Fused Bis-Benzothiadiazoles as Electron Acceptors

Σχετικά έγγραφα
Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Supporting Information for Substituent Effects on the Properties of Borafluorenes

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

IV. ANHANG 179. Anhang 178

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Electronic Supplementary Information (ESI)

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supporting Information

Supporting Information

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Table of Contents 1 Supplementary Data MCD

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Electronic Supplementary Information (ESI)

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supplementary Material

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Supplementary Information for

Supporting Information

Supporting Information

Supporting Information

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Switching of the Photophysical Properties of. Bodipy-derived Trans Bis(tributylphosphine) Pt(II) bisacetylide Complexes with Rhodamine

Supporting Information

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information

Supporting Information

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE

Supporting Information

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

of the methanol-dimethylamine complex

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Supporting Information

Controlling Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Electronic Supplementary Information:

Supplementary materials

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Supporting Information

Supplementary information

Supporting Information

Supporting Information

Electronic Supplementary Information

SUPPORTING INFORMATION TO. On Two Alizarin Polymorphs

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

Supporting Information for

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Diagnostic Absolute Configuration Determination of. Tetraphenylethene Core-Based Chiral Aggregation-

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Electronic Supplementary Information

L. Kaßner a, K. Nagel a, R. E. Grützner b, M. Korb c, T. Rüffer c, H. Lang c and S. Spange a

Supporting Information

Supporting Information

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Injection Molded Plastic Self-lubricating Bearings

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

vibrational Supplementary density of the Beyer-

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Supporting Information

Supporting Information

Electronic structure and spectroscopy of HBr and HBr +

Supplementary materials. Mode Analysis. Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf. Diller

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

ELECTRONIC SUPPORTING INFORMATION

Single Crystal X-Ray Structure Determination of Compounds 8a, 8b and 11a

difluoroboranyls derived from amides carrying donor group Supporting Information

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Supplementary Material

Transcript:

Fused Bis-Benzothiadiazoles as Electron Acceptors Debin Xia, a,b Xiao-Ye Wang, b Xin Guo, c Martin Baumgarten,*,b Mengmeng Li, b and Klaus Müllen*,b a MIIT Key Laboratory of ritical Materials Technology for ew Energy onversion and torage, chool of hemistry and hemical Engineering, arbin Institute of Technology, 150001 arbin, P. R. hina. b Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany c Dalian Institute of hemical Physics, hinese Academy of ciences, 116023, Dalian, hina *E-mail: baumgart@mpip-mainz.mpg.de *E-mail: muellen@mpip-mainz.mpg.de Table of ontents Proposed reaction mechanism... 2 rystal structure of -BBT... 2 DFT calculations... 3 FET measurements... 4 1 MR and 13 MR spectra... 4 RM spectra... 9 rystal data... 10 alculation results... 13 1

Proposed reaction mechanism 2 2 Figure 1. Proposed reaction mechanism to produce compound 4. rystal structure of -BBT Figure 2. Planar offset for the dimer of -BBT 2

DFT calculations Figure 3. alculated absorption spectra of (a) Q-BBT and (b) -BBT according to TD-DFT calculations at the B3LYP/6-31G (d) level. Figure 4. Energy level diagram and frontier molecular orbitals according to DFT calculations at the B3LYP/6-31G (d) level.. 3

FET measurements Figure 5. utput characteristics of field-effect transistors fabricated using Q-BBT. 1 MR and 13 MR spectra 1 MR spectrum of ompound 5 in D 2 l 2 4

13 MR spectrum of ompound 5 in D 2 l 2 1 MR spectrum of ompound Q-BBT in D 2 4 5

13 MR spectrum of ompound Q-BBT in D 2 4 1 MR spectrum of ompound 4 in TF d8 6

1 MR spectrum of ompound 6 in D 2 l 2 13 MR spectrum of ompound 6 in D 2 l 2 7

1 MR spectrum of ompound -BBT in D 2 4 13 MR spectrum of ompound -BBT in D 2 4 8

RM spectra 9

rystal structure of 5 rystal data ambridge rystallographic Data entre deposition number: D 1410009 Table 1: rystallographic table. ompound 5 Molecular formula 66 4 4 4 2 Formula weight 925.05 gmol -1 Absorption coefficient µ = 0.079 mm -1 rystal size pace group 0.08 x 0.19 x 0.2 mm 3 ; light brown plate P 2 1 /n (monoclinic) Lattice parameters a = 9.9809(7) Å b = 15.5280(9) Å ß = 90.154(6) c = 15.1288(11) Å Volume 2344.7(3) Å 3 Z value 2 F (000) 968 alculated density d xray = 1.31 gcm -3 Temperature -80 can type ω-scans Theta range for data collection 2.4 < θ < 28.3 Limiting indices -13 h 11, -20 k 20, -20 l 20 Total number of reflections 14941 Unique number of reflections 5727 bserved number of reflections 3052 ( F /σ(f) > 4.0) tructure solution IR-2004 (Direct methods) R-values wr2 = 0.114 (R1 = 0.0471 for observed reflections, 0.1092 for all reflections) Goodness of fit = 0.918 Max hift / Error 0.001 * e.s.d Largest diff. peak and hole 0.22 and -0.19 eå -3 10

rystal structure of Q-BBT ambridge rystallographic Data entre deposition number: D 1400306 Table 1: rystallographic table. ompound Q-BBT Molecular formula 14 4 4 2 2 Formula weight 324.33 gmol -1 Absorption coefficient rystal size pace group µ = 4.079 mm -1 corrected with 6 crystal faces 0.02 x 0.02 x 0.2 mm 3 ; light brown needle 2/m (monoclinic) Lattice parameters a = 10.3036(19) Å b = 15.727(2) Å ß = 96.172(16) c = 3.8043(8) Å Volume 612.89(19) Å 3 Z value 2 F (000) 328 alculated density d xray = 1.757 gcm -3 Temperature -50 can type ω-scans Theta range for data collection 5.15 < θ < 66.35 Limiting indices -11 h 12, -18 k 18, -3 l 4 Total number of reflections 1820 Unique number of reflections 541 (R int = 0.0638) bserved number of reflections 354 ( F /σ(f) > 4.0) tructure solution IR-2004 (Direct methods) R-values wr2 = 0.2617 (R1 = 0.0801 for observed reflections, 0.1120 for all reflections) Goodness of fit = 1.076 Max hift / Error 0.001 * e.s.d Largest diff. peak and hole 0.52 and -0.47 eå -3 11

rystal structure of -BBT ambridge rystallographic Data entre deposition number: D 1400305 Table 1: rystallographic table. ompound -BBT Molecular formula 12 4 4 2 3 Formula weight 332.37 gmol -1 Absorption coefficient rystal size pace group µ = 0.62 mm -1 correction with 6 faces 0.04 x 0.06 x 0.7 mm 3 ; brown needle P-1 (triclinic) Lattice parameters a = 6.7778(7) Å α = 91.812(9) b = 9.6253(11) Å ß = 109.511(8) c = 9.8490(10) Å γ = 93.899(9) Volume 603.22(11) Å 3 Z value 2 F (000) 336 alculated density d xray = 1.83 gcm -3 Temperature -80 can type ω-scans Theta range for data collection 3.2 < θ < 28.3 Limiting indices -9 h 9, -12 k 12, -13 l 13 Total number of reflections 14727 Unique number of reflections 11764 bserved number of reflections 8156 ( F /σ(f) > 4.0) tructure solution IR-2004 (Direct methods) R-values wr2 = 0.1537 (R1 = 0.0573 for observed reflections, 0.0913 for all reflections) Goodness of fit = 1.027 Max hift / Error 0.001 * e.s.d Largest diff. peak and hole 0.45 and -0.43 eå -3 12

alculation results Table 2. Frontier molecular energy levels and absolute energies of Q-BBT and -BBT calculated by DFT method a M (ev) LUM (ev) M-LUM gap (ev) Engery (artree) Q-BBT -7.37-3.71 3.66-1701.9631968 -BBT -7.17-3.68 3.49-2023.861054 a alculated at the B3LYP/6-311G(d,p) level of theory Table 3. Frontier molecular energy levels and absolute energies of Q-BBT and -BBT calculated by DFT method a M (ev) LUM (ev) M-LUM gap (ev) Engery (artree) Q-BBT -7.16-3.50 3.66-1701.70650710 -BBT Q-BA -BA -6.95-6.23-6.05-3.45-2.46-2.06 3.50 3.77 3.99-2023.59866164-996.06827753-1317.95692935 a alculated at the B3LYP/6-31G(d) level of theory. Table 4. The selected absorption peaks of Q-BBT and -BBT calculated by TD-DFT method a Q-BBT -BBT Excited states Main transition configuration Transition energy (ev) Wavelength (nm) scillator strength (f) 1 M LUM 3.2105 386 0.1168 2 M-1 LUM 3.5775 346 0.0011 M LUM+1 3 M-2 LUM 3.6932 336 0.2669 M LUM+2 1 M-3 3.0234 410 0.0000 LUM+1 M-2 LUM 2 M-3 LUM 3.1118 398 0.0000 M-2 LUM+1 3 M LUM 3.2591 380 0.0100 a alculated at the B3LYP/6-31G(d) level of theory. 13

