New Adaptive Projection Technique for Krylov Subspace Method

Σχετικά έγγραφα
GMRES(m) , GMRES, , GMRES(m), Look-Back GMRES(m). Ax = b, A C n n, x, b C n (1) Krylov.

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

The ε-pseudospectrum of a Matrix

Επιστηµονικός Υπολογισµός ΙΙ

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Numerical Analysis FMN011

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors

Buried Markov Model Pairwise

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Matrices and Determinants

BiCG CGS BiCGStab BiCG CGS 5),6) BiCGStab M Minimum esidual part CGS BiCGStab BiCGStab 2 PBiCG PCGS α β 3 BiCGStab PBiCGStab PBiCG 4 PBiCGStab 5 2. Bi

Tridiagonal matrices. Gérard MEURANT. October, 2008

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Επιστηµονικός Υπολογισµός ΙΙ

GPU DD Double-Double 3 4 BLAS Basic Linear Algebra Subprograms [3] 2

High order interpolation function for surface contact problem

Quick algorithm f or computing core attribute

Επιστηµονικός Υπολογισµός ΙΙ

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

GCG-type Methods for Nonsymmetric Linear Systems

Wavelet based matrix compression for boundary integral equations on complex geometries

Ανάκληση Πληποφοπίαρ. Διδάζκων Δημήηριος Καηζαρός. Διάλεξη 14η

Επιστηµονικός Υπολογισµός Ι

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Probabilistic Approach to Robust Optimization

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..


On the Galois Group of Linear Difference-Differential Equations

Prey-Taxis Holling-Tanner

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

Jordan Form of a Square Matrix

CORDIC Background (4A)

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ

CORDIC Background (2A)

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Congruence Classes of Invertible Matrices of Order 3 over F 2

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

A Lambda Model Characterizing Computational Behaviours of Terms

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

w o = R 1 p. (1) R = p =. = 1

ECON 381 SC ASSIGNMENT 2

Approximation of distance between locations on earth given by latitude and longitude

Applying Markov Decision Processes to Role-playing Game

x j (t) = e λ jt v j, 1 j n

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Problem Set 3: Solutions

Orthogonalization Library with a Numerical Computation Policy Interface

Simplex Crossover for Real-coded Genetic Algolithms

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

«ΔΙΑΧΩΡΙΣΜΟΣ ΜΕΓΑΛΟΥ ΚΑΙ ΑΡΑΙΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΕ ΑΝΕΞΑΡΤΗΤΑ ΥΠΟΣΥΣΤΗΜΑΤΑ ΚΑΙ ΕΠΙΛΥΣΗ ΤΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ SCHUR COMPLEMENT-GMRES»

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

The Simply Typed Lambda Calculus

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Ax = b. 7x = 21. x = 21 7 = 3.

Forced Pendulum Numerical approach

d 2 u(t) dt 2 = u 16.4 ε(u) = 0 u(x,y) =?

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Echo path identification for stereophonic acoustic echo cancellation without pre-processing

Strain gauge and rosettes

Homomorphism in Intuitionistic Fuzzy Automata

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

program Inner-Product-1 declare m: integer initially assign end 0..P 1 p program Vector-Sum-4 declare i: integer;

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Research on divergence correction method in 3D numerical modeling of 3D controlled source electromagnetic fields

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

( ) 2 and compare to M.

A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System

Neural'Networks' Robot Image Credit: Viktoriya Sukhanova 123RF.com

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

6. MAXIMUM LIKELIHOOD ESTIMATION

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Μοντέρνα Θεωρία Ελέγχου

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Inverse trigonometric functions & General Solution of Trigonometric Equations

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Statistical Inference I Locally most powerful tests

Variational Wavefunction for the Helium Atom

Transcript:

1 2 New Adaptive Projection Technique for Krylov Subspace Method Akinori Kumagai 1 and Takashi Nodera 2 Generally projection technique in the numerical operation is one of the preconditioning commonly used when the linear system is solved. In this paper, we describe the method that the value of some eigenvalues to the coefficient matrix by using this preconditioning is shifted. Moreover, a new projection technique that uses this projection at the multi-level is derived, and the technique for applying to the Krylov subspace method is given. 1. Krylov Au = b, A R n n (1) A A SPD( ) (1) x 1 Graduate School of Science and Technology, Keio University 2 Faculty of Science and Technology, Keio University κ(a) = λmax(a) λ min(a) λ max(a) λ min(a) A A Krylov 0 A SPD κ(m 1 A) 1 M M 1 A I(I: ) LU Cholesky A 0 Nicolaides 4) CG Krylov Morgan Augmented GMRES 5) Krylov 6) P N = P D + λ N ZE 1 Y T, E = Y T AZ P D = I AZE 1 Y T Z, Y R n r Z, Y ; rank (r) Z A SPD Z = Y A P N P D σ(p N A) = {λ n,..., λ n, λ r+1,..., λ n}. σ(p DA) = {0,..., 0, λ r+1,..., λ n}. A r λ n 0 r(z ) (2) Z Krylov E 1 Z Krylov E 1 E 1 E = Y T AZ Galerkin Galerkin Galerkin (2) 1 c 2009 Information Processing Society of Japan

1) Galerkin Krylov ( Multi-level ) Multi-level projection Krylov method Krylov GMRES 2. Krylov n A n b Krylov K n K n = span{b, Ab, A 2 b,..., A n 1 b} 1 b, Ab A A 2 b Krylov Krylov Lanczos Arnoldi Krylov Arnoldi Lanczos GMRES generalized minimum residual BiCGSTAB stabilized biconjugate gradient Multilevel projection Krylov method GMRES 2.1 GMRES GMRES r n = Ax n b x n K n Ax = b Krylov K n = span{b, Ab, A 2 b,..., A n 1 b} Arnoldi K n {q 1, q 2,..., q n } x n K n y n R n x n = Q ny n Q n q 1, q 2,..., q n m n Arnoldi AQ n = Q n+1h n (n + 1) n Hessenberg H n Q n e 1 = (1, 0, 0,..., 0) R n+1 Ax n b = H ny n e 1 x n r n = H ny n e 1 GMRES ( 1 ) 1 ( 2 ) r n y n ( 3 ) x n=q ny n ( 4 ) 3. GMRES (1) Âû = ˆb  (3)  = M 1 A, û = u, ˆb = M 1 b 1  σ(â) = {λ1,..., λn}, λi λi+1, i N 3.1 ˆ A 1,γ =  γ1z1yt, y T z 1 = 1, γ R. 3 y T i Aˆ 1,γ = y T i ( γ1z1yt ) = λ iz 1y T i 2 c 2009 Information Processing Society of Japan

 1,γy i = ( γ1z1yt )y i = Ây1 γ1z1yt y 1 = λ iy 1  1,γz 1 = ( γ1z1yt )z 1 = Âz1 γ1z1yt z 1 = (λ 1 γ 1)z 1 3 σ(â1,γ) = {λ1 γ1, λ2,..., λn} γ 1 = λ 1 σ(â1,γ) = {0, λ2,..., λn} γ 1 = λ 1 λ n σ(â1,γ) = {λn, λ2,..., λn} γ 1z 1y T λ 1 γ 1 r λ n 0  r =  ZΓrY T, Y T Z = 1 Z = [z 1,..., z r] Γ = diag(γ 1,..., γ r)  rz i = ( ZΓrY T )z i = Âzi [z1,..., zr]diag(γ1,..., γr)[y1,..., yr]t z i = λ iz i γ iz i = (λ i γ i)z i. (3) i = 1,..., r Ârzi = (λi γi)zi i = r + 1,..., n Ârzi = λizi (γ1,..., γr) = (λ1,..., λr) Γ r = E = diag(λ 1,..., λ r) ÂZ = ZÊ Aˆ T Y = Y Ê Â r =  ZÊY T =  ZÊ ˆ E 1ÊY T =  ÂZ ˆ E 1 Y T  (4)  r = (I ÂZ E ˆ 1 Y T ) := P ˆD (5)  r = Â(I ÂZE ˆ 1 Y T ) = ÂQ ˆD (6) (γ 1,..., γ r) = (λ 1 λ n,..., λ r λ n) Γ r = E = diag(λ 1 λ n,..., λ r λ n)  r,γ = (I ÂZ E ˆ 1 Y T + λ nze ˆ 1 Y T ) = P ˆN  (7)  r,γ = Â(I ÂZE ˆ 1 Y T + λ nze ˆ 1 Y T ) = ÂQ ˆN (8) P (e.g., P ˆD) Q(e.g., Q ˆD) 3.2 (5) (6) (7) (8) σ(âr) = σ(p ˆDÂ) = σ(âq ˆD) σ( ˆ A r,γ) = σ(p ˆN Â) = σ(âq ˆN ) 3 c 2009 Information Processing Society of Japan

