AC Servo Motor Based Position Sensorless Control System Making Use of Springs

Σχετικά έγγραφα
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Gain self-tuning of PI controller and parameter optimum for PMSM drives

HDD. Point to Point. Fig. 1: Difference of time response by location of zero.

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Buried Markov Model Pairwise

Siemens AG Rated current 1FK7 Compact synchronous motor Natural cooling. I rated 7.0 (15.4) 11.5 (25.4) (2.9) 3.3 (4.4)

Simplex Crossover for Real-coded Genetic Algolithms

TeSys contactors a.c. coils for 3-pole contactors LC1-D

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

DC SERVO MOTORS. EC057B Series Salient Characteristics E E

EE101: Resonance in RLC circuits

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Partial Differential Equations in Biology The boundary element method. March 26, 2013

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

the total number of electrons passing through the lamp.

Proposal of Torque Feedforward Control with Voltage Phase Operation for SPMSM

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Matrices and Determinants

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Approximation of distance between locations on earth given by latitude and longitude

CAP A CAP

DuPont Suva 95 Refrigerant

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

EE512: Error Control Coding

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

6.3 Forecasting ARMA processes

DC SERVO MOTORS Previous N23XX Series. EC057C Series Salient Characteristics

NPI Unshielded Power Inductors

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

ELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA

RDN-250i Application / Benefits Model No. Servo Motor Maker SPECIFICATIONS Table Dia. Horizontal [kg] Center Height Resister Dia.

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

DuPont Suva 95 Refrigerant

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

[1] P Q. Fig. 3.1

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Lifting Entry (continued)

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

SCOPE OF ACCREDITATION TO ISO 17025:2005

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Position control of the planar switched reluctance motor based on model reference adaptive regulator

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

Second Order RLC Filters

Development of a basic motion analysis system using a sensor KINECT

Research on real-time inverse kinematics algorithms for 6R robots

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DC040B Series Salient Characteristics

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Design Method of Ball Mill by Discrete Element Method

NMBTC.COM /

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

4.6 Autoregressive Moving Average Model ARMA(1,1)

Answers to practice exercises

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

2.153 Adaptive Control Lecture 7 Adaptive PID Control

DC054B Series Salient Characteristics

Comparison of characteristic by Transformer Winding Method of Contactless Power Transfer Systems for Electric Vehicle

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Motion analysis and simulation of a stratospheric airship

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Detection and Recognition of Traffic Signal Using Machine Learning

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Reminders: linear functions

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

Assalamu `alaikum wr. wb.

Utkin Walcott & Zak ¼

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ADVANCED STRUCTURAL MECHANICS

ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A CRUSHER MODULE USING P.L.C.

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Web 論 文. Performance Evaluation and Renewal of Department s Official Web Site. Akira TAKAHASHI and Kenji KAMIMURA

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Numerical Analysis FMN011

EL 625 Lecture 2. State equations of finite dimensional linear systems

Homomorphism in Intuitionistic Fuzzy Automata

Quick algorithm f or computing core attribute

Transcript:

Extended Summary pp.987 992 AC Servo Motor Based Position Sensorless Control System Making Use of Springs Akira Shimada Senior Member (Dept. of Electrical System Engineering, Polytechnic University) Yu Kishiwada Non-member (Mitsubishi Electric Corporation) Michiyo Arimura Non-member (Dept. of Electrical System Engineering, Polytechnic University) Keywords: position sensorless conrol, AC servo motor, observer, vector control This paper describes a position sensorless control technique on AC servo motor position control systems. We have previously presented a paper on the DC servo motor position sensorless control technique using mechanical springs. It is based on a point of view that mechanical springs form the key components for the observability. On the basis of the result obtained from the successful experiment, we come to a conclusion that the AC servo motor position sensorless control system applying the vector control method is identical as in the case of the DC motor. Using vector control, the presented controller needs the data of magnetic pole position on rotor of AC servo motor. By using the AC servo motor perfect position sensorless control technique, the controller should estimate both the magnetic pole position and mechanical position. In this paper, we demonstrate the simulation and expreimental results for the latter as an initial step in a new control technology. And Fig. 4 shows the experimental result. They are successfully worked out. Note: Fig. 1, 2 indicate a block diagram of AC servo motor and mechanical plant and the experimental apparatus. Fig. 3, 4 shows the block diagram of control system and the experimantal result. u q1 and u q2 are decoupling inputs. z r, z and ẑ are position reference, real position and its estimation. v q and i q mean the q-axis driving voltage and electrical current. The observer can estimate position, velocity, and q-axis current. Fig. 3. Block diagram of control system Fig. 1. Block diagram of AC servo motor and mechanical plant Fig. 2. View of experimental apparatus Fig. 4. control Experimental result of position sensorless 7

