Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors

Σχετικά έγγραφα
Numerical Analysis FMN011

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Tridiagonal matrices. Gérard MEURANT. October, 2008

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

2 Composition. Invertible Mappings

New Adaptive Projection Technique for Krylov Subspace Method

Partial Differential Equations in Biology The boundary element method. March 26, 2013

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Statistical Inference I Locally most powerful tests

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

w o = R 1 p. (1) R = p =. = 1

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Homework 3 Solutions

Wavelet based matrix compression for boundary integral equations on complex geometries

A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System

The ε-pseudospectrum of a Matrix

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Space-Time Symmetries

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Math 6 SL Probability Distributions Practice Test Mark Scheme

MATRIX INVERSE EIGENVALUE PROBLEM

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Congruence Classes of Invertible Matrices of Order 3 over F 2

Probability and Random Processes (Part II)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Τελικό Project Εργαστηρίου Ηλεκτρονικών Φίλτρων Χειµερινό Εξάµηνο

Partial Trace and Partial Transpose

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Δημήτριος Νούτσος Καθηγητής Τμήματος Μαθηματικών Πανεπιστημίου Ιωαννίνων

Second Order RLC Filters

TMA4115 Matematikk 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Example Sheet 3 Solutions

Buried Markov Model Pairwise

Other Test Constructions: Likelihood Ratio & Bayes Tests

Section 8.3 Trigonometric Equations

Contents Introduction to Filter Concepts All-Pole Approximations


( ) 2 and compare to M.

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A CRUSHER MODULE USING P.L.C.

New bounds for spherical two-distance sets and equiangular lines

Supporting Information

Srednicki Chapter 55

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Approximation of distance between locations on earth given by latitude and longitude

Jordan Form of a Square Matrix

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Inverse trigonometric functions & General Solution of Trigonometric Equations

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Orthogonalization Library with a Numerical Computation Policy Interface

Matrices and Determinants

Areas and Lengths in Polar Coordinates

Graded Refractive-Index

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Strain gauge and rosettes

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ECE 468: Digital Image Processing. Lecture 8

Quick algorithm f or computing core attribute

Problem Set 3: Solutions

GPU DD Double-Double 3 4 BLAS Basic Linear Algebra Subprograms [3] 2

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Probabilistic Approach to Robust Optimization

Section 7.6 Double and Half Angle Formulas

Indexing Methods for Encrypted Vector Databases

A Note on Intuitionistic Fuzzy. Equivalence Relation

Prey-Taxis Holling-Tanner

Detection and Recognition of Traffic Signal Using Machine Learning

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Lecture 10 - Representation Theory III: Theory of Weights

Διπλωματική Εργασία. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Hartree-Fock Theory. Solving electronic structure problem on computers

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Areas and Lengths in Polar Coordinates

6.3 Forecasting ARMA processes

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

Example of the Baum-Welch Algorithm

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Transcript:

1 Av=λBv [a, b] subspace subspace B- subspace B- [a, b] B- Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors Hiroshi Murakami 1 By the filter diagonalization method, for a real symmetric definite generalized eigenproblem Av=λBv of large size, only those eigenpairs are solved whose eigenvalues are in the interval [a, b]. The filter diagonalization method applys the subspace method to the subspace spanned by the set of filter s output vectors to give approximations of eigenpairs. The filter we use is a linear combination of resolvents with complex shifts. Since the set of filter s output vectors usually has many rank deficiencies, the direct application of the subspace method to the set is not appropriate. Therefore, previously the set of B-orthonormal basis for the subspace method has been constructed by the use of SVD of the filter s output vectors in B-metric with the cut-off of singular values below a threshold. Our new method makes use the property of the filter operator and both information of input and output vectors of the filter, and constructs a set of B-orthonormal basis so that the set spans an approximation of the invariant subspace whose eigenvalues are in the interval [a, b]. Some results of numerical of experiments are shown which solved real symmetric definite generalized eigenproblems for the cases both of coefficient matrices are banded. 1. Av=λBv [a, b] 6) 11),14) subspace subspace B- B- A B- [a, b] B-. Vol.11-HPC9 No.1 11/3/15 N GEVP Av=λBv [a, b] [a, b] F τ R(τ) (A τb) 1 B 1 Department of Mathematics and Information Sciences, Tokyo Metropolitan University 1 c 11 Information Processing Society of Japan

