Angular momentum in spherical coordinates

Σχετικά έγγραφα
Orbital angular momentum and the spherical harmonics

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

derivation of the Laplacian from rectangular to spherical coordinates

4.6 Autoregressive Moving Average Model ARMA(1,1)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Example Sheet 3 Solutions

Section 8.3 Trigonometric Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

2 Composition. Invertible Mappings

Areas and Lengths in Polar Coordinates

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Math221: HW# 1 solutions

Finite Field Problems: Solutions

Uniform Convergence of Fourier Series Michael Taylor

C.S. 430 Assignment 6, Sample Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Section 7.6 Double and Half Angle Formulas

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Approximation of distance between locations on earth given by latitude and longitude

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Matrices and Determinants

PARTIAL NOTES for 6.1 Trigonometric Identities

Homework 8 Model Solution Section

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Homework 3 Solutions

CRASH COURSE IN PRECALCULUS

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Strain gauge and rosettes

Section 9.2 Polar Equations and Graphs

Reminders: linear functions

Second Order Partial Differential Equations

Spherical Coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Derivation of Optical-Bloch Equations

The Simply Typed Lambda Calculus

Suggested Solution to Assignment 4

Notes on the Open Economy

Assalamu `alaikum wr. wb.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

1 String with massive end-points

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Partial Trace and Partial Transpose

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Chapter 6 BLM Answers

Lecture 26: Circular domains

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Solutions to Exercise Sheet 5

EE512: Error Control Coding

Variational Wavefunction for the Helium Atom

D Alembert s Solution to the Wave Equation

Every set of first-order formulas is equivalent to an independent set

Tutorial problem set 6,

Second Order RLC Filters

Bounding Nonsplitting Enumeration Degrees

( y) Partial Differential Equations

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

On a four-dimensional hyperbolic manifold with finite volume

Other Test Constructions: Likelihood Ratio & Bayes Tests

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ST5224: Advanced Statistical Theory II

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

If we restrict the domain of y = sin x to [ π 2, π 2

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Math 6 SL Probability Distributions Practice Test Mark Scheme

Space-Time Symmetries

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Review Exercises for Chapter 7

A Note on Intuitionistic Fuzzy. Equivalence Relation

5. Choice under Uncertainty

Tridiagonal matrices. Gérard MEURANT. October, 2008

Concrete Mathematics Exercises from 30 September 2016

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Geodesic Equations for the Wormhole Metric

MA 342N Assignment 1 Due 24 February 2016

Bessel function for complex variable

Instruction Execution Times

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Srednicki Chapter 55

Differential equations

Numerical Analysis FMN011

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Solution Series 9. i=1 x i and i=1 x i.

Transcript:

Anguar momentum in spherica coordinates Peter Haggstrom www.gotohaggstrom.com mathsatbondibeach@gmai.com December 6, 2015 1 Introduction Anguar momentum is a deep property and in courses on quantum mechanics a ot of time is devoted to commutator reationships and spherica harmonics. However, many basic things are actuay set for proof outside ectures as probems. For instance, one of the standard quantum physics textbooks [1, pp 660-663] deas with the issue this way: Appying the cassica technique of changing variabes, we obtain, from formuas D-1 and D-2, the foowing expressions the cacuations are rather time-consuming but pose no great probems: L x i sin φ θ + cos φ L y i cos φ θ + sin φ L z i 1 which yied: L 2 2 2 θ 2 + 1 θ + 1 sin 2 θ L + e iφ θ + i cot θ 2 2 2 3 1

L e iφ θ + i cot θ 4 The starting point for 1 are the Cartesian expressions for the anguar momentum components: L x y i z z y L y z i x x z L z x i y y x 5 The spherica coordinate transformation is as foows: x r cos φ y r sin φ z r cos θ 6 with: r 0 0 θ π 0 φ < 2π 7 2 The derivations The fundamenta formua is this: x i r r + x i θ θ + x i x i 8 where is a pacehoder. In principe there is nothing particuary difficut about performing the reevant cacuations but it is very easy to make sma mistakes. The Cartesian coordinates are reated to the spherica coordinates as foows: 2

r x 2 + y 2 + z 2 z cos θ x 2 + y 2 + z 2 9 tan φ y x r x 1 2 x2 + y 2 + z 2 1 x 2 2x cos φ 10 r r y 1 2 x2 + y 2 + z 2 1 y 2 2y r r z z r sin φ 11 cos θ 12 θ x cos 1 z x x 2 + y 2 + z 2 1 1 z z 1 2 2 x2 + y 2 + z 2 3 2 2x x 2 +y 2 +z 2 zxr x 2 + y 2 1 r 3 r cos θ r cos φ r 2 r cos θ cos φ r 13 Note that x 2 + y 2 r cos φ 2 + r sin φ 2 r 2 sin 2 θcos 2 φ + sin 2 φ r. Using 13 we can go straight to: θ y zy r 2 r r cos θ r sin φ r 2 r cos θ sin φ r 14 3

