Probing micro-solvation in numbers : The case of neutral dipeptides in water.

Σχετικά έγγραφα
Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Oscillatory integrals

Solutions_3. 1 Exercise Exercise January 26, 2017

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

EE512: Error Control Coding

Loïc Decrey a and Tamar Kohn a *

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

«Βιοδοκιμές αποτελεσματικότητας ουσιών φυτικής προέλευσης επί του δορυφόρου της πατάτας Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)»

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Section 8.3 Trigonometric Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Supporting Information

Math 6 SL Probability Distributions Practice Test Mark Scheme

2 Composition. Invertible Mappings

Strain gauge and rosettes

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Derivation of Optical-Bloch Equations

Math221: HW# 1 solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Approximation of distance between locations on earth given by latitude and longitude

The effect of curcumin on the stability of Aβ. dimers

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Electronic Supplementary Information (ESI)

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Finite Field Problems: Solutions

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Homework 3 Solutions

Το απόθεμα των σπόρων στο έδαφος σε λιβαδικά οικοσυστήματα του όρους Ψηλορείτη Κρήτης

C.S. 430 Assignment 6, Sample Solutions

Section 7.6 Double and Half Angle Formulas

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ST5224: Advanced Statistical Theory II

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

University of Kentucky Department of Physics and Astronomy PHY 525: Solid State Physics II Fall 2000 Final Examination Solutions

ΜΕΤΑΠΤΥΧΙΑΚΗ ΜΕΛΕΤΗ ΟΛΓΑ ΝΑΣΤΑ

Risk! " #$%&'() *!'+,'''## -. / # $

PARTIAL NOTES for 6.1 Trigonometric Identities

Lecture 5: Numerical Integration

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

of the methanol-dimethylamine complex

Second Order RLC Filters

Areas and Lengths in Polar Coordinates

Laura Albrecht, Katie A. Wilson and Stacey D. Wetmore

w o = R 1 p. (1) R = p =. = 1

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Second Order Partial Differential Equations

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Areas and Lengths in Polar Coordinates

Table of Contents 1 Supplementary Data MCD

Space-Time Symmetries

Srednicki Chapter 55

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΙΛΟΛΟΓΙΑΣ

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Inverse trigonometric functions & General Solution of Trigonometric Equations

Homework 8 Model Solution Section

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

On a four-dimensional hyperbolic manifold with finite volume

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Fractional Colorings and Zykov Products of graphs

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Matrices and Determinants

Reminders: linear functions

derivation of the Laplacian from rectangular to spherical coordinates

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

College of Life Science, Dalian Nationalities University, Dalian , PR China.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΒΑΛΚΑΝΙΚΩΝ, ΣΛΑΒΙΚΩΝ & ΑΝΑΤΟΛΙΚΩΝ ΣΠΟΥΔΩΝ

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Electronic Supplementary Information:

Supplementary Information for

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

[1] P Q. Fig. 3.1

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

Solvent effects on structures and vibrations of zwitterionic dipeptides: L-diglycine and L-dialanine

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Differential equations

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Transcript:

ELETRONI SUPPLEMENTARY INFORMATION Probing micro-solvtion in numbers : The cse of neutrl dipeptides in wter. Pnteleimon G Tkis, Konstntinos D. Ppvsileiou, b Louks D. Peristers, c Vsilios S. Melisss* b nd Anstssios N. Trognis* Deprtment of Biologicl Applictions nd Technology, Biophysics Lbortory, University of Ionnin, GR-45 0 Ionnin, Greece, b Deprtment of hemistry, University of Ionnin, GR-45 0 Ionnin, Greece c Scienomics Srl, 7 squre Edourd VII, 75009 Pris, Frnce *Authors to whom correspondence should be ddressed: Vsilios S. Melisss: E-mil: melisss@chem.uth.gr, Tel.: +30-26-500-847, Fx: +30-26-500-8682 nd Anstssios N. Trognis: E-mil: trogni@cc.uoi.gr, Tel.: +30-26-500-885, Fx: +30-26-500-8889

Index Pges Further detils for eqns (2) nd (5)... S2 The cse of internl motion (Lipri nd Szbo)... S3 From eqns (5) nd (6) to the clcultion of the weighted correltion times... S5 Full expression of eqn ()... S6 The mesured relxtion times (T ) for 3 α nd 3 β nuclei t three mgnetic fields... S7 Tble S.... S7 Tble S2.... S8 omprison between relxtion rtes for 3 α nd 3 β nuclei... S9 Tble S3... S9 Tble S4.... S0 Tble S5.... S Fig. S.... S2 Dipeptides correltion times ( τ ) from 3 α nd 3 β relxtion dt... S3 Tble S6.... S3 Dipeptides correltion times ( τ ) from 3 α nd 3 β relxtion dt vs. their M W... S5 Tble S7.... S5 Tble S8.... S5 Fig. S2.... S6 Alnine Dipeptide Fully optimized structure by DFT... S7 Fig. S3.... S7 H-bonds interction energies (E int ) clcultion... S8 Tble S9.... S8 Fig. S4.... S9 Alnine Dipeptide/0 H 2 Os complex... S20 Fig. S5.... S20 Supplementry References... S2 Geometricl detils nd energetics of fully optimized AD/(H 2 O) n (n=0, 7-9) supermolecules... S22 AD/(H 2 O) 0 (Fig. S3)... S22 AD/(H 2 O) 7 (Fig. 4)... S24 AD/(H 2 O) 8 (Fig. 4b)... S26 AD/(H 2 O) 9 (Fig. 4c)... S28 S

