On a five dimensional Finsler space with vanishing v-connection vectors

Σχετικά έγγραφα
On the conformal change of five-dimensional Finsler spaces

2 Composition. Invertible Mappings

A THEORY OF THREE DIMENSIONAL FINSLER SPACES IN TERMS OF SCALARS AND ITS APPLICATIONS

A summation formula ramified with hypergeometric function and involving recurrence relation

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Congruence Classes of Invertible Matrices of Order 3 over F 2

Example Sheet 3 Solutions

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

A Note on Intuitionistic Fuzzy. Equivalence Relation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Homomorphism in Intuitionistic Fuzzy Automata

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

EE512: Error Control Coding

Reminders: linear functions

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Space-Time Symmetries

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Section 8.3 Trigonometric Equations

Every set of first-order formulas is equivalent to an independent set

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

w o = R 1 p. (1) R = p =. = 1

Srednicki Chapter 55

Commutative Monoids in Intuitionistic Fuzzy Sets

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Homework 3 Solutions

Math221: HW# 1 solutions

Second Order Partial Differential Equations

Tridiagonal matrices. Gérard MEURANT. October, 2008

Inverse trigonometric functions & General Solution of Trigonometric Equations

Lecture 13 - Root Space Decomposition II

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Concrete Mathematics Exercises from 30 September 2016

Lecture 15 - Root System Axiomatics

On a four-dimensional hyperbolic manifold with finite volume

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Homomorphism of Intuitionistic Fuzzy Groups

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

4.6 Autoregressive Moving Average Model ARMA(1,1)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

C.S. 430 Assignment 6, Sample Solutions

Areas and Lengths in Polar Coordinates

1. Introduction and Preliminaries.

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

SOME PROPERTIES OF FUZZY REAL NUMBERS

Statistical Inference I Locally most powerful tests

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Areas and Lengths in Polar Coordinates

6.3 Forecasting ARMA processes

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Finite Field Problems: Solutions

Homework 8 Model Solution Section

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Riemannian Curvature

Tutorial problem set 6,

Uniform Convergence of Fourier Series Michael Taylor

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Matrices and Determinants

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Intuitionistic Fuzzy Ideals of Near Rings

Parametrized Surfaces

ST5224: Advanced Statistical Theory II

Higher Derivative Gravity Theories

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CRASH COURSE IN PRECALCULUS

( y) Partial Differential Equations

Problem Set 3: Solutions

Fractional Colorings and Zykov Products of graphs

Second Order RLC Filters

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

THE BIGRADED RUMIN COMPLEX. 1. Introduction

Smarandache Curves According to Bishop Frame in Euclidean 3-Space

Θ αβ = i. Θ αβjk dz j dz k.

Cyclic or elementary abelian Covers of K 4

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Lecture 26: Circular domains

Solutions to Exercise Sheet 5

Generating Set of the Complete Semigroups of Binary Relations

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

D Alembert s Solution to the Wave Equation

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

6. MAXIMUM LIKELIHOOD ESTIMATION

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Section 7.6 Double and Half Angle Formulas

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Approximation of distance between locations on earth given by latitude and longitude

Symmetric Stress-Energy Tensor

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

A General Note on δ-quasi Monotone and Increasing Sequence

Transcript:

South Asian Journal of Mathematics 2017, Vol. 7 ( 2): 73 80 www.sajm-online.com ISSN 2251-1512 RESEARCH ARTICLE On a five dimensional Finsler space with vanishing v-connection vectors Anamika Rai 1, S. K. Tiwari 1 2 Department of Mathematics, K. S. Saket Post Graduate College, Ayodhya, Faizabad-224123 India. E-mail: anamikarai2538@gmail.com Received: Feb-29-2017; Accepted: Mar-28-2017 *Corresponding author Abstract In 1977, M. Matsumoto and R. Miron [1] constructed an orthonormal frame for an n- dimensional Finsler space, called Miron frame. Gauree Shanker, G. C. Chaubey and Vinay Pandey [3] discussed five-dimensional Finsler space on the basis of Miron frame and find some interesting results. The aim of the present paper is to find sufficient condition for a five-dimensional Finsler space to be S-3 like and to obtain some fruitful results for a five-dimensional Finsler space with vanishing v-connection vectors. Key Words Finsler space, Miron frame, S-3 like space, v-connection vectors MSC 2010 53B40, 53C05 1 Orthonormal Frame and Connection Vectors Let M 5 be a five-dimensional smooth manifold and F 5 = (M 5, L) be a five-dimensional Finsler space equipped with a metric function L(x, y) on M 5. The normalized supporting element, the metric tensor, the angular metric tensor and Cartan tensor are defined as l i = i L, g ij = 1 2 i j L 2, h ij = L i j L and C ijk = 1 2 k g ij respectively. The torsion vector C i is defined by C i = Cjk i gjk. Throughout this paper, we use the symbol i and i for y i and x i respectively. The Cartan connection in the Finsler space is given as CΓ = (F jk i, Gi j, Ci jk ). The h- and v-covariant derivatives of a covariant vector X i (x, y) with respect to the Cartan connection are given by X i j = j X i ( h X i )G h j F r ijx r, (1.1) and X i j = j X i C r ijx r. (1.2) The Miron frame for a five-dimensional Finsler space is constructed by the unit vectors (e i 1), ei 2), ei 3), ei 4), e i 5) ). The first vector ei 1) is the normalized supporting element li and the second e i 2) is the normalized Citation: Anamika Rai, S. K. Tiwari, On a five dimensional Finsler space with vanishing v-connection vectors, South Asian J Math, 2017, 7(2), 73-80.

Anamika Rai, et al: On a five dimensional Finsler space with vanishing v-connection vectors torsion vector m i = C i /C, where C is the length of the vector C i. The third vector e i 3) = ni, the fourth e i 4) = pi and the fifth vector e i 5) = qi are constructed by the Method of Matsumoto and Miron [1]. With respect to this frame, the scalar components of an arbitrary tensor Tj i are defined by T αβ = Tj i e α)i e j β), (1.3) then we get T i j = T αβe i α) e β)j, (1.4) where summation convention is also applied to Greek indices. The scalar components of the metric tensor g ij are δ αβ. Therefore, we get g ij = l i l j + m i m j + n i n j + p i p j + q i q j. (1.5) Let H α)βγ and V α)βγ /L be scalar components of the h and v covariant derivatives e i α))j and ei α) j respectively of the vectors e i α), then e i α) j = H α)βγ e i β) e γ)j, (1.6) and L e i α) j = V α)βγ e i β) e γ)j, (1.7) H α)βγ and V α)βγ are called h and v connection scalars respectively and are positively homogeneous of degree zero in y. Orthogonality of the Miron frame yields [2] H α)βγ = H β)αγ and V α)βγ = V β)αγ. Also, we have H 1)βγ = 0 and V 1)βγ = δ βγ δ 1β δ 1γ. Now, we define Finsler vector fields: h i = H 2)3γ e γ)i, J i = H 2)4γ e γ)i, k i = H 2)5γ e γ)i, h i = H 3)4γ e γ)i, J i = H 3)5γ e γ)i, k i = H 4)5γ e γ)i, and u i = V 2)3γ e γ)i, v i = V 2)4γ e γ)i, w i = V 2)5γ e γ)i, u i = V 3)4γ e γ)i, v i = V 3)5γ e γ)i, w i = V 4)5γ e γ)i. The vector fields h i, J i, k i, h i, J i, k i are called h connection vectors and the vector fields u i, v i, w i, u i, v i, w i are called v connection vectors. The scalars H 2)3γ, H 2)4γ, H 2)5γ, H 3)4γ, H 3)5γ, H 4)5γ and V 2)3γ, V 2)4γ, V 2)5γ, V 3)4γ, V 3)5γ, V 4)5γ are considered as the scalar components h γ, J γ, k γ, h γ, J γ, k γ and u γ, v γ, w γ, u γ, v γ, w γ of the h and v connection vectors respectively. From (1.7), we get (a) Le i 1) j = Ll i j = m i m j + n i n j + p i p j + q i q j = h i j (b) Le i 2) j = Lm i j = l i m j + n i u j + p i v j + q i w j, (c) Le i 3) j = Ln i j = l i n j m i u j + p i u j + q i v j, (1.8) (d) Le i 4) j = Lp i j = l i p j m i v j n i u j + qi w j, (e) Le i 5) j = l i q j m i w j n i v j p i w j. 74

