Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Σχετικά έγγραφα
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Hartree-Fock Theory. Solving electronic structure problem on computers

Concrete Mathematics Exercises from 30 September 2016

Areas and Lengths in Polar Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Areas and Lengths in Polar Coordinates

Variational Wavefunction for the Helium Atom

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

If we restrict the domain of y = sin x to [ π 2, π 2

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Numerical Analysis FMN011

4.6 Autoregressive Moving Average Model ARMA(1,1)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Example Sheet 3 Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Reminders: linear functions

Homework 3 Solutions

Lecture 21: Scattering and FGR

2 Composition. Invertible Mappings

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Homework 8 Model Solution Section

Section 8.3 Trigonometric Equations

Orbital angular momentum and the spherical harmonics

Lecture 2. Soundness and completeness of propositional logic

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

6.3 Forecasting ARMA processes

Supporting Information. Evaluation of spin-orbit couplings with. linear-response TDDFT, TDA, and TD-DFTB

PARTIAL NOTES for 6.1 Trigonometric Identities

Partial Trace and Partial Transpose

Srednicki Chapter 55

D Alembert s Solution to the Wave Equation

CRASH COURSE IN PRECALCULUS

Matrices and Determinants

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

The Hartree-Fock Equations

1 String with massive end-points

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

C.S. 430 Assignment 6, Sample Solutions

Lecture 26: Circular domains

Tridiagonal matrices. Gérard MEURANT. October, 2008

ψ ( 1,2,...N ) = Aϕ ˆ σ j σ i χ j ψ ( 1,2,!N ) ψ ( 1,2,!N ) = 1 General Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Section 7.6 Double and Half Angle Formulas

Second Order RLC Filters

Section 8.2 Graphs of Polar Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Math221: HW# 1 solutions

[1] P Q. Fig. 3.1

Notes on the Open Economy

Low Frequency Plasma Conductivity in the Average-Atom Approximation

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Jordan Form of a Square Matrix

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

10.7 Performance of Second-Order System (Unit Step Response)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

α & β spatial orbitals in

ST5224: Advanced Statistical Theory II

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Parametrized Surfaces

Math 6 SL Probability Distributions Practice Test Mark Scheme

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Module 5. February 14, h 0min

Uniform Convergence of Fourier Series Michael Taylor

derivation of the Laplacian from rectangular to spherical coordinates

TMA4115 Matematikk 3

( ) 2 and compare to M.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Solutions to Exercise Sheet 5

Derivation of Optical-Bloch Equations

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

The Simply Typed Lambda Calculus

Approximation of distance between locations on earth given by latitude and longitude

Every set of first-order formulas is equivalent to an independent set

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Durbin-Levinson recursive method

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Trigonometric Formula Sheet

Formal Semantics. 1 Type Logic

Geodesic Equations for the Wormhole Metric

( y) Partial Differential Equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Transcript:

Review: Molecules Start with the full amiltonian Ze e = + + ZZe A A B i A i me A ma ia, 4πε 0riA i< j4πε 0rij A< B4πε 0rAB Use the Born-Oppenheimer approximation elec Ze e = + + A A B i i me ia, 4πε 0riA i< j4πε 0rij A< B4πε 0rAB ZZe Neglect the electron-electron interactions. elec is then a sum of MO. MO Ze A = 1 m 4πε r r e A 0 1 A The molecular orbital amiltonian can be solved numerically or by the Linear Combinations of Atomic Orbitals (LCAO)

LCAO example: O Guess that the solution to mo can be written as a linear combination of atomic orbitals. For O: ψ = cφ + c φ + cφ + c φ + cφ + O O O O mo 1 1s s 3 px 4 py 5 pz ψ mo = Eψ mo Construct the amiltonian matrix. O O O O φ1s mo φ1s φ1s mo φs φ1s mo φ pz c φ1s φ1s φ1s φs φ1s φ pz 1 c1 O O O O O O φs mo φ1s φs mo φs c φs φ1s φs φs c = E O O O O O c 5 O O O φpz mo φ1s φpz mo φs φpz mo φpz O O φpz φ1s φpz φs φ c5 pz φ pz amiltonian matrix Overlap matrix S

Linear combination of atomic orbitals The overlap matrix S 1. O O φ1s mo φ1s φ1s mo φs φ1s mo φ pz c1 c1 O O O φs mo φ1s φs mo φs c c = E O O O O O φ 5 5 pz mo φ1s φpz c c mo φs φpz mo φpz This is an eigenvalue problem. Solve to find the eigenenergies and the coefficients

Molecular orbitals Construct the many-electron wave function from the molecular orbitals. Ψ ( r, r ) = 1 N 1 N! ψmo 1 ( r1) ψmo 1 ( r1 ) ψmo, N ( r1) ψ ( r ) ψ MO1 ( r ) ψ ( r ) MO1 N MO, N N elec Ze = + A i i me ia, 4πε 0riA i< j4πε 0rij Evaluate the energy of the many-electron wave function. e E = Ψ elec ΨΨ Ψ

Benzene Assume the valence molecular orbital is Ψ = cφ + c φ + cφ + c φ + cφ + cφ C C C C C C MO 1 p 1 p 3 p 3 4 p 4 5 p 5 6 p 6 z z z z z z

ückel model benzene = C C 11 pn MO pn = φ z C C 1 pn MO pn 1 z φ φ φ + z z 0 0 0 1 11 1 0 0 0 0 1 11 1 0 0 0 0 1 11 1 0 0 0 0 0 0 0 11 1 1 1 11 1 1 1 11 ückel model: matrix elements of next nearest neighbors =0. Overlap matrix S=1.

Translation operator Tu 0 1 0 0 0 0 u1 u 0 0 1 0 0 0 u u 3 0 0 0 1 0 0 u u = = 3 4 0 0 0 0 1 0 u4 u5 0 0 0 0 0 1 u5 u6 1 0 0 0 0 0 u6 u1 T u 0 0 1 0 0 0 u1 u3 0 0 0 1 0 0 u u 4 0 0 0 0 1 0 u u = = 3 5 0 0 0 0 0 1 u4 u6 1 0 0 0 0 0 u5 u1 0 1 0 0 0 0 u6 u T and T have the same eigenvectors

Translation operator T N = I T N u 1 0 0 0 0 0 u1 u1 0 1 0 0 0 0 u u 0 0 1 0 0 0 u u = Iu = = 3 3 0 0 0 1 0 0 u4 u4 0 0 0 0 1 0 u5 u5 0 0 0 0 0 1 u 6 u 6 0 0 0 0 0 1 u1 u6 1 0 0 0 0 0 u u 1 0 1 0 0 0 0 u u 1 N 1 3 T u = T u = =. 0 0 1 0 0 0 u4 u3 0 0 0 1 0 0 u5 u4 0 0 0 0 1 0 u 6 u 5

Eigen values of the translation operator T N Tu = λu N u = λ u = u λ N = 1 T-λ I u = 0 For each eigenvalue, solve ( ) to determine the eigenvectors.

Eigen vectors of the translation operator 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 T = 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 e e e e e iπ j/3 i π j/3 i π j/3 iπ j/3 j = 1,, 6 1 1 1 1 1 1 /6 4 /6 8 /6 1 i π i i e π e π 1 e i10 π /6 e i4 π/6 i8 π/6 i16 π/6 i0 π/6 1 i π/6 e i4 π/6 e 1 i8 π/6 e i10 /6 e π 1, ; e, ; e, ; 1, ; e, i6 π/6 i1 π/6 ; e, i4 π/6 i30 π/6 1 e e 1 e e i8 π/6 i16 π/6 1 e e 1 i3 π/6 i40 /6 e π e i10 π/6 i0 π/6 i40 π/6 i50 π/6 1 e e 1 e e iπ j

ückel model benzene = C C 11 pn MO pn = φ z C C 1 pn MO pn 1 z φ φ φ + z z 0 0 0 1 11 1 0 0 0 0 1 11 1 0 0 0 0 1 11 1 0 0 0 0 0 0 0 11 1 1 1 11 1 1 1 11 ückel model: matrix elements of next nearest neighbors =0. Overlap matrix S=1.

ückel model benzene 11 1 0 0 0 1 1 11 1 0 0 0 0 0 0 = T + T + T 0 0 0 0 0 0 1 11 1 1 0 0 0 1 11 ( ) 1 11 1 N 1 11 1 1 11 1 The amiltonian matrix and the translation operator commute and have the same eigenvectors.