Further detils for eqns (2) nd (5) As it ws mentioned, sclr contribution is insignificnt to T determintion nd it cn be clculted by the following eqution: T, i N, sc since J coupling constnt nd T, N i 2 2 6 JNT i 3 N 2 N 2, N 2 T 2 2, N, (S) relxtion time of the nitrogen toms re known. J coupling constnt is pproximtely equl to 30 Hz, wheres T vlues, N i re determined by the width t the hlf height (Δν /2 ) of the 4 N-NMR pek. Our previous studies, concerning mino cids nd cetyl-mino cids 2 mino nd imino groups hydrtion, respectively, indicted tht T 2 vlues for mino cids lie between, N 36 to 08 Hz nd for cetyl-mino cids between 70 to 495 Hz. Nevertheless, the sclr contribution to T relxtion is very smll (< 0.0 %) nd the overll estimted error in the clcultion of the relxtion times rtio [eqn (5)] is less thn 0-6 %, if no subtrction of the sclr contribution tkes plce. In fct, none of the terms in eqn (2) cn be clculted precisely, minly due to the vrition in distnce r between i-crbon nd i- or j-protons for ll studied molecules nd it cnnot be defined ccurtely. 2 N However, X-ry diffrction mesurements showed tht the men proton-crbon (-H) distnce is pproximtely ~. Å. 3 Moreover, our reserch group clculted by the mens of DFT nd MP2 theoreticl clcultions 2 the bove distnce for vrious mino cids nd dipeptides resulting in.085-.095 Å. This smll vrition in proton-crbon distnce contributes quite significntly (6 % devition) to the clcultion. onsequently, the ccurte determintion of the correltion time,, demnds either the knowledge of the exct proton-crbon distnces or n independent of them novel method for clcultion. S2

The cse of internl motion (Lipri nd Szbo) According to Lipri nd Szbo, 4 in the cse of internl motion the spectrl density is given by the expression: 2 S S Ji( ), 5 2 2 2 2 2 where S is generlized order prmeter, which is the mesure of motion s sptil restriction degree nd τ equls to: e, (S2) (S3) where e is n effective correltion time, which is mesure of the internl motion s rte. Thus, the longitudinl relxtion time (T ), described by eqn (), will be the sum of two terms. Nmely, one term will be chrcterized by the correltion time,, nd multiplied by the fctor S 2, while the other term will be chrcterized by the correltion time e e nd multiplied by the fctor S 2 : T, i 2 2,, e S f S f, e where f, is the second term in eqn (). (S4) onsidering the bove, someone could wonder if eqn (5) still permits the ccurte clcultion of. The error of using eqn (5) s is (without tking into considertion the effect of the internl motion), cn be clculted by expnding eqn (5), fter the inclusion of eqn (S4) in it, in Mclurin series (since e is expected to be very smll, nmely few ps) round e 0 s. Inclusion of eqn (S4) to eqn (5) leds to: S3

f,,, 2 e 2 3 6 S 2 2 2 2 2 2 H H 2 S e 3 6 2 2 2 2 2 2 2 2 2 e e 2 e H e H 2 2 e e e 2 3 6 S 2 2 2 2 2 2 2 2 2 2 2 H H 2 S e 3 6 2 2 2 2 2 2 2 2 2 e 2 e 2 2 2 2 2 e H e H 2 2 e e e (S5) Expnsion of the bove eqution in Mclurin series results in: where n,,,,,, 2 e 2 2 f n, f,0,0, n! f e (S6) n f n is the n-th derivtive of eqution f. The term,, 2,0 f represents the T rtio t two different mgnetic fields when no internl motion is tken into considertion [nmed eqn (5)] therefore, the term n f,, 2,0 error of the pproximtion. n represents the n! e Assuming tht S 0.8, since slower motion domintes in relxtion processes 0 (ccording to Lipri S vlue is expected to be lmost one), 0 s, 0 s, re the proton nd crbon resonnces t 250.3 nd 62.895 MHz nd 2 re the resonnces t 500.3 nd 25.758 MHz respectively, the clculted error is -0.07 %. As result, the estimted error in eqn (5) is much less thn 0. %, proving tht eqn (5) n still leds to the ccurte clcultion of the correltion time,. e S4

From eqns (5) nd (6) to the clcultion of the weighted correltion times The inclusion of eqn () to eqns (5) nd (6) results in two equtions whose expnsion in Mclurin series until the 3 rd term leds to: nd T, Oi, 2 2 2 2 2 0 0 0 2 0 7 0 2 2 7 H H H 2H T, Oi, 2 (S7) T, Oi, T, Oi, 2 0 0 0 7 0 7 0 2 2 2 2 2 H H 2 2H 2H 2 4 2 P P P P P P 2 2 b, b b, b, b, (S8) Furthermore, tking into considertion tht the st terms of eqn (S7) nd eqn (S8) re equl, led to their 2 nd terms equlity nd 2 nd degree polynomil whose solution round results in the weighted verge clcultion of the correltion times through eqn (S9): 2 4 2 P P P P P P (S9) 2 2 b, b b, b, b, S5

Full expression of eqn () T, Oi, T, Oi, 2 f,, M 2 W 3 6 P c MW 2 2 2 2 2 2 H cmw cmw H cmw 3 6 Pb cmw 8Nw 2 2 2 2 2 2 H cmw 8Nw cmw 8Nw H cmw 8Nw 3 6 P c M 2 2 2 cm cm cm W 2 2 2 2 2H W 2 W 2 2H W P cm 3 6 8N 8 8 8 b W w 2 cm N cm N cm N 2 2 2 2 2 2 2H W w 2 W w 2 2H W w S6