θ z cos 1 z 1 z 1 2 r r 1 r2 sin 2 θ r 3 r z x 2 + y 2 + z 2 x 2 +y 2 +z 2 1 r z2 r 3 r 2 z 2 r 3 1 r + z 1 2 x2 + y 2 + z 2 3 2 2z x tan 1 y x x 1 1 + y2 x 2 y y 1 x 2 x 2 + y 2 r sin φ r 2 sin 2 θ sin φ r y tan 1 y y x 1 1 1 + y2 x x 2 x x 2 + y 2 r cos φ r 2 sin 2 θ cos φ r 15 16 17 z 0 18 4

Thus the Cartesian operators have the foowing form using 5: x cos φ r + 1 r cos φ cos θ θ 1 sin φ r y sin φ r + 1 r sin φ cos θ θ + 1 cos φ r z cos θ r 1 r θ 19 It is now ony a matter of abouriousy making the reevant substitutions in 2. L x y i z z y [ r sin φ cos θ i r 1 r θ sin 2 θ sin φ cos 2 θ sin φ i θ i i sin φ θ cos φ sin φ θ + cos φ ] [ r cos θ sin φ r + 1 r sin φ cos θ θ + 1 r cos θ cos φ 20 cos φ ] L y z i x x z [ r cos θ cos φ i r + 1 r cos φ cos θ θ 1 sin φ r cos φ cos 2 θ + cos φ sin 2 θ i θ sin φ cos φ i θ sin φ i cos φ θ + sin φ ] [ r cos φ cos θ r 1 r ] θ 21 5

L z x i y y x [ r cos φ sin φ i r + 1 r sin φ cos θ θ + 1 cos φ r [ r sin φ cos φ r + 1 r cos φ cos θ θ 1 r cos 2 φ + sin 2 φ i i sin φ ] ] 22 The foowing symbos are used in what foows to cut down keystrokes: r r θ θ φ 23 Now we have that L is the orbita momentum of a spiness partice [see [1], p. 660] and the operator L 2 is defined to be: L 2 L 2 x + L 2 y + L 2 z 24 Now a we have to do is make the reevant substitutions in 24. This is straightforward, but error prone, so each component wi be done separatey. 6

L 2 x 2 sin φ θ + cos φ φ sin φ θ + cos φ φ 2 2 sin 2 φ 2 θ + sin φ θ cot θ cos φ φ + cot θ cos φ [ ] sin 2 φ θ 2 + sin φ cos φ φ csc 2 θ + cot θ cos φ θ φ + ] cot θ cos φ [ θ cos φ + sin φ φ θ + cot 2 θ cos 2 φ 2 sin φ θ + cot 2 θ cos 2 φ 2 2 sin 2 φ θ 2 sin φ cos φ csc 2 θ }{{} φ + sin φ cot θ cos φ θ φ + cot θ cos 2 φ }{{}}{{}}{{} θ 1 2 3 4 + cot θ cos φ sin φ φ θ + cot 2 θ cos 2 φ 2 }{{}}{{} 5 6 25 L 2 y 2 cos φ θ + cot θ sin φ φ cos φ θ + cot θ sin φ φ 2 cos 2 φ θ 2 cos φ cot θ sin φ φ cot θ sin φ cos φ θ + cot 2 θ sin 2 φ 2 θ 2 [ ] [ ] cos 2 φ θ 2 cos φ sin φ φ csc 2 θ + cot θ sin φ θ φ cot θ sin φ θ sin φ + cos φ φ θ + cot 2 θ sin 2 φ 2 φ 2 cos 2 φ θ 2 + cos φ sin φ csc 2 θ }{{} φ cos φ cot θ sin φ θ φ + cot θ sin 2 φ θ cot θ sin φ cos φ }{{}}{{}}{{} φ θ }{{} 1 2 3 4 5 + cot 2 θ cos 2 φ 2 φ }{{} 6 26 L 2 z i i 2 2 }{{} 6 27 Now pairing up the terms 1-6 we have: 7