South Asian J. Math. Vol. 7 No. 2 Since m i, n i, p i, q i are homogeneous function of degree zero in y i, we have Lm i j l j = Ln i j l j = Lp i j l j = Lq i j l j = 0. These imply u 1 = v 1 = w 1 = u 1 = v 1 = w 1 = 0. Consequently, we have Proposition 1.1. The first scalar components u 1, v 1, w 1, u 1, v 1, w 1 of v connection vectors u i, v i, w i, u i, v i, w i vanish identically. 2 Scalar Derivatives Taking h covariant differentiation of both sides of (1.4), we get Tj k i = (δ kt αβ )e i α) e β)j + T αβ e i α) k e β)j + T αβ e i α) e β)j k. (2.1) If T αβ,γ are the scalar components of Tj k i, i.e., Tj k i = T αβ,γ e i α) e β)j e γ)k, (2.2) then, we obtain Similarly, if we put T αβ,γ = (δ k.t αβ )e k γ) + T µβh µ)αγ + T αµ H µ)βγ. (2.3) LT i j k = T αβ;γ e i α) e β)j e γ)k, (2.4) then the scalar components T αβ;γ of LTj i k are given by T αβ;γ = L( k T αβ )e k γ) + T µβv µ)αγ + T αµ V µ)βγ. (2.5) The scalar components T αβ,γ and T αβ;γ respectively are called h and v scalar derivatives of the scalar components T αβ of Tj i. From (1.7), it follows that L 2 e i α) j k + Le i α) j l k = L(Le i α) j) k = V α)βγ;δ e i β) e γ)j e δ)k, which implies L 2 e i α) j k = (V α)βγ;δ V α)βγ δ 1δ )e i β) e γ)j e δ)k. (2.6) According to the formula (2.5), V α)βγ;δ are given by V α)βγ;δ = L( k V α)βγ )e k δ) + V α)µγv µ)βδ + V α)βµ V µ)γδ. For α = 2, β = 3, we get V 2)3γ;δ = L( k V 2)3γ )e k δ) + V 2)µγV µ)3δ + V 2)3µ V µ)γδ = L( k V 2)3γ )e k δ) + V 2)1γV 1)3δ + V 2)4γ V 4)3δ + V 2)5γ V 5)3δ + V 2)3µ V µ)γδ V 2)3γ;δ = L( k u γ )e k δ) V 1)2γV 1)3δ v γ u δ w γ v δ + u µ V µ)γδ V 2)3γ;δ = L( k u γ )e k δ) δ 2γδ 3δ v γ u δ w γv δ + u µv µ)γδ V 2)3γ;δ = u γ;δ δ 2γ δ 3δ v γ u δ w γ v δ; 75

Anamika Rai, et al: On a five dimensional Finsler space with vanishing v-connection vectors where u γ;δ = L( k u γ )e k δ) + u µv µ)γδ. Similarly, we get V 2)4γ;δ = V γ;δ δ 2γ δ 4δ w γ w δ + u γ u δ V 2)5γ;δ = w γ;δ δ 2γ δ 5δ + u γ v δ + v γw δ V 3)4γ;δ = u γ;δ δ 3γ δ 4δ u γ v δ v γw δ V 3)5γ;δ = V γ;δ δ 3γδ 5δ u γ w δ + u γ w δ V 4)5γ;δ = w γ;δ δ 4γ δ 5δ v γ w δ u γv δ. 3 v-curvature Tensor The v curvature tensor is defined by S hijk = C r hkc ijr C r hjc ikr. The scalar components S αβγδ of L 2 S hijk are written as L 2 S hijk = S αβγδ e α)h e β)i e γ)j e δ)k. (3.1) Since S hijk is skew-symmetric in h and i as well as j and k and S 0ijk = S hi0k = 0, the surving independent components of S αβγδ are twenty two and these are S 2323, S 2324, S 2325, S 2334, S 2335, S 2424, S 2434, S 2435, S 3434, S 3435, S 4545, S 2425, S 3525, S 3535, S 3545, S 3425, S 3445, S 4523, S 4524, S 4525, S 4535, S 2525. A Finsler space F n (n 4) is called S-3 like, if there exists a scalar S such that the curvature tensor S hijk of F n is written in the form L 2 S hijk = S(h hj h ik h hk h ij ), (3.2) where h ij = g ij l i l j is the angular metric tensor. In terms of scalar components, the Ricci identity e i α) j k e i α) k j = e r α) Si rjk, may be written as (V α)βγ;δ V α)βγ δ 1δ ) (V α)βδ;γ V α)βδ δ 1γ ) = S αβγδ. 76