The mesured relxtion times (T ) for 3 α nd 3 β nuclei t three mgnetic fields Tble S. The 3 α nuclei mesured T vlues (t 298 K) of ech dipeptide t three mgnetic fields (± indictes the StdDev with n = 20). Dipeptides (-NH 2 -OOH) M W ph = 6.0 500 MHz 400 MHz 250 MHz T (s) for 3 α Al Gly 46.4.73 ± 0.036 0.846 ± 0.0.660 ± 0.032 0.89 ± 0.04.600 ± 0.03 0.788 ± 0.02 Gly Al 46.4 0.834 ± 0.02.68 ± 0.036 0.806 ± 0.08.623 ± 0.032 0.776 ± 0.03.565 ± 0.023 Αl Al 60.7.29 ± 0.09.292 ± 0.02.247 ± 0.024.250 ± 0.022.98 ± 0.026.202 ± 0.025 Gly Ser 62.4 0.738 ± 0.03.450 ± 0.024 0.72 ± 0.02.398 ± 0.033 0.687 ± 0.06.347 ± 0.032 Gly Leu 88.23 0.583 ± 0.00.6 ± 0.034 0.559 ± 0.008.080 ± 0.029 0.536 ± 0.00.035 ± 0.026 Vl Ser 204.20.86 ± 0.028. ± 0.03.38 ± 0.03.074 ± 0.026.090 ± 0.028.025 ± 0.027 Vl Thr 28.30.008 ± 0.029 0.885 ± 0.02 0.965 ± 0.024 0.845 ± 0.08 0.9 ± 0.028 0.803 ± 0.08 Thr Leu 232.30 0.890 ± 0.023 0.824 ± 0.025 0.845 ± 0.08 0.783 ± 0.06 0.80 ± 0.02 0.743 ± 0.08 Al Phe 236.30 0.908 ± 0.027 0.907 ± 0.024 0.863 ± 0.022 0.860 ± 0.020 0.85 ± 0.020 0.85 ± 0.06 Phe Al 236.30 0.957 ± 0.030 0.966 ± 0.035 0.97 ± 0.026 0.99 ± 0.02 0.862 ± 0.08 0.869 ± 0.04 Vl Met 248.30 0.827 ± 0.024 0.905 ± 0.033 0.784 ± 0.020 0.856 ± 0.06 0.738 ± 0.07 0.809 ± 0.09 Tyr Al 252.30 0.892 ± 0.03 0.883 ± 0.028 0.845 ± 0.02 0.834 ± 0.07 0.795 ± 0.09 0.784 ± 0.0 Met Leu 262.40 0.787 ± 0.05 0.803 ± 0.023 0.742 ± 0.07 0.760 ± 0.04 0.698 ± 0.04 0.72 ± 0.06 Phe Vl 264.30 0.87 ± 0.022 0.776 ± 0.08 0.775 ± 0.020 0.733 ± 0.08 0.724 ± 0.02 0.687 ± 0.07 α M W is the moleculr weight of dipeptides zwitterionic form. S7

Tble S2. The 3 β nuclei mesured T vlues (t 298 K) of ech dipeptide t three mgnetic fields (± indictes the StdDev with n = 20). Dipeptides (-NH 2 -OOH) M W ph = 6.0 500 MHz 400 MHz 250 MHz T (s) for 3 β Al Gly 46.4 0.565± 0.008 // 0.548 ± 0.00 // 0.527 ± 0.00 // Gly Al 46.4 // 0.559 ± 0.008 // 0.540 ± 0.02 // 0.520 ± 0.00 Αl Al 60.7 0.427 ± 0.007 0.428 ± 0.0 0.42 ± 0.02 0.45 ± 0.02 0.396 ± 0.0 0.398 ± 0.00 Gly Ser 62.4 // 0.729 ± 0.06 // 0.704 ± 0.05 // 0.678 ± 0.03 Gly Leu 88.23 // 0.563 ± 0.04 // 0.543 ± 0.0 // 0.520 ± 0.04 Vl Ser 204.20.79 ± 0.028 0.59 ± 0.05.3 ± 0.028 0.566 ± 0.04.076 ± 0.025 0.540 ± 0.04 Vl Thr 28.30 0.995 ± 0.02 0.924 ± 0.020 0.948 ± 0.024 0.882 ± 0.08 0.902 ± 0.08 0.838 ± 0.08 Thr Leu 232.30 0.892 ± 0.09 0.405 ± 0.05 0.854 ± 0.08 0.388 ± 0.06 0.808 ± 0.08 0.368 ± 0.0 Al Phe 236.30 0.300 ± 0.00 0.448 ± 0.05 0.285 ± 0.02 0.427 ± 0.00 0.269 ± 0.00 0.402 ± 0.0 Phe Al 236.30 0.478 ± 0.04 0.38 ± 0.00 0.456 ± 0.06 0.302 ± 0.0 0.433 ± 0.0 0.284 ± 0.008 Vl Met 248.30 0.822 ± 0.09 0.445 ± 0.0 0.778 ± 0.07 0.422 ± 0.02 0.73 ± 0.05 0.398 ± 0.0 Tyr Al 252.30 0.44 ± 0.022 0.29 ± 0.08 0.48 ± 0.07 0.276 ± 0.03 0.394 ± 0.02 0.260 ± 0.0 Met Leu 262.40 0.389 ± 0.03 0.396 ± 0.0 0.368 ± 0.04 0.375 ± 0.04 0.344 ± 0.04 0.350 ± 0.0 Phe Vl 264.30 0.400 ± 0.02 0.772 ± 0.08 0.380 ± 0.00 0.729 ± 0.06 0.354 ± 0.0 0.685 ± 0.06 α M W is the moleculr weight of dipeptides zwitterionic form. S8

omprison between relxtion rtes for 3 α nd 3 β nuclei The relxtion rte of 3 nucleus is equl to / T, where N is the number of the ttched protons to the crbon. The following Tbles S3-S5 describe the corresponding relxtion rtes of 3 α nd 3 β nuclei nd their differences T T / / for ech studied dipeptide s component t three mgnetic fields: 3 3 Tble S3. The 3 α nd 3 β nuclei mesured relxtion rtes / T t 500 MHz (± indictes the StdDev with n = 20). Dipeptides (-NH 2 -OOH) M W S9 vlues (t 298 K) of ech dipeptide ph = 6.0 500 MHz (s - ) for 3 α / T (s - ) for 3 β / T / T / T b 3 3 Al Gly 46.4 0.584 ± 0.02 0.59 ± 0.008 0.590± 0.008 // -0.006 // Gly Al 46.4 0.600 ± 0.05 0.59 ± 0.03 // 0.596 ± 0.007 // -0.005 Αl Al 60.7 0.775 ± 0.02 0.774 ± 0.03 0.780 ± 0.02 0.779 ± 0.020-0.005-0.005 Gly Ser 62.4 0.678 ± 0.03 0.690 ± 0.02 // 0.686 ± 0.05 // 0.004 Gly Leu 88.23 0.858 ± 0.05 0.869 ± 0.023 // 0.888 ± 0.022 // -0.09 Vl Ser 204.20 0.843 ± 0.09 0.900 ± 0.024 0.848 ± 0.020 0.846 ± 0.02-0.005 0.054 Vl Thr 28.30 0.992 ± 0.028.30 ± 0.026.005 ± 0.02.082 ± 0.023-0.03 0.048 Thr Leu 232.30.24 ± 0.029.24 ± 0.036.2 ± 0.023.235 ± 0.045 0.003-0.02 Al Phe 236.30.0 ± 0.03.03 ± 0.029. ± 0.032.6 ± 0.036-0.00-0.03 Phe Al 236.30.045 ± 0.032.035 ± 0.036.046 ± 0.030.048 ± 0.032-0.00-0.03 Vl Met 248.30.209 ± 0.034.05 ± 0.039.27 ± 0.028.24 ± 0.028-0.008-0.09 Tyr Al 252.30.2 ± 0.038.33 ± 0.035.34 ± 0.054.45 ± 0.066-0.03-0.02 Met Leu 262.40.27 ± 0.024.245 ± 0.034.285 ± 0.040.263 ± 0.034-0.04-0.08 Phe Vl 264.30.224 ± 0.030.289 ± 0.030.250 ± 0.036.295 ± 0.029-0.026-0.006 α M W is the moleculr weight of dipeptides zwitterionic form. b / T / T correspond to ech dipeptide s component. vlues 3 3 (s - )

Tble S4. The 3 α nd 3 β nuclei mesured relxtion rtes / T t 400 MHz (± indictes the StdDev with n = 20). Dipeptides (-NH 2 -OOH) M W vlues (t 298 K) of ech dipeptide ph = 6.0 400 MHz (s - ) for 3 α / T (s - ) for 3 β / T / T / T b 3 3 Al Gly 46.4 0.602 ± 0.0 0.6 ± 0.0 0.608 ± 0.0 // -0.006 // Gly Al 46.4 0.607 ± 0.03 0.66 ± 0.04 // 0.68 ± 0.04 // -0.002 Αl Al 60.7 0.802 ± 0.06 0.800 ± 0.0 0.809 ± 0.02 0.807 ± 0.023-0.007-0.007 Gly Ser 62.4 0.702 ± 0.02 0.75 ± 0.06 // 0.70 ± 0.05 // 0.005 Gly Leu 88.23 0.894 ± 0.02 0.902 ± 0.024 // 0.92 ± 0.08 // -0.09 Vl Ser 204.20 0.879 ± 0.024 0.93 ± 0.022 0.884 ± 0.02 0.883 ± 0.02-0.005 0.048 Vl Thr 28.30.036 ± 0.025.83 ± 0.024.055 ± 0.026.34 ± 0.023-0.09 0.049 Thr Leu 232.30.83 ± 0.024.277 ± 0.026.7 ± 0.024.289 ± 0.049 0.02-0.02 Al Phe 236.30.59 ± 0.029.63 ± 0.027.70 ± 0.048.7 ± 0.027-0.0-0.008 Phe Al 236.30.09 ± 0.03.088 ± 0.024.096 ± 0.037.04 ± 0.039-0.005-0.024 Vl Met 248.30.276 ± 0.032.68 ± 0.02.285 ± 0.026.52 ± 0.033-0.009 0.06 Tyr Al 252.30.83 ± 0.028.75 ± 0.024.96 ± 0.047.208 ± 0.055-0.03-0.033 Met Leu 262.40.348 ± 0.030.36 ± 0.024.359 ± 0.050.333 ± 0.048-0.0-0.07 Phe Vl 264.30.290 ± 0.032.364 ± 0.033.36 ± 0.034.372 ± 0.030-0.026-0.008 α M W is the moleculr weight of dipeptides zwitterionic form. b / T / T correspond to ech dipeptide s component. 3 3 (s - ) vlues S0

Tble S5. The 3 α nd 3 β nuclei mesured relxtion rtes / T t 250 MHz (± indictes the StdDev with n = 20). vlues (t 298 K) of ech dipeptide Dipeptides (-NH 2 -OOH) M W ph = 6.0 250 MHz (s - ) for 3 α / T (s - ) for 3 β / T / T / T b 3 3 (s - ) Al Gly 46.4 0.625 ± 0.02 0.634 ± 0.00 0.633 ± 0.02 // -0.008 // Gly Al 46.4 0.644 ± 0.00 0.639 ± 0.009 // 0.64 ± 0.0 // -0.002 Αl Al 60.7 0.835 ± 0.08 0.832 ± 0.07 0.842 ± 0.035 0.838 ± 0.02-0.007-0.006 Gly Ser 62.4 0.728 ± 0.07 0.742 ± 0.07 // 0.737 ± 0.03 // 0.005 Gly Leu 88.23 0.933 ± 0.07 0.966 ± 0.023 // 0.962 ± 0.026 // 0.004 Vl Ser 204.20 0.97 ± 0.023 0.976 ± 0.025 0.929 ± 0.02 0.926 ± 0.023-0.02 0.050 Vl Thr 28.30.098 ± 0.033.245 ± 0.027.09 ± 0.022.93 ± 0.025-0.0 0.052 Thr Leu 232.30.248 ± 0.03.346 ± 0.032.238 ± 0.027.359 ± 0.04 0.00-0.03 Al Phe 236.30.227 ± 0.029.227 ± 0.024.239 ± 0.044.244 ± 0.033-0.02-0.07 Phe Al 236.30.60 ± 0.024.5 ± 0.08.55 ± 0.029.74 ± 0.032 0.005-0.023 Vl Met 248.30.355 ± 0.030.236 ± 0.028.368 ± 0.028.256 ± 0.033-0.03-0.020 Tyr Al 252.30.258 ± 0.029.276 ± 0.08.269 ± 0.037.230 ± 0.052-0.0 0.046 Met Leu 262.40.433 ± 0.029.404 ± 0.030.453 ± 0.056.429 ± 0.044-0.00-0.025 Phe Vl 264.30.38 ± 0.039.456 ± 0.036.42 ± 0.042.460 ± 0.033-0.03-0.004 α M W is the moleculr weight of dipeptides zwitterionic form. b / T / T correspond to ech dipeptide s component. vlues 3 3 Obviously, 3 relxtion rtes depend on the mgnetic field [eqn ()], however their differences, nmely in our cse / T / T coincidence for both 3 α nd 3 β nuclei. S, for the three mgnetic 3 3 fields, re independent of the mgnetic field. Therefore, s indicted in Fig. S (see below), lmost ll / T / T vlues lie between the 3 3 [2 (StdDev)] = 0.042 round their men vlue, 5 demonstrting / T vlues

Fig. S. omprison between T T 3 3 3 α nd 3 β nuclei relxtion rtes. Since, the / / vlues for the three mgnetic fields re independent of the mgnetic field, they re plotted vs. dipeptides M W. Almost ll vlues (except of 7, n = 72) lie between the clculted ± (2 StdDev) round their men vlue T 3 T 0.004 s. Obviously, / 3 T 3 nd / T 3 / / coincide. vlues S2

Dipeptides correltion times ( τ ) from 3 α nd 3 β relxtion dt Tble S6. The clculted vlues from 3 α nd 3 β T vlues of ech dipeptide by eqn (5). Dipeptides (-NH 2 -OOH) M W α 3 α b (s) S3 3 β b (s) Al-Gly 46.4.006 ± 0.038 0.990 ± 0.07 Al-Gly 46.4.00 ± 0.00.02 ± 0.038 Al-Gly 46.4.03 ± 0.02.046 ± 0.03 Al-Gly 46.4.025 ± 0.07 Al-Gly 46.4.033 ± 0.08 Al-Gly 46.4.039 ± 0.025 Gly-Al 46.4.029 ± 0.088 Gly-Al 46.4.042 ± 0.068 Gly-Al 46.4.057 ± 0.057 Gly-Al 46.4.006 ± 0.070.026 ± 0.036 Gly-Al 46.4.037 ± 0.05.043 ± 0.038 Gly-Al 46.4.074 ± 0.040.065 ± 0.34 Al-Al 60.7.047 ± 0.043.054 ± 0.008 Al-Al 60.7.063 ± 0.055.068 ± 0.03 Al-Al 60.7.066 ± 0.082.086 ± 0.74 Al-Al 60.7.037 ± 0.024.05 ± 0.06 Al-Al 60.7.043 ± 0.038.046 ± 0.005 Al-Al 60.7.06 ± 0.039.085 ± 0.046 Gly-Ser 62.4.040 ± 0.050 Gly-Ser 62.4.06 ± 0.049 Gly-Ser 62.4.088 ± 0.026 Gly-Ser 62.4.08 ± 0.03.025 ± 0.023 Gly-Ser 62.4.055 ± 0.044.045 ± 0.02 Gly-Ser 62.4.00 ± 0.6.070 ± 0.026 Gly-Leu 88.23.089 ± 0.068 Gly-Leu 88.23.37 ± 0.07 Gly-Leu 88.23.98 ± 0.052 Gly-Leu 88.23.032 ± 0.064.093 ± 0.089 Gly-Leu 88.23.068 ± 0.042.0 ± 0.07 Gly-Leu 88.23.096 ± 0.06.07 ± 0.056 Vl-Ser 204.20.065 ± 0.025.90 ± 0.009 Vl-Ser 204.20.8 ± 0.036.94 ± 0.00 Vl-Ser 204.20.85 ± 0.065.97 ± 0.02 Vl-Ser 204.20.052 ± 0.062.59 ± 0.0 Vl-Ser 204.20.0 ± 0.05.85 ± 0.004 Vl-Ser 204.20.54 ± 0.029.29 ± 0.04 Vl-Thr 28.30.226 ± 0.074.96 ± 0.076 Vl-Thr 28.30.268 ± 0.00.245 ± 0.006 Vl-Thr 28.30.300 ± 0.068.309 ± 0.073 Vl-Thr 28.30.23 ± 0.008.25 ± 0.09 Vl-Thr 28.30.238 ± 0.006.242 ± 0.00