AC AC Servo Motor Based Position Sensorless Control System Making Use of Springs Akira Shimada, Senior Member, Yu Kishiwada, Non-member, Michiyo Arimura, Non-member This paper describes a position sensorless control technique on AC servo motor based position control systems. Shimada et al. had previously presented a paper on a DC servo motor based position sensorless control technique using mechanical springs. It was based on a point of view that mechanical springs form the key components for the observability. On the basis of the result obtained from the successful experiment, we assumed that the AC servo motor position sensorless control system would be identical. Using vector control, the controller needs the data of the magnetic pole position on the rotor of the AC servo motor. It is not perfect sensorless control, since it use a rotary encoder. However, we introduce it and demonstrate the expreimental results as an initial step in the new control technology. AC Keywords: position sensorless conrol, AC servo motor, observer, vector control 1. AC DC (1) (2) (3) (4) AC AC 229-1196 4-1-1 Dept. of Electrical System Engineering, Polytechnic University Hashimotodai 4-1-1, Sagamihara 229-1196 1-831 2-7-3 Mitsubishi Electric Corporation Marunouchi 2-7-3, Chiyoda-ku, Tokyo 1-831 (3) (4) F = k x F = G i 3 AC AC (7) (9) 2π rad D 127 9 27 987

2π rad 2π rad AC DC (5) (6) DC (1) (4) 2 (7) (9) 1 1 1 2 2π rad AC AC (1) (12) 2. AC DC AC dq Fig. 1 (5) 1 Fig. 2 z v ω m M D k n f τ 1 L a 1 R a p Φ fa d Fig. 1. Block diagram of AC servo motor and mechanical plant Fig. 2. View of experimental apparatus q Fig. 1 v d = u d u dd v q = u q + v qd u dd = v dd = pl a i q v/r v qd = v q1 + v q2 = pφ fa v/r + pl a i d v/r u d u q i d i q 1/(sL a + R a ) q v q q i q z z q i q Fig. 1 z n k 1/(sM + D) v v 1/r p v qd 1/(sL a + R a ) i q q v v qd v d = u d u dd = u d pl a r v q = u q + u q2 = u q + pl a r i q v (1) i d v (2) Fig. 3 i d i q i dr i qd Fig. 4 (4) 988 IEEJ Trans. IA, Vol.127, No.9, 27

AC t u d = K pi (i dr i d ) + K ii (i dr i d )dt (3) t u q = K pi (i qr i q ) + K ii (i qr i q )dt + u q1 (4) i dr = q 1/(pΦ fa ) Fig. 5 q ẋ 1 = [z,v,i q ] T u 1 = u q y 1 = i q (5) (6) ẋ 1 = A 1 x 1 + B 1 u 1 (5) y 1 = C 1 x 1 (6) 1 nk M D pφ fa M Mr, B 1 =, 1/L a A 1 = C 1 = [ 1 ] pφ fa L a r M = J r 2 + m, D = D m r 2 R a L a + D z x 2 = [z,v] T u 2 = τ y 2 = z (7) (8) (5) (6) (7) (8) Fig. 3. Equivalent system to DC servo motor system ẋ 2 = A 2 x 2 + B 2 u 2 (7) y 2 = C 2 x 2 (8) A 2 = 1 nk M D, B 2 = 1, M Mr C 2 = [ 1 ] 3. Fig. 4. Fig. 5. Current feedback system Equivalent control plant (5) (6) n, k > (1) det(u o ) = p 2 φ 2 fa /(L2 ar 2 ) nk/m (5) (6) C 1 A 1 (13) (5) (6) (9) (1) (11) (12) Fig. 6. Block diagram of control system D 127 9 27 989

x 1 [i + 1] = A d1 x 1 [i] + B d1 u 1 [i] (9) y 1 [i] = C d1 x 1 [i] (1) ˆx 1 [i + 1] = A d1 ˆx 1 [i] + B d1 u 1 [i] + H d (y[i] ŷ[i]) (11) ŷ 1 [i] = C d1 ˆx 1 [i] (12) A d1 = e A 1 T s R 3 3 B d1 = T s e A1τ dτ B 1 R 3 1 C d1 = C 1 R 1 3 T s H d ẑ (7) (8) (13) (14) x 2 [i + 1] = A d2 x 2 [i] + B d2 u 2 [i] (13) y 2 [i] = C d2 x 2 [i] (14) (15) A d2 = e A 2 T s C d2 = C 2 R 1 2 R 2 2 B d2 = T s e A 2τ dτ B 2 R 2 1 Fig. 6 z r T s T s z r ẑ δ(i + 1) = δ(i) + T s (z r ẑ) (7) (8) δ x 2 = [z,v] T x 3 = [z,v,δ] Q d R d LQ τ r = Kx 3 + K p z r K = [F b K i ] F b K i K p S elector1 S elector2 ˆx 1 = [ẑ, ˆv, î q ] T ˆx 2 = [ẑ, ˆv] T ẑ PI q PI = K pi + K ii /s d u q1 u q v q u q1 PI i q DC (1) (4) d, q (5) DC 4. Table 1 Table 2 Table 2 2 Fig. 7 Fig. 7. Table 1. Variables Mass of the cart M Coefficient of viscosity D z Radius of pulley r Coef. of elasticity k Number of spring n Armature resistance R Armature self inductance L E.M.F. constant K e Torque constant K T Phisical parameters of the plant Values of the parameters.165 [kg].35 [N s/m].8825 [m] 16 [N/m] 1or2 7.25 [Ω] 9.5 [mh].35 [Vs/rad].35 [Ns/rad] Rotor inertia J 2.1 1 6 [kgm 2 ] Coef. of rotor viscosity D m 6.55 1 6 [Nms/rad] Current control gain K pi 1 Current control integral gain K ii 8 Maximum magnetic flux φ fa.3 Number of pole pairs p 4 Variables Table 2. Sampling time T s Control parameters Values of parameters.1 [ms] Weight function Q d Diag(1, 1, 1 6 ) Weight function R d 1 State feedback gain F b [7.25, 2.9175] Integral gain K i 99.93 Observer gain H d [.16,.2883,.3331] Feedfoward gain K p 55. Simulation result of position sensorless control 99 IEEJ Trans. IA, Vol.127, No.9, 27