South Asian J. Math. Vol. 7 No. 2 For different values of α and β, we get (u γ;δ δ 2γ δ 3δ v γ u δ w γv δ u γδ 1δ ) (u δ;γ δ 2δ δ 3γ v δ u γ w δ v γ u δ δ 1γ ) = S 23γδ (v γ;δ δ 2γ δ 4δ w γ w δ + u γu δ v γδ 1δ ) (v δ;γ δ 2δ δ 4γ w δ w γ + u δ u γ v δ δ 1γ ) = S 24γδ (w γ;δ δ 2γ δ 5δ + u γ v δ + v γw δ w γδ 1δ ) (w δ;γ δ 2δ δ 5γ + u δ v γ + v δ w γ w δ δ 1γ ) = S 25γδ (u γ;δ δ 3γ δ 4δ u γ v δ v γw δ u γδ 1δ ) (u δ;γ δ 3δ δ 4γ u δ v γ (3.3) which gives us v δ w γ u δ δ 1γ) = S 34γδ (V γ;δ δ 3γ δ 5δ u γ w δ + u γw δ v γδ 1δ ) (V δ;γ δ 3δ δ 5γ u δ w γ + u δ w γ v δ δ 1γ) = S 35γδ (w γ;δ δ 4γ δ 5δ v γ w δ u γv δ w γδ 1δ ) (w δ;γ δ 4δ δ 5γ v δ w γ u δ v γ w δ δ 1γ) = S 45γδ S 2323 = (u 2;3 u 3;2 v 2 u 3 w 2v 3 + v 3u 2 + w 3v 2 ) 1 S 2324 = (u 2;4 u 4;2 v 2 u 4 w 2v 4 + v 4u 2 + w 4v 2 ) S 2325 = (u 2;5 u 5;2 v 2 u 5 w 2 v 5 + v 5 u 2 + w 5 v 2) S 2334 = (u 3;4 u 4;3 v 3 u 4 w 3v 4 + v 4u 3 + w 4v 3 ) S 2335 = (u 3;5 u 5;3 v 3 u 5 w 3 v 5 + v 5 u 3 + w 5 v 3) S 2424 = (V 2;4 V 4;2 w 2 w 4 + u 2u 4 + w 4w 2 u 4u 2 ) 1 S 2434 = (V 3;4 V 4;3 w 3 w 4 + u 3 u 4 + w 4 w 3 u 4 u 3) S 2435 = (V 3;5 V 5;3 w 3 w 5 + u 3 u 5 + w 5 w 3 u 5 u 3) S 3434 = (u 3;4 u 4;3 u 3v 4 v 3 w 4 + u 4v 3 + v 4 w 3 ) 1 S 3435 = (u 3;5 u 5;3 u 3 v 5 v 3w 5 + u 5 v 3 + v 5w 3) S 4545 = (w 4;5 w 5;4 v 4w 5 u 4 v 5 + v 5w 4 + u 5 v 4 ) 1 S 2425 = (V 2;5 w 2 w 5 + u 2 u 5 V 5;2 + w 5 w 2 u 5 u 2) S 3525 = (V 2;5 V 5;2 u 2w 5 + u 2 w 5 + u 5w 2 u 5 w 2 ) S 3535 = (V 3;5 V 5;3 u 3w 5 + u 3 w 5 + u 5w 3 u 5 w 3 ) 1 S 3545 = (V 4;5 V 5;4 u 4 w 5 + u 4w 5 + u 5 w 4 u 5w 4) S 3425 = (u 2;5 u 5;2 u 2v 5 v 2 w 5 + u 5v 2 + v 5 w 2 ) S 3445 = (u 4;5 u 5;4 u 4 v 5 v 4w 5 + u 5 v 4 + v 5w 4) S 4523 = (w 2;3 w 3;2 v 2w 3 u 2 v 3 + v 3w 2 + u 3 v 2 ) S 4524 = (w 2;4 w 4;2 v 2 w 4 u 2v 4 + v 4 w 2 + u 4v 2) (3.4) 77

Anamika Rai, et al: On a five dimensional Finsler space with vanishing v-connection vectors S 4525 = (w 2;5 w 5;2 v 2w 5 u 2 v 5 + v 5w 2 + u 5 v 2 ) S 4535 = (w 3;5 w 5;3 v 3 w 5 u 3v 5 + v 5 w 3 + u 5v 3) S 2545 = (w 4;5 w 5;4 + u 4 v 5 + v 4w 5 u 5v 4 v 5w 4 ). If the Finsler space F 5 is S 3 like then L 2 S hijk = S(h hj h ik h hk h ij ), i.e. L 2 S hijk = S{m i m k n h n j + m i m k p h p j + m i m k q h q j + m h m j n i n k + n i n j n k n h + n i n k p h p j + n i n k q h q j + p i p k m h m j + p i p k n h n j + p i p k p h p j + p i p k q h q j + q i q k m h m j + q i q k n h n j + q i q k p h p j + q i q k q h q j m i m j n h n k m i m j p h p k m i m j q h q k m h m k n i n j n i n j n k n h n i n j p h p k n i n j q h q k p i p j m h m k p i p j n h n k p i p j p h p k p i p j q h q k q i q j m h m k q i q j n h n k q i q j p h p k q i q j q h q k } which implies S 2323 = S, S 2324 = 0, S 2325 = 0, S 2334 = 0, S 2335 = 0, S 2424 = S, S 2434 = 0, S 2435 = 0, S 3434 = S, S 3435 = 0, S 4545 = S, S 2425 = 0 S 3525 = 0, S 3535 = S, S 3545 = 0, S 3425 = 0, S 3445 = 0, S 4523 = 0, S 4524 = 0, S 4525 = 0, S 4535 = 0, S 2525 = S. (3.5) From (3.4) and (3.5), we get u 2;3 u 3;2 v 2 u 3 w 2v 3 + v 3u 2 + w 3v 2 = S + 1 u 2;4 u 4;2 v 2 u 4 w 2 v 4 + v 4 u 2 + w 4 v 2 = 0 u 2;5 u 5;2 v 2 u 5 w 2 v 5 + v 5 u 2 + w 5 v 2 = 0 u 3;4 u 4;3 v 3 u 4 w 3v 4 + v 4u 3 + w 4v 3 = 0 u 3;5 u 5;3 v 3 u 5 w 3 v 5 + v 5 u 3 + w 5 v 3 = 0 v 2;4 v 4;2 w 2 w 4 + u 2u 4 + w 4w 2 u 4u 2 = S + 1 v 3;4 v 4;3 w 3 w 4 + u 3 u 4 + w 4 w 3 u 4 u 3 = 0 v 3;5 v 5;3 w 3 w 5 + u 3u 5 + w 5w 3 u 5u 3 = 0 u 3;4 u 4;3 u 3v 4 v 3 w 4 + u 4v 3 + v 4 w 3 = S + 1 u 3;5 u 5;3 u 3 v 5 v 3w 5 + u 5 v 3 + v 5w 3 = 0 w 4;5 w 5;4 v 4w 5 u 4 v 5 + v 5w 4 + u 5 v 4 = S + 1 v 2;5 w 2 w 5 + u 2 u 5 v 5;2 + w 5 w 2 u 5 u 2 = 0 v 2;5 v 5;2 u 2w 5 + u 2 w 5 + u 5w 2 u 5 w 2 = 0 v 3;5 v 5;3 u 3 w 5 + u 3w 5 + u 5 w 3 u 5w 3 = S + 1 (3.6) 78