σ(p ˆDÂ) = σ(âq ˆD) = {0,..., 0, λ r+1,..., λ n} σ(p ˆN Â) = σ(âq ˆN ) = {λ n,..., λ n, λ r+1,..., λ n} A A λ 1 λ n P ˆDÂ P ˆN Â λ r+1 λ n κ(a) = λ n/λ 1 λ n/λ r+1 = κ(âr,γ) Krylov (GMRES ) 4. GMRES GMRES 4.1 P ˆN P ˆD Q ˆD P ˆN P ˆD Q ˆD r 0 Galerkin Galerkin P ˆD Q ˆD 0 0 0 0 < ɛ λ 1 P ˆD Q ˆD P ˆN λ n P ˆN 4.2 P ˆN P ˆN P ˆN ( ) E 1 :λ n,est n λ n λ n,est 10 3.92E + 2 4.E + 2 50 9.99E + 2 1.E + 4 100 3.99E + 2 4.E + 4 Q ˆN 4.3 λ n 3.3.2 Q ˆN λ n λ n λ n ρ(â) max aˆ i.j i N j N ρ(â) Â λ n max a i.j = λ n,est. i N j N Poisson λ n (3.24) λ n,est 1 1 λ n,est λ n λ n,est 4.4 GMRES ÂQ ˆN û = ˆb, u = Q ˆN û Q ˆN = I ZE 1 Y T Â + ωλ N,estZE 1 Y T Ê = Y T ÂZ ω λ N = ωλ N,est GMRES 1 4 x j := Q ˆN v j Q ˆN Q ˆN 4 c 2009 Information Processing Society of Japan

1. Choose u 0, ω, and λ n,est.compute Q N. 2. Compute r 0 = b Au 0,β = r 0 2,and v 1 = r 0 β. 3. For j = 1,..., k 4. x j := Q ˆN v j; 5. w := AM 1 x j. 6. For i = 1,..., j 7. h i,j = (w, v j); 8. w := w h i,jv i. 9. Endfor 10. h j+1,j := w 2 and v j+1 = w h j+1,j 11. Endfor 12. Set X k := [x 1... x k ] and Ĥk = {h i,j} 1 i j+1;1 j k 13. Compute y k = argmin y βe 1 Ĥky 2 and u k = u 0 + M 1 X k y k 1 GMRES x j = v j ZE 1 Y T Âv j + ωλ N,estZE 1 Y T v j = v j ZE 1 Y T (AM 1 ωλ N,estI)v j s = AM 1 v j ˆv = Y T (s ωλ n,estv j) x j x j = v j ZE 1ˆv Galerkin E 1ˆv ˆv = Êṽ ṽ ṽ t := Zṽ x j := s t Z : R r R n Y T : R n R r Z prolongation operater Y T restrictio operater) 2 1. Choose u 0, ω, and λ n,est. 2. Compute r 0 = b Au 0,β = r 0 2,and v 1 = r 0 β. 3. For j = 1,..., k 4. s := AM 1 v j. 5.Restriction:ˆv = Y T (s ωλ n,estv j) 6.Solve for ṽ:êṽ = ˆv 7.Prolongation:t := Zṽ 8.x j := v j t. 9. w := AM 1 x j. 10. For i = 1,..., j 11. h i,j = (w, v j); 12. w := w h i,jv i. 13. Endfor 14. h j+1,j := w 2 and v j+1 = w h j+1,j 15. Endfor 16. Set X k := [x 1... x k ] and Ĥk = {h i,j} 1 i j+1;1 j k 17. Compute y k = argmin y βe 1 Ĥky 2 and u k = u 0 + M 1 X k y k 2 GMRES 5. multilevel projection Krylov method 3 Galerkin ˆv = Êṽ A (2) := E = Y T A (1) Z Q (1) ˆN = I (1) Z (1,2) A (2) 1 Y (1,2)T A (1) + ω 1 λ (1) N,estZ (1,2) A (2) 1 Y (1,2)T 5.1 2-level Galerkin A (2) Q N (2) p (2) = ˆv (2), ˆv (2) = Q N (2) p (2) 5 c 2009 Information Processing Society of Japan