AC (a) t=.25 [s] Fig. 8. Structure of hardware system (b) t=.75 [s] (c) t=1.25 [s] (d) t=1.75 [s] Fig. 9. Experimental result of position sensorless control (e) t=2.25 [s] 5. PE- PRO MWINV-4R22 PWM C PE-PRO DSP TI TMS32C25 PWM DC2 V 1 khz AC 2 W 248 /, SY-3 12 A/D.1ms Fig. 9 Fig. 1 (e) t=2.75 [s] Fig. 1. Pictures on the experiment Fig. 7 Fig. 9 ±25 mm ±3mm 6. AC DC AC (7) (9) D 127 9 27 991

18 1 13 19 2 1 1 A. Shimada and K. Enomoto: Realization of Position Sensor-less Control System Using Spring, Trans. of IEEJ IA, Vol.124, No.12, pp.1268 1273 (24-12) (in Japanese),, 124, 12, pp.1268 1273 (24-12) 2 A. Shimada, Y. Kishiwada, M. Fujita, and N. Arimura: Sensor-less Control based on Observerbility Using Mechanical Spring, The 47th Automatic Control Annual Joint Conference, 912 (24) (in Japanese), 47, 912 (24) 3 Y. Kishiwada and A. Shimada: Robot Hand Grasping ControlMaking Use of Mechanical Spring, The papers of technical Meeting on Industrial Instrumentation and Control, IEEJ, IIC-5-32 (25) (in Japanese),, IIC-5-32 (25) 4 A. Shimada and Y. Kishiwada: Position/Force Sensorless Grasping Control Making Use of Mechanical Spring, Trans. of IEEJ IA, Vol.125, No.11, pp.16 165 (25-11) (in Japanese) /,, 125, 11, pp.16 165 (25-11) 5 H. Sugimoto, M. Koyama, and S. Tamai: Practice of Theory and Design on AC Servo System, Sougosyuppansha (199) (in Japanese) AC, (199) 6 R. Krishnan: Electric Motor Drives Modeling, Analysis, and control, Prentice Hall (21) 7 S. Ichikawa, Z. Chen, M. Tomita, S. Doki, and S. Okuma: Sensorless Controls of Salient-Pole PermanentMagnet SyncronousMotors Using Extended Electromotive Force Models, Trans. IEEJ IA, Vol.122, No.12, pp.188 196 (22-12) (in Japanese),, 122, 12, pp.188 196 (22-12) 8 S. Shinnaka, A. Toba, and D. Zhang: Control Technologies for Sensorless Drive of Permanent Magnet Syncronous Motors, IEEJ IA Conference, Symposium, 1-S15-4, I-17-112 (24) (in Japanese), 16, 1-S15-4, I-17-112 (24) 9 N. Takeshita, M. Ichikawa, J. Lee, and N. Matsui: Back EMF Estimation- Based Sensorless Salient-Pole Brushless DC Motor Drives, Trans. of IEEJ IA, Vol.117, No.1, pp.98 14 (1997-1) (in Japanese) DC,, 117,1, pp.98 14 (1997-1) 1 M. Arimura, A. Shimada, and M. Terauchi: AC Servo Motor Position Sensor-less Control using Mechanical Springs, The papers of technical Meeting on Industrial Instrumentation and Control, IEEJ, IIC-5-56 (25) (in Japanese) AC,, IIC-5-56 (25) 11 A. Shimada and Y. Kishiwada: AC Servo Motor Position Sensorless Control using Mechanical Springs, 9th IEEE International Workshop on Advanced Motion Control-AMC 6, pp.559 562 (26) 12 Y. Kishiwada, A. Shimada, and M. Arimura: Position Sensorless Control usong AC Servo Motor foe Robot Hands, 7th Annual Conference of SICE System Integlation Dept., pp.86 87 (26) (in Japanese) AC, 7, pp.86 87 (26) 13 T. Hagiwara: Introduction to Digital Control, Corona Publishing (1999) (in Japanese), (1999) 1958 9 1983 3 4 1994 4 1999 4 21 4 27 4 IEEE, 1996 1982 1 25 3 4 27 4 1983 2 25 3 AC 992 IEEJ Trans. IA, Vol.127, No.9, 27