L 2 L 2 x + L 2 y + L 2 z 2 2 θ + cot θ θ + cot 2 θ + 1 2 φ 2 θ 2 + 1 θ + cos2 θ + sin 2 θ sin 2 θ 2 θ 2 + 1 θ + 1 sin 2 θ 2 φ 2 φ 28 Thus the textbook answer is indeed obtained. Equations 3 and 4 are easiy derived once it is known that [ [1], p.647]: and L + L x + il y 29 Thus: L L x il y 30 L + L x + il y i sin φ θ + cot θ cos φ φ cos φ θ + cot θ sin φ φ cos φ θ + i cot θ cos φ φ + i sin φ θ cot θ sin φ φ cos φ + i sin φ θ + i cot θ φ e iφ θ + i cot θ φ 31 Simiary: L L x + il y i sin φ θ + cot θ cos φ φ + cos φ θ + cot θ sin φ φ cos φ θ + i cot θ cos φ φ + i sin φ θ + cot θ sin φ φ cos φ i sin φ θ + i cot θ φ e iφ θ + i cot θ φ 32 8

2.1 Soving the partia differentia equations There is a substantia preiminary overhead in estabishing that the eigenvaues of L 2 are + 1 2 nd those of L z are m see [1], pages 643-662. Using 2 we have: 2 θ 2 + 1 θ + 1 sin 2 θ 2 φ ψr, θ, φ + 1 2 ψr, θ, φ θ 2 + 1 θ + 1 sin 2 θ 2 φ ψr, θ, φ + 1 ψr, θ, φ 33 Using 22 we have: i ψr, θ, φ m ψr, θ, φ i ψr, θ, φ m ψr, θ, φ 34 Because r does not appear as a differentia operator in either 33 or 34 we assume an eigenfunction which depends ony on the anguar variabes θ and φ. Note that if we assumed a soution of the form ψr, θ, φ Y m θ, φ fr see [2], p.314 the term fr simpy cances because of the ack of derivatives in r or viewed as a constant of integration. However, once 33 and 34 have been soved for Y m θ, φ the eigenfunctions wi be of the form ψ,m r, θ, φ Y m θ, φ fr. Denoting the common eigenfunction of L 2 and L z by Y m θ, φ we have that: θ 2 + 1 θ + 1 sin 2 θ 2 φ Integration of 36 eads straightaway to: Y m θ, φ + 1 2 Y m θ, φ 35 i Y m θ, φ m Y m θ, φ 36 Y m θ, φ F m θ e imφ 37 Noting here that F m θ is ike a constant given the ack of θ dependence in 36. A wave function must be continuous throughout space if the differentia deveopment of the operators is to make any sense. This is the case because differentiabiity impies continuity, thus if the wave function were not continuous it coud not be differentiabe and hence none of the above deveopment woud make any sense. So et s take some boundary vaues and expoit the continuity: 9

Y m θ, φ 0 Y m θ, φ 2π 38 thus we have that: Y m θ, φ 0 F m θ Y m θ, φ 2π F m θ e 2imφ 39 Thus we must have: e 2imφ 1 40 Because m is integra or haf-integra see [1],pages 647-660, 40 shows that orbita anguar momentum must be integra and because m and must be either both integra or haf-integra, it foows that must be integra too. On the basis of genera theory see [1], pages 647-664 the Y m θ, φ must satisfy: Using 31 and 37 we have: L + Y θ, φ 0 41 L + Y θ, φ 0 e iφ θ + i cot θ φ F θ eiφ 0 e iφ e iφ d dθ F θ + i cot θ F θ ieiφ 0 e i+1φ d dθ cot θ F θ 0 d dθ cot θ F θ 0 42 To sove 42 note that: cot θ dθ d 43 Thus we have: 10

df θ cot θ F θ dθ F θ θdsin df θ F θ n F d θ n + c F θ c and so Y θ, φ c e iφ 44 This is just touching the surface of the detaied treatment of eigenfunctions represented as spherica harmonics. Courant and Hibert give proofs, for instance, of how one can expand a function in terms of spherica harmonics see [2], page 513. Reference [1] covers the ground we with many detaied cacuations but the authors often eave out specific justifications eg for expansions in terms of spherica harmonics. 3 References 1. Caude Cohen-Tannoudji, Bernard Liu, Franck Laoë, Quantum Mechanics, Voume 1, John Wiey and Sons, 1977. 2. R Courant and D Hibert, Methods of Mathematica Physics, Voume 1, John Wiey and Sons, 1989. 4 History Created 06/12/2015 11