Galerkin Krylov Galerkin 5.2 Multi-level Galerkin Multi-level Krylov (4,3) Galerkin Galerkin A (l+1) = Y (l,l+1)t A (l) Z (l,l+1) Q N Q (l) ˆN = I (l) Z (l,l+1) A (l+1) 1 Y (l,l+1)t A (l) + ω (l) λ (l) N,estZ (l,l+1) A (l+1) 1 Y (l,l+1)t l = m Galerkin A (m) Galerkin GMRES Galerkin 3 6. 0 Galerkin Galerkin Galerkin (Z Y ) ( ) Swopp09 1. l = 1. With an initial guess u 0 (1) = 0, Solve A (1) u (1) = b (1) with FGMRES by computing 2. s (1) := A (1) M (1) 1 v j (1) ; 3. restriction:ˆv (2) = Y (1,2)T (s (1) ω (1) λ (1) n,estv j (1) ); 4. if l + 1 = m 5. solve exactly Â(2) 1 ˆv (2) = ṽ (2) ; 6. else 7. l=l+1. With ṽ (2) 0 = 0, solve Â(2) ṽ (2) = ˆv (2) with FGMRES by computing 8. s (2) := Â(2) v (2) ; 9. restriction: ˆv (3) := Y (2,3)T (s (2) ω (2) λ (2) n,estv (2) ); 10. if l + 1 = m 11. solve exactly Â(3) 1 ˆv (3) = ṽ (3) ; 12. else 13. l = l + 1; 14.... 15. endif 16. prolongation: t (2) := Z (2,3) ṽ (3) ; 17. x (2) = v (2) t (2) ; 18. w (2) = Â(2) x (2) ; 19. endif 20. prolongation: t (1) := Z (1,2) ṽ (2) ; 21. x (1) = v (1) t (1) ; 22. w (2) = A (1) M (1) 1 x (2) ; 3 multilevel projection Krylov method 6 c 2009 Information Processing Society of Japan

1) Y. A. Erlangga and R. Nabben, Multilevel projection-based nested Krylov iteration for boundary value problems, SIAM J.Sci.Comput.,pp.1572-1595,2007. 2) D. Day, An Efficient Implementation Of The Nonsymmetric Lanczos Algorithm, SIAM J.Matrix Anal.Appl.,18, pp.566-589,1997. 3) Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm For Solving Nonsymmetric Linear Systems, SIAM J.Sci.Comput.,7,pp.856-869, 1986. 4) R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value problems, SIAM J.Numer. Anal.,24,pp.355-365,1987. 5) R. B. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J.Matrix Anal.Appl.,16,pp. 1154-1171,1995. 6) J. Frank and C. Vuik, On the construction of deflation-based preconditioners, SIAM J.Sci.Comput.,23,pp. 442-462,2001. 7 c 2009 Information Processing Society of Japan