Bessel function for complex variable
|
|
- Ἀβραάμ Μεταξάς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by { ( J ν () P ν () cos ν + π { ( N ν () P ν () si ν + π H (±) ( π < arg < π) ) π ) π ν () J ν () ± in ν () = π e±i (ν+ ) π Pν () ± iq ν () ( Q ν () si ν + ( + Q ν () cos ν + ) } π ) } π { ( π < arg < π) ( π < arg < π) () (3) (4) where P ν () ad Q ν () are poyomias give by P ν () + Q ν () Note that J ν, N ν ad H (±) ν ( C ν,k () (5) ( + C ν,k () (6) C ν,m () (4ν )(4ν 3 ) (4ν (m ) ) m!(8) m, (m ) (7) Spherica Besse fuctio are so-caed Besse, Neuma ad Hake fuctios as the soutios of Eq.(). By repacig ν by + ad defiig f () π Z + (), the Eq.() ca be rewritte as + ( + ( + ) ) f () =. (8)
2 The spherica Besse j (), Neuma (), ad Hake h (±) () fuctios are give by π j () J + () = { P + () cos ( + ) π Q + () si ( + ) π } () h (±) () π N + () = { P + () si ( + ) π + Q + () cos ( + ) π } ( π < arg < π) π H(±) () = j + () ± i () = e±i (+) π P + () ± iq + () { ( π < arg < π) ( π < arg < π) (9) () () where P + () + ( C +,k () () Q + + () ( + C +,k () (3) C +,m () (( + ) )(( + ) 3 ) (( + ) (m ) ) m!(8) m, = ( + m)! m!() m ( m)!. ( m < + ) (4) Therefore we, fiay, obtai Spherica besse fuctio h (±) + e±i () = ( i) ( ±i ( + k)! k!( k)! (5) Note that the symmetric properties of h (±) () ca be obtaied from Eq.(5) as ( ) = ( ) + e i (+i) ( + e i ) = (+i) ( i k ( + k)! k!( ( k)! = ( ) h ( ) () (6) ( i ( + k)! k!( ( k)! = h( ) () (7) Aso Eqs.(9) ad () ca be rewritte as j () = () = i () + h ( ) () () h ( ) () (8) (9) Usig Eq.(6), the symmetric properties of j ad ca be obtaied as j ( ) = ( ) = i ( ) + h ( ) ( ) ( ) h ( ) ( ) = ( ) h ( ) () + () = ( ) j () () = ( ) h ( ) () () = ( ) + () () i
3 3 Asymtotic behaviour & Wroskia From Eq.(5), we ca get the asymtotic behabiour of the spherica Hake fuctio at the imit of as im h(±) e±i () = im ( i)+ (±i ( + k)! e±i k!( ( i)+ ( k)! π e±i = ( i). () Usig Eq.(), the asymtotic behaviour of j ad ca be aso obtaied as j () si π, (3) () cos π. (4) Now et us itroduce oe of the very importat quatity, the so-caed Wroskia. The Wroskia is defied by usig two kids of the ieary idepedet fuctios as W (f (), f () ) f () () () f () f () () () f () (5) Usig the fact f () obey + ( ) ( + ) f () =, (6) the derivative of the Wroskia is give as W (f (), f () ) = f () = f () () () f () f () () () f () ( ) ( + ) () f () () ( ) ( + ) f () () =. (7) +f () () The, we ca fid that the Wroskia is a costat for. Therefore, the Wroskia ca be cacuated by usig the asymtotic property of f () at the imit of as W (f (), f () ) = im f () () () f () f () () () f () = cost. (8) Wroskias for Besse fuctios Thus we ca obtai the foowig resuts. W (j, ) = im j () () () j () =, (9) W (j, h (±) ) = im W (, h (±) ) = im W (, h ( ) ) = im j () h(±) () h(±) () h( ) () h (±) () h (±) () h ( ) () j () = ±i (3) () () = (3) () h(+) () = i (3) 3
4 4 Recurrece formua Usig Eq.(5), we ca obtai h (±) + e±i () = ( i) + h (±) () = ( i) + e ±i h (±) () = ( i) + e ±i + h (±) h (±) () () = ( i) e ±i ( + k)! k!( k)! k ( + k)! k!( k)! (+k+) ( + k)! k!( k)! k ( + k)! k!( k)! ( ±i +( i) + e ±i k ( k)( + k)! k!( k)! = ( i) e ±i +( i) + e ±i + k ( + k + )! (k + )!( k )! + ( i) e ±i ( ±i k ( k)( + k)! k!( k)! ( + ±i = ( i) e ±i k ( + k)! ( k )! (k + )! + ( i) e ±i ( ±i = ( i) e ±i k ( + k )! + ( i) e ±i ( k )! k! ( ±i = ( i) e ±i k ( + k )! = + h (±) () (36) ( k )! k! ( ±i = ( i) e ±i (+k+) ( + k)! k!( k)! ( ±i ( i) + e ±i (+k+) ( + k + )! k!( k)! = ( i) e ±i + (+k+) ( + k + )! (k + )!( k )! + ( i) e ±i (+) ( ( ) ±i ( i) + e ±i (+k+) ( + k + )! ±i ( i) + e ±i (+) ( + )! k!( k)!! = ( i) e ±i + (+k+) ( + k + )! (k + )!( k)! +( i) e ±i (+) ( i) + e ±i ( ±i = ( i) e ±i (+k+) ( + k + )! k!( k + )! +( i) e ±i (+) + ( i) e ±i + = ( i) e ±i ) (+) ( + )!! ) + (+) ( + )! ( + )! (33) (34) (35) ( ±i (+k+) ( + k + )! k!( k + )! = h (±) + () (37) 4