Vl-Thr 28.30.272 ± 0.044.277 ± 0.023 Thr-Leu 232.30.246 ± 0.062.224 ± 0.009 Thr-Leu 232.30.299 ± 0.006.25 ± 0.007 Thr-Leu 232.30.370 ± 0.078.27 ± 0.025 Thr-Leu 232.30.232 ± 0.052.23 ± 0.053 Thr-Leu 232.30.285 ± 0.046.227 ± 0.058 Thr-Leu 232.30.355 ± 0.42.238 ± 0.42 Al-Phe 236.30.295 ± 0.03.302 ± 0.055 Al-Phe 236.30.39 ± 0.039.327 ± 0.024 Al-Phe 236.30.352 ± 0.063.360 ± 0.54 Al-Phe 236.30.249 ± 0.047.303 ± 0.79 Al-Phe 236.30.3 ± 0.047.32 ± 0.043 Al-Phe 236.30.393 ± 0.055.335 ± 0.095 Phe-Al 236.30.20 ± 0.023.223 ± 0.0 Phe-Al 236.30.278 ± 0.055.25 ± 0.027 Phe-Al 236.30.293 ± 0.07.287 ± 0.095 Phe-Al 236.30.303 ± 0.029.349 ± 0.0 Phe-Al 236.30.335 ± 0.228.356 ± 0.028 Phe-Al 236.30.354 ± 0.04.365 ± 0.083 Vl-Met 248.30.337 ± 0.03.360 ± 0.020 Vl-Met 248.30.362 ± 0.048.387 ± 0.06 Vl-Met 248.30.397 ± 0.067.424 ± 0.040 Vl-Met 248.30.285 ± 0.060.32 ± 0.00 Vl-Met 248.30.333 ± 0.36.345 ± 0.09 Vl-Met 248.30.396 ± 0.046.390 ± 0.074 Tyr-Al 252.30.343 ± 0.03.39 ± 0.30 Tyr-Al 252.30.37 ± 0.077.353 ± 0.40 Tyr-Al 252.30.409 ± 0.7.399 ± 0.64 Tyr-Al 252.30.354 ± 0.085.327 ± 0.065 Tyr-Al 252.30.399 ± 0.25.353 ± 0.04 Tyr-Al 252.30.460 ± 0.020.388 ± 0.8 Met-Leu 262.40.345 ± 0.035.424 ± 0.038 Met-Leu 262.40.407 ± 0.00.428 ± 0.052 Met-Leu 262.40.49 ± 0.072.433 ± 0.08 Met-Leu 262.40.397 ± 0.042.45 ± 0.65 Met-Leu 262.40.409 ± 0.046.432 ± 0.023 Met-Leu 262.40.425 ± 0.78.444 ± 0.063 Phe-Vl 264.30.385 ± 0.04.360 ± 0.07 Phe-Vl 264.30.43 ± 0.00.422 ± 0.03 Phe-Vl 264.30.432 ± 0.030.467 ± 0.052 Phe-Vl 264.30.392 ± 0.02.359 ± 0.02 Phe-Vl 264.30.420 ± 0.05.403 ± 0.007 Phe-Vl 264.30.459 ± 0.022.464 ± 0.033 α M W is the moleculr weight of dipeptides zwitterionic form. b The correltion times ( ) re multiplied by 0 0. They were clculted by eqn (5) for three mgnetic fields s follows: 400 MHz / 500 MHz, 250 MHz / 500 MHz nd 250 MHz / 400 MHz, corresponding to ech dipeptide s component (in bold for ech cse) 3 α nd 3 β nuclei, respectively. S4

Dipeptides correltion times ( τ ) from 3 α nd 3 β relxtion dt vs. their M W st order dt fitting Tble S7. Sttistics for lest-squres liner ( st degree polynomil) regression nlysis of dipeptides correltion times ( ) from 3 α nd 3 β T vlues vs. their M W (see Fig. ). α 0 α R 2 S.S. 3 α (Fig. ) Dipeptides (ph = 6.0) 0.504 ± 0.0273 0.0034 ± 0.000 0.90 0.0484 3 β (Fig. b) Dipeptides (ph = 6.0) 0.5065 ± 0.0270 0.0034 ± 0.0002 0.92 0.0395 2 nd order dt fitting Tble S8. Sttistics for lest-squres nonliner (2 nd degree polynomil) regression nlysis of dipeptides correltion times ( ) from 3 α nd 3 β T vlues vs. their M W (see below Fig. S2). α 0 α α 2 R 2 S.S. 3 α (Fig. S2) Dipeptides (ph = 6.0).730 ± 0.553-0.0035 ± 0.006.687 0-5 ± 3.867 0-6 0.9 0.044 3 β (Fig. S2b) Dipeptides (ph = 6.0).0070 ± 0.484-0.007 ± 0.005.229 0-5 ± 3.588 0-6 0.93 0.0368 S5

Fig. S2. Sttistics for lest-squres nonliner regression (2 nd degree polynomil) nlysis of dipeptides correltion times ( ) from 3 α nd 3 β T vlues. () The correltion times derived from 3 α Τ relxtion dt vs dipeptides M W. (b) The correltion times,, derived from 3 β Τ relxtion dt vs dipeptides M W. S6

Alnine Dipeptide Fully optimized structure by DFT Fig. S3. The fully optimized neutrl ph structure of lnine dipeptide in queous solution. The unconstrint optimiztion performed t the X3LYP/cc-pVTZ level of theory using the IEF-PM model for bulk wter nd chrcterized by vibrtionl nlysis t the sme level of theory, resulting in the most stble AD structure. Geometricl detils nd energetics of the bove fully optimized structure re reported t the end of ESI. S7

H-bonds interction energies (E int ) clcultion The H-bond interction energy is the energy of interction of ll the seprted molecules in the solvted complexes nd it cn be clculted through the following eqution: E E E E, (S0) int where E is the energy of the AD/H 2 Os supermolecule, nd E nd E re the single-point energies of monomers A (energy clcultion of the AD structure t the sme intermoleculr configurtion s in the fully optimized supermolecule in the bsence of the H-bonded H 2 Os cluster counterprt) nd B (energy clcultion of the H-bonded H 2 Os cluster structure t the sme intermoleculr configurtion s in the fully optimized supermolecule in the bsence of the AD counterprt), respectively. int Nmely, comprison between the interction energies E for the AD/(H 2 Os) n (n = 7-9) supermolecules indictes the most fvorbly stbilized complex. All energy clcultions performed t the X3LYP/cc-PVTZ level of theory nd the IEF-PM model ws pplied to mimic queous solution. The following Supplementry Tble S9 collects the electronic nd interction energies for the hydrted AD/(H 2 Os) n (n = 7-9) nd Supplementry Fig. S4 presents their interction energies evolution. Tble S9. Totl energy, E tot, (in Hrtree) nd interction energy, E int, (in kcl mol - ) for the hydrted AD/(H 2 Os) n (n = 7 9) supermolecules clculted t X3LYP/cc-PVTZ level of theory, pplying the IEF-PM model for bulk wter. AD/7 H 2 Os AD/8 H 2 Os AD/9 H 2 Os -E tot 06.225 82.68 259.43 -E int 55.04 59.28 56.0 S8

Fig. S4. omprison between E int for the three AD/H 2 Os supermolecules. The AD/8 H 2 Os supermolecule exhibits the highest interction energy mong the ones studied, implying its extr stbiliztion nd providing further support to our spectroscopic results. S9

Alnine Dipeptide/0 H 2 Os complex Fig. S5. DFT clcultions of lnine dipeptide/0 H 2 Os supermolecule. DFT clcultions demonstrted tht the tenth H 2 O (w 0 ) directly intercts either with () α or (b) H 3 of AD. Both H-bond lengths vry between 2.6-2.8 Å. omprison between these H-bond lengths nd those of ll other bound H 2 Os with the polr sides of AD (<.9 Å) indictes the wekness of the w 0 H-bonds, s expected from similr studies, 6,7 implying their insignificnt contribution to the AD vlues. S20

Supplementry References. A. N. Trognis,. Tsnktsidis, nd I. P. Gerothnssis, J. Mgn. Reson. Ser. B, 2003, 64, 294 303. 2. P. G. Tkis, V. S. Melisss, nd A. N. Trognis, New J. hem., 202, 36, 866 878. 3. A. A. Al-Krghouli, F. E. ole, M. S. Lehmnn,. F. Miskell, J. J. Verbist, nd T. F. Koetzle, J. hem. Phys., 975, 63, 360 366. 4. G. Lipri nd A. Szbo, J. Am. hem. Soc., 982, 04, 4546 4559. 5.. G. Tsifoulis, V. Exrchou, P. P. Tziov, E. Birktri, I. P. Gerothnssis, nd A. N. Trognis, Anl. Bionl. hem., 20, 399, 2285 2294. 6. M. P. Bhte, J.. Woodrd, nd M. A. Meht, J. Am. hem. Soc., 2009, 3, 9579 9589. 7. B. Yogeswri, R. Knkrju, S. Boopthi, nd P. Kolndivel, J. Mol. Grphics Modell., 202, 35, 20. S2

Geometricl detils nd energetics of fully optimized AD/(H 2 O) n (n=0, 7-9) supermolecules (hrge = 0) 23 Atoms E = -57.3975 Hrtrees AD/(H 2 O) 0 (Fig. S3) X Y Z N -3.363505 0.50270-0.53955 H -3.223236.099927 -.36599-2.233749-0.475329-0.373587 -.03950 0.34785 0.32543 O -.257258.305006 0.88926 H -3.393056.2809 0.284604 H -4.273866 0.03474-0.646646 N 0.5778-0.08908-0.247650 H 0.252456-0.88022-0.874850.423646 0.463992 0.237745.777342.7806-0.460973 H.004763 2.529077-0.287003 H 2.723579 2.56035-0.074378 H.877566.627849 -.537039 H.326736 0.64455.3063 2.546695-0.585860 0.027078 O 2.287479 -.56270-0.7244 O 3.6248-0.345058 0.64735 S22

-2.625978 -.547365 0.636995 H -.807873-2.25729 0.747358 H -2.833833 -.04975.6957 H -3.506445-2.09467 0.297737 H -2.03772-0.907769 -.357009 S23

(hrge = 0) 44 Atoms E = -06.225237 Hrtrees AD/(H 2 O) 7 (Fig. 4) X Y Z N -3.67390 0.000577 0.7875 H -3.8490 0.75998-0.50630-2.379877-0.707925-0.046288 -.246826 0.32323-0.32493 O -.376587.457456 0.354653 H -3.683423 0.450929.93 H -4.457398-0.674529 0.0743 H -2.368847.70363 2.02404 O -3.087333.39458 2.586378 H -3.59276 2.76458 2.83250 H -6.2046-2.2800 0.70678 O -5.7966 -.927333-0.002 H -5.535906-2.696687-0.65054 H -2.76507 2.562320-0.847700 O -3.583279 2.443005 -.262457 H -3.438754 2.559266-2.207439 N -0.48386-0.3853-0.738600 H -0.32066 -.06875 -.0950.088796 0.65098-0.83747.472550 0.882483-2.297545 H 0.694997.45260-2.805222 S24

H 2.406273.438455-2.35638 H.60387-0.06666-2.88298 H 0.909026.606934-0.349579 2.258696-0.035354-0.093259 O 2.225905 -.277460 0.086959 O 3.20632 0.727039 0.244658 O 4.646675-2.583728 0.64263 H 3.784708-2.45572 0.504867 H 5.239623 -.82366 0.760560 O 5.73439 0.0342.023822 H 4.822238 0.28566 0.75420 H 5.734553 0.08228.983275 O 0.4735-2.902402 -.204534 H 0.846640-3.207000-2.037409 H.20565-2.44968-0.73063 O 2.929379 3.46660 0.244993 H 3.68633 3.766024-0.636868 H 3.037398 2.49254 0.27899-2.4090 -.720702.07575 H -2.030289 -.22077 2.033420 H -2.977487-2.44635.30457 H -.238825-2.292347 0.86539 H -2.4665 -.222794 -.00062 S25

(hrge = 0) 47 Atoms E = -82.680546 Hrtrees AD/(H 2 O) 8 (Fig. 4b) X Y Z N 3.43446-0.2890-0.28536 H 3.75684 0.4587 0.503587 2.28539-0.99660 0.06950.688-0.0455 0.658 O.35932.479 0.83306 H 3.689 0.506266 -.0639 H 4.22527-0.723322-0.600738 H 2.26743.259833-3.88875 O 2.563242.606225-2.3438 H.83622 2.69895-2.009320 H 5.59027-2.06822-2.085229 O 5.526028 -.84377 -.48972 H 5.656246-2.678922-0.686574 H 2.96728.756299.839858 O 3.929524.700989.852084 H 4.6594.3888 2.73284 N 0.07596-0.7804 0.927748 H -0.060622 -.72353 0.782704 -.74700-0.035272.430844 -.543266-0.539335 2.828405 H -0.728345-0.348775 3.525554 S26

H -2.433973-0.024949 3.87347 H -.746455 -.609745 2.8202 H -0.943687.02338.473640-2.37376-0.233094 0.472307 O -2.57893 -.38849 0.004950 O -3.09702 0.776380 0.26803 O -4.893984 -.883527 -.508438 H -4.074266 -.768043-0.99794 H -5.23348-0.968897 -.5866 O -5.264368 0.938206 -.377326 H -4.48097 0.877032-0.782862 H -4.98978.285200-2.205898 O -0.870899-3.44304 0.373978 H -.22363-4.0073.0928 H -.66497-2.82882 0.247598 O -2.062264 3.368806 0.240887 H -.250559 3.29563-0.2875 H -2.428606 2.464309 0.265865.86602 -.854824 -.083047 H.47772 -.234666 -.890280 H 2.724208-2.43646 -.45257 H.0052-2.569896-0.793990 H 2.634052 -.633278 0.9973 O 0.637903 3.07557-0.93093 H.03289 3.924239-0.700662 H 0.8479 2.475630-0.85854 S27

(hrge = 0) 50 Atoms E = -259.4355 Hrtrees AD/(H 2 O) 9 (Fig. 4c) X Y Z N 3.357274 0.593994-0.009983 H 3.460086 0.05083-0.896344.9853.50250 0.22246 0.95894 0.028393-0.064830 O.2347 -.34524 0.28369 H 3.608248-0.0236 0.793264 H 4.034096.38358-0.0256 H 4.492554-0.439896 2.93474 O 4.20584-0.957258 2.65838 H 3.452703 -.5085 2.480923 H 5.59032 3.07433 0.786766 O 5.04382 2.79469-0.04908 H 4.773340 3.66997-0.450799 H 2.939250 -.64359-2.29709 O 3.5707-0.893304-2.359020 H 3.34084-0.422364-3.77055 N -0.200452 0.406058-0.58328 H -0.30469.38208-0.86776 -.348435-0.480680-0.740622 -.53463-0.882665-2.209094 H -0.65362 -.40598-2.566329 S28

H -2.397392 -.539558-2.306784 H -.696443-0.002477-2.833066 H -.5662 -.372949-0.5248-2.647083 0.57508-0.200873 O -2.726538.406775-0.0643 O -3.564559-0.657490 0.075487 O -5.8976 2.546848 0.70655 H -4.320852 2.80504 0.453932 H -5.703882.740344 0.87336 O -6.086478-0.36768.047387 H -5.9008-0.326967 0.690285 H -6.07032-0.328865.995660 O -0.87965 3.70384 -.05268 H -.095044 3.429446 -.96628 H -.666329 2.686964-0.722336 O -3.00987-3.36247 0.377545 H -3.45674-3.767294-0.49534 H -3.230266-2.47982 0.249648.82802.827300.48049 H.93734.06205 2.29894 H 2.56796 2.60342.607263 H 0.830785 2.29685.54394 H.86036.885636-0.676348 O.909502-2.39585 2.72340 H.94825-3.286639 2.635873 H.537323 -.99699.883892 S29

O.639892-2.782278 -.943045 H.39555-2.423620 -.072964 H.869993-3.7444 -.793358 S30