F = c I + n γpr(τp) λ v p=1 Fv = f(λ)v f(λ) = c + n γp/(λ τp) λ p=1 λ F f(λ) n τ p γ p c F f(λ) 4 ),5) Butterworth Chebyshev inverse Chebyshev elliptic 1),14) 7),8) Butterworth.1 λ [a, b] t [ 1, 1] λ t t 1 passband 1 < µ t stopbands 1 < t < µ transitionbands f(λ) = g(t) g(t) g min g(t) g max g(t) 1 g min tight 4 3 µ g min g max n n g(t) 3 µ g min n g max g max g(t) 3 g min g max n µ µ g(t) g(t) f(λ) = g(t) λ [a, b] F 1) 14) 3. Subspace N m B N m X X F N m Y Y [a, b] subspace Y GEVP Y N m Y B r( m) Z Z B- r Z T AZ Y B GEVP [a, b] Z subspace Z subspace Vol.11-HPC9 No.1 11/3/15 1 f(λ) 4. Subspace F GEVP Av=λBv c 11 Information Processing Society of Japan

(λ, v) v Fv=f(λ)v F Y F (ρ, v) v B- F (ρ, v) ρ [a, b] f(λ) v Z Z GEVP Av=λBv subspace 4.1 F F Y (ρ, v) Ritz-Galerkin Fv=ρv v=y u X T B m GEVP αu=ρβu α=x T BFY β=x T BY F BF=F T B α=y T BY α β=x T BFX=Y T BX=β T β 4 f(λ) β c n inverse Chebyshev elliptic β Y α β αu=ρβu 4. αu=ρβu Y α β 1 β α Rutishauser Jacobi 1) β β=q T DQ u Qw G QαQ T Gw=ρDw 1 ε MAC ɛ ɛ D G D w Ĝŵ=ρ Dŵ ŵ D1/ z H D 1/ Ĝ D 1/ EVP Hz=ρz Jacobi (ρ, z) z ŵ w u v=y u Jacobi z u β- v (i) = (1/ ρ (i) ) Y u (i) v (i) B- 5. (λ, v) v B- r (A λb)v B 1 - r T B 1 r λ Wilkinson CPU intel Core i7-6k 3.4GHz 8MB 4 Hyperthread P67chipset); 16Gbytes dual channel; 4 4GB DDR3 16MHz PC38 DIMM intel Fortran/OpenMP v1. for intel64 -fast -openmp IEEE754 64-bit OS Fedora14 for intel64 5.1 1 n=1 elliptic 1 A B N=1 5 h=1 p q h A p,q= p pq Bp,q= 1 +q p+q 1 + δp,q. p, q=1,,..., N δ p,q Kronecker [5,1] 11 X m=15 B- n=1 elliptic g min = 3[dB] g max = 15.14[dB] µ=1.4 c 9.7 1 16 Y subspace Z SVD 1 Vol.11-HPC9 No.1 11/3/15 B-SVD Y 1 9 13 13 subspace 13 [5,1] 111 111 3 3 c 11 Information Processing Society of Japan

Vol.11-HPC9 No.1 11/3/15 SIGMA 1.8 LOG 1 SIGMA -1.6.4. -14-16 4 6 8 1 1 14 16 4 6 8 1 1 14 16 1 m=15 1 9 4 1 ρ m=15.5 IT IT LOG 1 DELTA LOG 1 DELTA -1-1 5 6 7 8 9 1 5 6 7 8 9 1 3 1 [5,1] m=15 5 1 [5,1] m=15 IT IT 1 1 11 1 6 7 8 IT Rayleigh 1 IT 1 [5,1] 11 1 1 1 1 14. 16.9 4 44. 6.3 4 c 11 Information Processing Society of Japan

Vol.11-HPC9 No.1 11/3/15 1 SIGMA.8.6 LOG 1 SIGMA -1.4. -14-16 4 6 8 1 1 14 16 4 6 8 1 1 8 ρ m=15.5 6 m=15 1 9 IT IT LOG 1 DELTA LOG 1 DELTA -1-1 9 1 3 4 5 [,5] m=15 1 3 4 5 7 [,5] m=15 1 ρ 4 g min= 3[dB] ρ.51187 ρ.5 11 11 subspace [5,1] 5 IT Rayleigh 1 IT 5 c 11 Information Processing Society of Japan