Table 5. oordinates (Å) of the optimized structure for Q-BBT in Figure 5 calculated at the B3LYP/6-311G(d,p) level of theory atom x y z -6.125956 0.825748 0.090628-6.240286-5.025798-3.688604-3.574275-4.788770-7.240455-8.517741-8.632488-7.467910-2.574099-1.296807-1.182060-2.346644-9.699285-10.841544-9.898706-0.115254 1.027000 0.084167-4.692066-5.122481-7.134501-7.533935-2.680053-2.280618-0.611964-1.482927-0.814407 0.623305 1.494271 1.628599 1.018252-0.425019-1.229020-1.617261-1.006917 0.436353 1.240358 1.647235 0.475990-0.860107-1.6359050-0.464658 0.871438 2.707952-2.696618 2.705263-2.308843-2.693926 2.320180 0.073773 0.027603-0.000461 0.016394 0.062299 0.133101 0.160653 0.143624 0.099676-0.042692-0.070044-0.053016-0.009268 0.203173 0.218480 0.173487-0.112231-0.127716-0.082556 0.076999 0.013666 0.144990 0.086609-0.054538 0.003836 Table 6. oordinates (Å) of the optimized structure for -BBT in Figure 5 calculated at the B3LYP/6-311G(d,p) level of theory. atom x y z -6.661299-6.201000-4.760321-4.126262-5.310166-7.944322-8.874854-8.437405-7.081860-4.023721-2.639183-2.025015-2.807383-10.175924-10.779238-9.423417-1.777957-0.320393-0.719221-5.516771-5.005375-8.261303-6.783296-4.455874-2.357816 1.050957-0.292836-0.365104 0.923829 2.234393 1.393221 0.320520-1.047685-1.340867-1.494147-1.338373-0.022941 1.135576 0.428327-1.094345-1.942170-2.325322-1.618313-0.045687 3.079240 2.846537 2.416381-2.369844-2.486360 2.120256-0.338155-0.123626 0.182060 0.199538-0.168291-0.633395-0.730220-0.519127-0.213008 0.437018 0.712739 0.724286 0.456920-1.007849-0.998881-0.643372 0.981052 1.224063 0.999868 1.006036-1.459763-0.789629-0.060229 0.435753 0.463143 14

Table 7. oordinates (Å) of the optimized structure for Q-BBT in Figure 3 calculated at the B3LYP/6-31G(d,) level of theory. atom x y z -1.10040000-1.22500000-0.12760000 1.10040000 1.22500000 0.12760000 2.21290000 3.43290000 3.55690000 2.45950000-2.21290000-3.43290000-3.55690000-2.45950000 0.24000000-0.24000000 4.52880000 5.83790000 4.75070000-4.52880000-5.83790000-4.75070000 2.17920000 2.62890000-2.17920000-2.62890000 0.77950000-0.56460000-1.37600000-0.77950000 0.56460000 1.37600000-1.54560000-0.99170000 0.34570000 1.11380000 1.54560000 0.99170000-0.34570000-1.11380000 2.58850000-2.58850000-1.62530000-0.53950000 0.76770000 1.62530000 0.53950000-0.76770000-2.64710000 2.20280000 2.64710000-2.20280000 0.03130000-0.00010000-0.03200000-0.03110000 0.00030000 0.03230000-0.06220000-0.06220000-0.03100000 0.00000000 0.06240000 0.06230000 0.03100000 0.00010000 0.06060000-0.06040000-0.08990000-0.07800000-0.03400000-0.03400000 0.07780000 0.03390000-0.08870000 0.02470000 0.08890000-0.02460000 Table 8. oordinates (Å) of the optimized structure for -BBT in Figure 3 calculated at the B3LYP/6-31G(d,) level of theory. atom x y z -0.17160000-0.18660000 1.03380000 1.96990000 1.41920000 1.37640000 2.66110000 3.59680000 3.25610000-1.29810000-2.44970000-2.46980000-1.34120000 3.10310000 4.78090000 4.77080000-3.57570000-4.78090000-3.61350000 1.46760000 1.88920000 0.63490000 4.02100000-1.28190000-1.38860000 1.38810000 0.05950000-0.42370000 0.54030000 2.21780000-1.69880000-1.98830000-1.01750000 0.25530000 2.05820000 1.37610000 0.04290000-0.62300000-3.14790000-3.09590000-1.41490000 1.88930000 0.68940000-0.48900000 3.03460000 2.65060000-2.51240000 1.04860000 3.14790000-1.71130000-0.17330000 0.02700000 0.30550000 0.31530000-0.03320000 0.55760000 0.81730000 0.82610000 0.57460000-0.46440000-0.55340000-0.35330000-0.06250000 1.06850000 1.34210000 1.08370000-0.82060000-0.83950000-0.46390000 1.17170000-1.34210000 0.55740000 0.58190000-0.62800000 0.09570000 15

