛΗΛΟΕΠΙ ΡΑΣΗ ΤΟΥ Υ ΑΤΙΚΟΥ ΚΑΘΕΣΤΩΤΟΣ ΜΕ ΤΗ ΜΕΛΛΟΝΤΙΚΗ ΛΙΓΝΙΤΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΣΤΗΝ ΕΛΑΣΣΟΝΑ

MAX-QUALITY ELECTRIC CO; LTD Thin Film Precision Chip Resistors. Data Sheet

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Monolithic Crystal Filters (M.C.F.)

Design Method of Ball Mill by Discrete Element Method

Polymer PTC Resettable Fuse: KRG Series

TODA-ISU Corporation. SMD Power Inductor. SPI series. SMD Team

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

SMD AVR AVR-M AVRL. Variable resistor. 2 Zener diode (1/10) RoHS / / j9c11_avr.fm. RoHS EU Directive 2002/95/EC PBB PBDE

Cellular Physiology and Biochemistry

Transcript:

Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Electrical and Computer Engineering Graduate Theses Spring 5-2015 Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS Leihao Wei Rose-Hulman Institute of Technology, weil@rose-hulman.edu Follow this and additional works at: http://scholar.rose-hulman.edu/electrical_grad_theses Part of the Electrical and Electronics Commons Recommended Citation Wei, Leihao, "Development and Verification of Multi-Level Sub-Meshing Techniques of PEEC to Model High-Speed Power and Ground Plane-Pairs of PFBS" (2015). Graduate Theses - Electrical and Computer Engineering. Paper 4. This Thesis is brought to you for free and open access by the Graduate Theses at Rose-Hulman Scholar. It has been accepted for inclusion in Graduate Theses - Electrical and Computer Engineering by an authorized administrator of Rose-Hulman Scholar. For more information, please contact bernier@rose-hulman.edu.

ii ROSE-HULMAN INSTITUTE OF TECHNOLOGY Final Examination Report Leihao Wei Electrical Engineering Name Graduate Major Thesis Title Development and Verification of Multi-Level Sub-Meshing Techniques of PEEC to Model High-Speed Power and Ground Plane-Pairs of PCBs DATE OF EXAM: April 24, 2015 EXAMINATION COMMITTEE: Thesis Advisor: Thesis Advisory Committee Edward Wheeler Jianjian Song Maarij Syed Department ECE ECE PHOE x PASSED FAILED

..................................................................................................................................................................................................................................................................................................................................................................

.......................................................................

..........................................................................................................................................................................................................................

................................................................................. u Ω ϵ r =4.3 Ω..............................................................

.........................................................

dc

1 1

x y R L

s I B = A A L loop = Ψ I = s B d s I = C A d l I = i C i A d l I C i A A L pi = C i I i A d l M pij = C j I i A d l

I i I j A A A A C j M pij I j I i C i A A A A Ψ C I i = = = C A d l I i C i A d l + A d l + A d l + A d l I i C i A d l +0+0+0 I i = L pi

A A Aij C M pij = j d l I i L pi IL pi IM pij I(L pi M pij ) L loop = L pi M pij + L pj M pji L loop =2(L pi M pij )

Lp

N1 I y 1 N3 I x 1 I y 1 I x 2 y x N 2 I x1 I I y2 y 2 N4 I x 2 I s 4 1 L 44 = V 4 /si s

0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 sl px11 sl px12 0 0 0 0 0 1 1 sl px21 sl px22 0 0 0 1 0 1 0 0 0 sl py11 sl py12 0 0 1 0 1 0 0 sl py21 sl py22 0 1 0 0 0 0 0 0 0 0 V N1 V N2 V N3 V N4 I x1 I x2 I y1 I y2 I sh = 0 0 0 I s 0 0 0 0 0 > Ω µ

z x k k k x x d r km z y x m m x d z x m x + Lp kk + + I m Lp mm + v V a b c d V I m V Lp k k Lp m m

V a V b = si m (Lp km Lp km + Lp k m Lp k m) Ls km = V a V b I m = Vs k si m =2(Lp km Lp km ) 1/Distance 2 Ls kk =2(Lp kk Lp kk ). r>>h k m h r k m q2 Ls km 0.1 r

w =0.211 Ls km = 1(Lp 4 k1m1 + Lp k1m2 + Lp k2m1 + Lp k2m2 ) Ls km = 1 n 2 n n i=1 j=1 Lp ki mj Ls km =2(Ls km Ls km ) =2 1 4 [(Lp k1m1 + Lp k1m2 + Lp k2m1 + Lp k2m2 ) (Lp k1m 1 + Lp k1m 2 + Lp k2m 1 + Lp k2m 2)] = 1 4 [2(Lp k1m1 Lp k1m 1)+2(Lp k1m2 Lp k1m 2) +2(Lp k2m1 Lp k2m 1)+2(Lp k2m2 Lp k2m 2)]

cell to cell coupling (ph) 25 20 15 10 5 LpMutZeroT 1 filament 2 filaments 0 1 2 3 4 5 section distance (mm)

a l l d =2a k = d/l l<d

5 contacts 3 contacts 2 contacts Lp 11 = µl 4 [( k 2 480 + k2 1280 + 1 ) ( ) 1 π 3 + 3600 18 k2 π 24 +( 2 (l)+6 (2) + 2 + 2 (a) 4 (kπ)) 1 π + 8a ] lπ 3 [ ( Lp 11 = µl ) l 2π a + ( l ] a )2 +1 1+( a l )2 + a l \ V g V p I g I p g p s L gg sl gp s L pg sl pp

z z 1 x e1 x x s1 xs 2 1 y 1 y 2 2 x e2 z 2 y Lp 12 = µ 4 4π k=1 ] a 2k + ρ2 ( 1) k+1 [a k ( ) a k + a 2k + ρ2 a 1 = x e2 x s1 a 2 = x s2 x s1 a 3 = x s2 x e1 a 4 = x e2 x e1 ρ = (y 2 y 1 ) 2 +(z 2 z 1 ) 2

Ltot 44 =(V4 Vp)/sI s V4 V1 A/4 Is A A/2 Vp Ip Lpg Ig I p = I s V 1 sl gg I g sl gp I p =0 V p sl pp I p sl pg I g =0

Cp = ϵa/d A d A A/4 A/2 A

Corner cap Full cap N2 Edge cap N3 Via Y X δ <T T σ δ = 1 πfµσ

R c 1D R c =2 x σ yδ. δ <T

sc + G 0 0 0 0 1 0 1 0 1 0 0 sc + G 0 0 0 1 0 0 1 0 0 0 0 sc + G 0 0 0 1 1 0 0 0 0 0 0 sc + G 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 slpx11 R slpx12 0 0 0 0 0 0 1 1 0 slpx21 slpx22 R 0 0 0 0 1 0 1 0 0 0 0 slpy11 R slpy12 0 0 0 1 0 1 0 0 0 slpy21 slpy22 R 0 0 V1 V2 V3 V4 Vp Ix1 Ix2 Iy1 Iy2 Ig Ip = 0 0 0 Is Is 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 slgg slgp 0 0 0 0 1 0 0 0 0 slpg slpp

h p i C = C d(v k V l ) dt v L = L di L dt + Ri L α dx p dt = k px p + k p 1 x p 1 + k p 2 x p 2 β dx p 1 dt k p k p 1 k p 2 α β 1/h p 1/h p 1/h p 1/h p 1.5/h p 2/h p 1/2h p

C n dv n dt + C n k p V (p) n + i n i n i b = Is i (p) b = C n k p 1 V (p 1) n + C n k p 2 V (p 2) n + Is (p) di m V l V k = L pm dt + R mi m + di k L pkm dt k m V (p) l V (p) k k p L pm i (p) m R m i (p) m k p L pkm i (p) k = L pm k p 1 i (p 1) m k p 2 k m L pkm i (p 2) k k m k p C A A T k p L R V (p) I (p) = Ck p 1 V (p 1) + Ck p 2 V (p 2) Lk p 1 I (p 1) Lk p 2 I (p 2) + I (p) s 0 h p

V G6 sc G6 +0.75I G6,G2 + I G6,S6 + I G6,S3 +0.75I G6,G5 =0 V S3 sc S3 +0.25I G6,G2 +0.25I G7,G3 + I S3,S7 + I S3,G7 + I S3,G6 =0 V G7 sc G7 +0.5I G7,G3 + I G7,S8 + I G7,S4 + I G7,S3 =0 V G8 sc G8 + 2 3 I G8,S1 + I G8,S10 + I G8,S5 + 2 3 I G8,S4 =0 V S1 sc S1 + I S1,G4 + I S1,G8 + I S1,S2 +0.25I G4,G3 + 1 3 I G8,S4 =0 2/3 I S1,G8 (G8,S10)

= Ls km Ls km(apprx) Ls km 100

10 0 error % 10 2 10 1 10 0 10 1 10 2 section distance (mm)

normalized required distance 8 6 4 2 n=0 n=1 n=2 n=3 n=4 n=5 0 0 0.5 1 1.5 2 section size (mm) 10 3 L n = Ls km Ls kk k m q2 =0.1 rls kk

normalized inductance 10 2 10 4 10 6 10 1 10 0 10 1 10 2 section distance (mm) normalized required distance 8 6 4 2 n=0 n=1 n=2 n=3 n=4 n=5 0 0 0.5 1 1.5 2 section size (mm)

> d

\ \

Source L Short Lp via = Lp via11 Lp via12

700 600 Inductance (ph) 500 400 300 200 Lplane h=0.2mm Lplane h=1mm Lvia h=0.2mm Lvia h=1mm 100 0 0 5 10 15 20 25 30 Spacing between vias (L)

r

Z 11

log(leq (ph)) 10 4 r=0.5'' PPP r=1'' PPP r=2'' PPP r=3'' PPP r=0.5'' PDN r=1'' PDN r=2'' PDN r=3'' PDN r=0.5'' CST r=1'' CST r=2'' CST r=3'' CST 10 3 10 0 10 1 10 2 number of caps

ϵ r =4.3 δ =0.025 σ =5.96 10 7 S/m

Impedance (Ω) 10 2 10 1 10 0 10 1 CST PPP 10 2 10 2 10 3 frequency (MHz) s = jω d/dt t p h p hx p =1.5x p 2x p 1 +0.5x p 2

v(t)/i(t) 10 8 PPP CST 1 0.8 PPP CST v(t)/i(t) [Ω] 6 4 2 v(t) [V] 0.6 0.4 0.2 0 1 2 3 4 5 t [ns] 0 1 2 3 4 5 t [ns] u Ω ϵ r =4.3 Ω

> 200 180 160 140 uniform one level two level Time [sec] 120 100 80 60 40 20 0 0 50 100 150 200 250 300 350 side length [mm]