South Asian J. Math. Vol. 7 No. 2 v 4;5 v 5;4 u 4w 5 + u 4 w 5 + u 5w 4 u 5 w 4 = 0 u 2;5 u 5;2 u 2 v 5 v 2w 5 + u 5 v 2 + v 5w 2 = 0 u 4;5 u 5;4 u 4v 5 v 4 w 5 + u 5v 4 + v 5 w 4 = 0 w 2;3 w 3;2 v 2 w 3 u 2v 3 + v 3 w 2 + u 3v 2 = 0 w 2;4 w 4;2 v 2w 4 u 2 v 4 + v 4w 2 + u 4 v 2 = 0 w 2;5 w 5;2 v 2w 5 u 2 v 5 + v 5w 2 + u 5 v 2 = 0 w 3;5 w 5;3 v 3 w 5 u 3v 5 + v 5 w 3 + u 5v 3 = 0 w 2;5 w 5;2 + u 2 v 5 + v 2w 5 u 5v 2 v 5w 2 = S + 1. Thus, we have: Theorem 3.1. A five-dimensional Finsler space is S 3 like if and only if the conditions (3.6) are satisfied. Corollary 3.1. A five-dimensional Finsler space is S 3 like if u γ;δ = v γ;δ = w γ;δ = u γ;δ = v γ;δ = w γ;δ = 0, v γ u δ + w γv δ v δ u γ + w δv γ = u γw δ + u δw γ u γ w δ + u δ w γ = u γu δ + w γ w δ w γ w δ + u δu γ = v γw δ + u γv δ v δ w γ + u δ v γ = v γu δ + v δ w γ u γ v δ + v γ w δ = u γv δ + v γw δ u δ v γ + v δ w γ. Corollary 3.2. A five-dimensional Finsler space with vanishing v-connection vectors is S 3 like v curvature 1. From Corollary 3.2, we have L 2 S hijk = 1(h hj h ik h hk h ij ). Taking h covariant differentiation on both sides and using L r = 0 and h ij r = 0, we get S hijk r = 0, and then the identity P hijk P hikj = S hijk r y r reduce to P hijk = P hikj, where P hijk is the hv curvature tensor defined by P hijk = C ijk h C hjk i + Chj r C rik s y s Cij r C rhk s y s. Thus, we have: Theorem 3.2. The hv curvature tensor P hijk of a five-dimensional Finsler space with vanishing v connection vectors is symmetric in j and k. A Finsler space is said to be a Landsberg space if hv curvature tensor P hijk vanishes. A P Finsler space is characterized by C ijk r y r = λc ijk, while a Finsler space is said to be a P 2 like Finsler space if P hijk = P h C ijk P i C hjk, where P i is a covariant vector field. M. Matsumoto [2] proved that if the hv curvature tensor P hijk is symmetric in j and k in a P Finsler space then either P hijk = 0 or S hijk = 0. Therefore, in view of theorem 3.2, P hijk = 0 or S hijk = 0 in a five-dimensional P Finsler space with vanishing v connection vectors. But for such 79

Anamika Rai, et al: On a five dimensional Finsler space with vanishing v-connection vectors space S hijk 0 in view of corollary 3.2. Therefore, P hijk = 0. Hence the space is a Landsberg space. Thus, we have: Theorem 3.3. A five-dimensional P Finsler space with vanishing v connection vectors is a Landsberg space. Since a P 2 like Finsler space is P Finsler space, we may conclude: Theorem 3.4. A five-dimensional P 2 like Finsler space with vanishing v connection vector is a Landsberg space. References 1 M. Matsumoto and R. Miron : On an invariant theory of Finsler spaces, Period. Math. Hunger, 8 (1977), 73. 2 M. Matsumoto : Foundations of Finsler geometry and special Finsler spaces, Kaiseisha press, Saikawa, Ostu, 520 (1986), Japan. 3 Gauree Shanker, G. C. Chaubey and Vinay Pandey : On the main scalars of a five-dimensional Finsler space, International Electronic J. Pure and Applied Math., 5 (2012), 69-78. 80