ückel model benzene 0 0 0 1 1 11 1 1 i j/3 i j/3 1 11 1 0 0 0 π e π e i π j/3 i π j/3 0 1 11 1 0 0 e ( iπ j/3 iπ j/3 e ) i j 11 1 e e π = + + iπ j 0 0 1 11 1 0 e e i π j/3 i π j/3 0 0 0 1 11 1 e e iπ j/3 iπ j/3 1 0 0 0 1 11 e e e + e = cos 3 j i π j /3 i π j /3 π j = 1,, N

ückel model benzene ψ = ϕ + e ϕ + e ϕ + e ϕ + e ϕ + e ϕ C iπ j/3 C i π j/3 C iπ j C i π j/3 C iπ j/3 C j p 1 p p 3 p 4 p 5 p 6 z z z z z z c 1 1 i j/3 c π e i π j/3 c 3 e = iπ j c4 e i π j/3 c 5 e iπ j/3 c6 e from: Blinder, Introduction to Quantum Mechanics π j Ej = 11 + 1 cos j = 1,, 6 3

1 6 7 8 9 19 0 1=homo =lumo 3 4 http://www.stolaf.edu/people/hansonr/jmol/mo/

Molecular orbitals benzene http://www.chemcomp.com/journal/molorbs.htm -0.57 ev 0.151 ev -0.340 ev -0.491 ev http://www.stolaf.edu/people/hansonr/jmol/mo/ π j Ej = 11 + 1 cos j = 1,, 6 3-0.508 ev Some e-e effects included

http://lampx.tugraz.at/~hadley/ss1/skriptum/outline.php

Gaussian http://www.gaussian.com/g_prod/gv5b.htm

ückel model rings Ψ = cφ + c φ + c φ C C C MO 1 p 1 p N p N z z z Assume S = S = 1 S = 0 11 1 0 0 0 c c 11 1 1 1 1 1 11 1 0 0 0 c c 0 1 11 1 0 c3 c3 = E 0 0 1 11 c4 c4 0 0 1 1 0 0 1 11 cn cn

ückel model, rings The general formula for N atoms in a ring is: π j EMO, j = 11 + 1 cos j = 1,, N N ψ 1 iπ nj = exp j = 1,, N N C MO, j φp zn N n= 1 N

Particles confined to a ring ψθ ( ) ψθ ( ) = = Eψθ ( ) m mr θ ψ n inθ e = n = 0, ± 1, ±, π E n n = mr Aromatic molecules obey ückel's 4n + rule Molecules that don't obey the 4n+ rule are radicals

Particles confined to a ring cyclobutane benzene 4n +

Radicals Molecules are most stable with a closed shell configuration. Ar O 10 electrons N 3 C 4 Radicals are electrically neutral but chemically reactive. O radical C methylene radical

Particles confined to a tube R L ψ ψ ψ = = m mr θ m x Eψ n inθ ikx e e ψ n = π RL π 4π = 0, ± 1, ±, k = 0, ±, ±, L L E n k = + mr m nk, 4n + rule

Particles confined to a line ψ = m x Eψ ψ n nπ x = sin L L n = 1,, 3, L

Linear chains ethene butadiene C C

ückel model - linear chains Ψ = cφ + c φ + c φ C C C MO 1 p 1 p N p N z z z Assume S = S = 1 S = 0 11 1 0 0 0 0 c c 11 1 1 1 1 11 1 0 0 0 c c 0 1 11 1 0 c3 c3 = E 0 0 1 11 c4 c4 0 0 1 0 0 0 1 11 cn cn

ückel model - linear chains Ψ = cφ + c φ + c φ C C C MO 1 p 1 p N p N z z z Eigen values: π Ej = 11 + 1 cos j j = 1,,3, N N + 1 c jn, π jn = sin N + 1 N + 1 Eigen vectors: π jn Ψ = N C MO, j sin φpz N + 1 n= 1 N + 1 L E. eilbronner und. Bock, Das MO-Modell und seine Anwendung

Polyacetylene ideki Shirakawa, Alan J. eeger, and Alan G MacDiarmid Nobel Prize in Chemistry in 000