Table 9. oordinates (Å) of the optimized structure for Q-BA in Figure 3 calculated at the B3LYP/6-31G(d,) level of theory. atom x y z -1.17560000-1.15540000 0.02070000 1.17560000 1.15540000-0.02070000 2.36780000 3.53390000 3.51380000 2.32820000-2.36780000-3.53390000-3.51370000-2.32820000-4.71410000-5.86800000-5.84790000-4.67410000 4.71410000 5.86800000 5.84790000 4.67410000-0.03890000 0.03900000 2.42820000 2.35560000-2.42820000-2.35560000-4.75910000-6.83050000-6.79390000-4.68610000 4.75920000 6.83050000 6.79390000 4.68610000 0.64440000-0.65680000-1.33550000-0.64440000 0.65670000 1.33550000-1.26460000-0.63070000 0.66790000 1.28940000 1.26450000 0.63060000-0.66800000-1.28940000 1.26560000 0.61620000-0.67840000-1.31540000-1.26570000-0.61640000 0.67830000 1.31530000 2.51180000-2.51180000-2.32840000 2.35370000 2.32830000-2.35370000 2.33080000 1.14420000-1.21650000-2.38090000-2.33090000-1.14430000 1.21630000 2.38080000-0.12990000 0.21900000 0.35820000 0.13020000-0.21870000-0.35790000 0.25300000 0.03990000-0.30820000-0.43160000-0.25280000-0.03980000 0.30840000 0.43190000-0.16720000 0.04950000 0.39660000 0.52480000 0.16720000-0.04970000-0.39670000-0.52480000-0.67320000 0.67360000 0.53660000-0.71860000-0.53640000 0.71880000-0.45170000-0.05710000 0.57580000 0.81150000 0.45170000 0.05680000-0.57600000-0.81150000 16

Table 10. oordinates (Å) of the optimized structure for -BA in Figure 3 calculated at the B3LYP/6-31G(d,) level of theory. atom x y z 0.92330000-0.61670000-0.53140000 0.73570000 1.60430000 1.25640000 1.01960000-1.80710000-2.93090000-2.85120000-1.65060000 1.19120000 2.51000000 3.37950000 2.91930000 2.97580000 4.28970000 5.15240000 4.69630000-4.13300000-5.25200000-5.17440000-3.97870000-1.84920000-1.59290000 0.48710000 3.61220000 2.28810000 4.66080000 6.23320000 5.42570000-4.22240000-6.23320000-6.09200000-3.94380000 2.79570000 1.95190000 0.66460000 0.22400000 1.17960000 3.76700000 3.05380000 2.56600000 1.89120000 0.59550000-0.01190000-1.00010000-1.26890000-0.30320000 0.92240000-2.49330000-2.76040000-1.79990000-0.57690000 2.49340000 1.81830000 0.53070000-0.07490000 3.62570000-1.06980000-1.79310000 1.72640000-3.30240000-3.76700000-2.01580000 0.19700000 3.55220000 2.31940000-0.02780000-1.13530000 0.10220000-0.29030000-0.65480000-0.66060000-0.30040000-0.93070000 1.53240000-0.22690000-0.53030000-0.89790000-0.95830000-0.97120000-0.92220000-0.55900000-0.24840000-1.23200000-1.18290000-0.82190000-0.51160000-0.47150000-0.77460000-1.13990000-1.20040000 0.07590000-1.25910000-1.26860000 0.05110000-1.53240000-1.43870000-0.78050000-0.21740000-0.17360000-0.72380000-1.38990000-1.50410000 17