1 9 1 8 1 11 1 1 134.9 183.8 4 4.4 53.7 5. n=16 elliptic A B N=3 1 5 h=1 p q h A p,q= p pq Bp,q= 1 +q p+q 1 + δp,q p, q=1,,..., N δ p,q Kronecker [,5] 11 X m=15 B- n=16 elliptic g min = 3[dB] g max = 14.7[dB] µ=1.1 c 5.3 1 15 Y subspace Z SVD B-SVD Y 6 1 9 118 118 subspace 118 [,5] 11 7 11 IT 118 Rayleigh 1 11 11 1 8 1 6 8 4 349.9 18.8. 1 14 β 1 ρ 8 g min = 3[dB] ρ.51187 ρ.5 11 11 subspace [,5] 9 IT Rayleigh 1 IT 4 1 1 4 1 9 11 4 89.3 168.5 5.3 3 n=4 Chebyshev 3 A B N=3 1 5 h=1 p q h A p,q= max(p, q) 1 B p,q= 1 p+q 1 + δ p,q p, q=1,,..., N δ p,q Kronecker [15,] 88 X m= B- n=4 Chebyshev g min= 3[dB] g max= 39.715[dB] µ= Chebyshev c Y subspace Z SVD 3 Vol.11-HPC9 No.1 11/3/15 B-SVD Y 1 1 3 1 1 subspace 1 [15,] 88 1 Rayleigh 88 11 88 IT 88 IT 1 Rayleigh 1 [15,] 88 IT 88 1 4 8.1 144.7 6 c 11 Information Processing Society of Japan

Vol.11-HPC9 No.1 11/3/15 SIGMA 1.8 LOG 1 SIGMA -1.6.4. -14-16 4 6 8 1 1 14 16 18 4 6 8 1 1 14 16 18 1 3 [15,] m= 1 3 ρ m=.5 IT IT LOG 1 DELTA LOG 1 DELTA -1-1 15 16 17 18 19 15 16 17 18 19 11 3 [15,] m= 13 3 [15,] m= 3 β 1. 1 9. 1 14 β 1 ρ g min= 3[dB] ρ.51187 ρ(88)=.511687 ρ(89)=.4754493 ρ(9)=.4313191 ρ(91)=.379976 ρ(9)=.845459 ρ(93)=.18536 88 ρ ρ.5 4 9 9 subspace [15,] 88 4 9 [15,] 88 13 IT 88 IT 7 c 11 Information Processing Society of Japan

9 Rayleigh 1 IT 1 3 1 4 11 4 66.4 134.3 6. [a, b] F m B- X X F Y Y Z Z subspace SVD Y B- Z 3) L- SVD subspace Z Y B GEVP A Z Z subspace Y [a, b] Z B- Z subspace GEVP [a, b] F GEVP (λ, v) F (ρ, v) ρ = f(λ) v f subspace [a, b] Z F Fv = ρv Y v (ρ, v) ρ f(λ) λ [a, b] [g min, 1] v B Z Vol.11-HPC9 No.1 11/3/15 1) Rutishauser, H.: The Jacobi method for real symmetric matrices, Numerische Mathematik, Vol.9 (1966), pp.1 1. ) Daniels,R.W.: Approximation Methods for Electronic Filter Design, McGraw-Hill, 1974. 3) Hansen, P.C. and O Leary, D.P.: The Use of the L-curve in the Regularization of Discrete Ill-posed Problems, SIAM J. Sci. Comput., Vol.14,No.6 (1993), pp.1487 153. 4) Daniel B.S.: Criteria for Combining Inverse and Rayleigh Quotient Iteration, SIAM J. Numer. Anal., Vol.5,No.6 (1988), pp.1369 1375. 5) Lutovac,M.D., To sić, D.Y. and Evans,B.L.: Filter Design for Signal Processing, 1.8, Prentice Hall, 1. 6) Toledo, S. and Rabani, E.: Very Large Electronic Structure Calculations Using an Out-of-Core Filter-Diagonalization Method, J. Comput. Phys., Vol.18, No.1 (), pp.56 69. 7) Sakurai,T. and Sugiura,H: A projection method for generalized eigenvalue problems using numerical integration, J. Comp. Appl. Math., Vol.159(3), pp.119 18. 8) Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems, Phys.Rev.B, Vol.79, No.11(9), p.11511[6pages]. 9) :,, 7-HPC-11(6) (7), pp.31 36. 1) :,, Vol.49, No.SIG (ACS1) (8), pp.66 87. 11) Ikegami,T., Tadano,H., Umeda,H. and Sakurai,T.: Hierarchical parallel algorithm to solve large generalized eigenproblems, HPCS1 (1), pp.17 114. 1) :,, Vol.1-HPC4, No.3 (1). 13) :,, Vol.1-HPC5, No.1 (1). 14) :, (ACS31), Vol.3, No.3 (1), pp.1 1. 8 c 11 Information Processing Society of Japan