5 Recurrece formuas We ca derive the foowig recurrece formuas usig Eqs.(36) ad (37) as + h (±) () = h (±) () + h(±) + () (38) ( + ) h(±) () = h (±) () ( + )h(±) + () (39) 5 Wave fuctio of free partice The Schrodiger equatio for the free partice ca be expressed as m χ(k, k; r) = E(k)χ(k, k; r), (4) i χ(k, k; r) = kχ(k, k; r), (4) where k is a uit vector which gives the directio of the mometum vector, i.e., k = k k. Aso E(k) = k m with compex k. χ(k, k; r) is kow to be χ(k, k; r) = e +ik r = i j (π) 3 (π) 3 (kr)y ( r)y ( k). (4) The compex cojugate of this fuctio is χ (k, k; r) = e ik r (π) 3 ( i) j (k r)y ( r)y ( k) = χ( k, k; r) = (π) 3 (π) 3 i j ( kr)y ( r)y ( k) χ(k, k; r) = (π) 3 i j ( kr)y ( r)y ( k) = (Usig j (k r) = j (kr), j ( kr) = ( ) j (kr) ad Y ( k) = ( ) Y ( k)) ( i) j (π) 3 (kr)y( r)y ( k) (43) (π) 3 (π) 3 (Note that k = k if k is rea. I this study, we cosider the compex k i most of the cases.) From the defiitio of the Deta fuctio, we get δ(r r ) Y ( r) π δ(k k ) dke +ik (r r ) = dre ) r +i(k k = Y ( k) π dkk j (kr)j (kr ) Y( r ) (44) drr j (kr)j (k r) Y( k ). (45) the orthogoa & competeess reatio for the spherica Besse fuctio Thus we obtai the orthogoa & competeess reatio for the spherica Besse fuctio as δ(r r ) = π δ(k k ) = π dk(kr) j (kr)j (kr ) (46) dr(kr) j (kr)j (k r) (47) 5
6 the orthogoa ad competeess reatio for χ I terms of the free partice wave fuctio χ, the orthogoa ad competeess reatio is give by drχ (k, k; r)χ(k, k ; r) = δ(k k ) (48) dkχ(k, k; r)χ (k, k; r ) = δ(r r ) (49) 6 Free partice Gree s fuctio The free partice Gree s fuctio is defied by E(k) + m G F (rr ; k) = δ(r r ). (5) It is very easy to prove G F (rr ; k) ca be represeted as G F (rr ; k) = m dq χ(q, q; r)χ (q, q; r ) q k. (5) I the expressio of the partia wave expasio, this ca be rewritte as G F (rr ; k) = m π = m π = m Y ( r)y ( r ) Y ( r)y ( r ) Y ( r)y ( r ) dq q j (qr)j (qr ) q k dq dq q k + q + k q k + q + k qj (qr)j (qr ) qj (qr < ) + h ( ). (5) If we suppose k = k e +iθ with < θ < π, the Eq.(5) ca be cacuated as Eq.(5) = m Y ( r)y ( r C + q k qj (qr < ) m Y ( r)y ( r C q + k qj (qr < )h ( ) = m i Y ( r)y ( r )kj (kr < ) (kr > ) m i Y ( r)y ( r )kj ( kr < )h ( ) ( kr > ) = m ik Y ( r)y ( r )j (kr < ) (kr > ) = m e +ik r r r r (53) where C + (C ) is the coutour itegra path o the upper (ower) regio of the compex mometum q pae (see Fig.). We cosider that (qr)(h ( ) (qr)) is coverged at the imit of q o the upper(ower) regio of the compex q-pae. 6
7 Figure : Cotour path C ± o the compex mometum q-pae. Therefore G F (rr ; k ) = m Y ( r)y ( r C + q + k qj (qr < ) m Y ( r)y ( r C q k qj (qr < )h ( ) i Y ( r)y ( r )k j ( k r < ) ( k r > ) + m i Y ( r)y ( r )k j (k r < )h ( ) (k r > ) = m = m ik Y ( r)y ( r )j (k r < )h ( ) (k r > ) = m e ik r r r r (54) 7
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
The Neutrix Product of the Distributions r. x λ
ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Lecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods
DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function
Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
B.A. (PROGRAMME) 1 YEAR
Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Inertial Navigation Mechanization and Error Equations
Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
Solutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
SOLVING CUBICS AND QUARTICS BY RADICALS
SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
DERIVATION OF MILES EQUATION Revision D
By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom
Lecture 22: Coherent States
Leture : Coheret States Phy851 Fall 9 Summary memorize Properties of the QM SHO: A 1 A + 1 + 1 ψ (x) ψ (x) H P + m 1 X λ A + i P λ h H hω( +1/ ) [ π!λ] 1/ H x /λ 1 mω λ h ( A A ) P i ( A A ) X + H x λ
4. ELECTROCHEMISTRY - II
4. ELETROHEMISTRY - II Molar coductace, Equivalet coductace, cell cetat ad Kohlraush Law :. Give : l 0.98 cm a.3 cm cell cost. cell cost. a l cell cost. a l 0.98.3 0.7538 cm As : ell costat for the cell
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
B.A. (PROGRAMME) 1 YEAR
Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y
Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
ECE145a / 218a Tuned Amplifier Design -basic gain relationships
ca note, M. Rodwe, copyrighted 009 ECE45a / 8a uned Ampifier Deign -aic ga reationhip -deign the (impe) uniatera imit it Mark Rodwe Univerity of Caifornia, anta Barara rodwe@ece.uc.edu 805-893-344, 805-893-36
Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor