On the conformal change of five-dimensional Finsler spaces

Σχετικά έγγραφα
On a five dimensional Finsler space with vanishing v-connection vectors

Congruence Classes of Invertible Matrices of Order 3 over F 2

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

2 Composition. Invertible Mappings

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

6.3 Forecasting ARMA processes

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Statistical Inference I Locally most powerful tests

Homomorphism in Intuitionistic Fuzzy Automata

Second Order Partial Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Srednicki Chapter 55

A Note on Intuitionistic Fuzzy. Equivalence Relation

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 8.3 Trigonometric Equations

Reminders: linear functions

Tridiagonal matrices. Gérard MEURANT. October, 2008

A THEORY OF THREE DIMENSIONAL FINSLER SPACES IN TERMS OF SCALARS AND ITS APPLICATIONS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Homework 3 Solutions

Math221: HW# 1 solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

EE512: Error Control Coding

Example Sheet 3 Solutions

derivation of the Laplacian from rectangular to spherical coordinates

C.S. 430 Assignment 6, Sample Solutions

Space-Time Symmetries

Matrices and Determinants

Finite Field Problems: Solutions

Every set of first-order formulas is equivalent to an independent set

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Concrete Mathematics Exercises from 30 September 2016

Homework 8 Model Solution Section

D Alembert s Solution to the Wave Equation

Commutative Monoids in Intuitionistic Fuzzy Sets

1. Introduction and Preliminaries.

A summation formula ramified with hypergeometric function and involving recurrence relation

Areas and Lengths in Polar Coordinates

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

( ) 2 and compare to M.

On a four-dimensional hyperbolic manifold with finite volume

Partial Differential Equations in Biology The boundary element method. March 26, 2013

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

w o = R 1 p. (1) R = p =. = 1

Tutorial problem set 6,

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

A General Note on δ-quasi Monotone and Increasing Sequence

Areas and Lengths in Polar Coordinates

ST5224: Advanced Statistical Theory II

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Lecture 15 - Root System Axiomatics

SPECIAL FUNCTIONS and POLYNOMIALS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

n=2 In the present paper, we introduce and investigate the following two more generalized

The Simply Typed Lambda Calculus

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

Uniform Convergence of Fourier Series Michael Taylor

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Higher Derivative Gravity Theories

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

( y) Partial Differential Equations

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Strain gauge and rosettes

The k-α-exponential Function

Lecture 10 - Representation Theory III: Theory of Weights

Intuitionistic Fuzzy Ideals of Near Rings

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Lecture 13 - Root Space Decomposition II

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Quadratic Expressions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Parametrized Surfaces

Homomorphism of Intuitionistic Fuzzy Groups

Other Test Constructions: Likelihood Ratio & Bayes Tests

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

5. Choice under Uncertainty

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

THE BIGRADED RUMIN COMPLEX. 1. Introduction

Lecture 26: Circular domains

SOME PROPERTIES OF FUZZY REAL NUMBERS

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Section 7.6 Double and Half Angle Formulas

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Section 9.2 Polar Equations and Graphs

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Problem Set 3: Solutions

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Transcript:

On the conformal change of five-dimensional Finsler spaces Gauree Shanker 1 2 3 4 5 6 7 8 Abstract. The purpose of the present paper is to deal with the theory of conformal change in five-dimensional Finsler space. We have obtained the conditions under which the h- and v- connection vectors are conformally invariant in five-dimensional Finsler space. M.S.C. 2010: 53B40, 53C60. Key words: Finsler space; Conformal change; h and v-connection vectors; main scalars. 1 Introduction 9 The conformal change and conformal transformation of n-dimensional Finsler spaces 10 have been studied in [6] and [1]. The conformal theory of two, three & four-dimensional 11 Finsler spces have been discussed in [2, 8, 10] respectively. As far as author knows 12 there is no paper concerned with the conformal theory of five-dimensional Finsler 13 space. Recently, the present author has found that in a five-dimensional Finsler space there are seventeen main scalars H, I, J, K, H, I, J, K, H, I, J, K, M, M, M 14, N, N 15 [11] in which the sum of H, I, K and M is LC, which is called unified main 16 scalar. It has been also shown by the present author that in a five-dimensional Finsler space there exist six v-connection vectors u i, v i, w i, u 17 i, v i, w i and six h-connection vectors h i, J i, k i, h i, J i 18, k i [11]. The theory of five-dimensional Finsler space with con- stant unified main scalars has been discussed in [12]. The orthonormal frame field 20 21 22 23 19 ( l i, m i, n i, p i, q i), called the Miron frame plays an important role in five-dimensional Finsler space. Here we discuss the theory of conformal change in five-dimensional Finsler space. 2 Scalar components in Miron frame 24 25 26 Let F 5 be a five-dimensional Finsler space with fundamental function L(x, y). The metric tensor g ij and Cartan C tensor C ijk of F 5 are defined by g ij = 1 2 i j L2, C ijk = 1 2 k g ij = 1 4 i j k L2. Differential Geometry - Dynamical Systems, Vol.15, 2013, pp. 79-92. c Balkan Society of Geometers, Geometry Balkan Press 2013.

80 Gauree Shanker 27 28 Throughout the paper, the symbols i { } = frame e i (α) y and i i = x i have been used. The, α = 1, 2, 3, 4, 5 is called the Miron frame of F 5, where e i (1) = li = yi L 29 is called the normalized supporting element, e i (2) = mi = Ci C is called the normalized 30 torsion vector, e i (3) = ni, e i (4) = pi, e i (5) = qi are constructed from g ij e i (α) ej (β) = 31 δ αβ.here, C is the length of torsion vector C i = C ijkg jk.the Greek letters α, β, γ, δ 32 vary from 1 to 5 throughout the paper. Summation convention is applied for both 33 the Greek and Latin indices. In the Miron frame an arbitrary tensor can be expressed 34 by scalar components along the unit vectors l i, m i, n i, p i, q i. For instance; let T = Tj i 35 be a tensor field of (1, 1) type, then the scalar components T αβ of T are defined by T αβ = Tj ie (α)ie j (β) and the components T j i of the tensor T are expressed as T j i = 37 T αβe i (α) e (β)j.from the equation g ij e i (α) ej (β) = δ αβ, we have (2.1) g ij = l i l j + m i m j + n i n j + p i p j + q i q j Next, the C-tensor C ijk = 1 2 k g ij satisfies C ijk l i = 0 and is symmetric in i, j, k. Therefore, if C αβγ are scalar components of LC ijk i. e., if (2.2) LC ijk = C αβγ e (α)i e (β)j e (γ)k, then, we have (2.3) LC ijk = C 222 m i m j m k + C 223 (m i m j n k ) + C 233 (m i n j n k ) + C 333 (n i n j n k ) + C 224 (m i m j p k ) + C 444 (p i p j p k ) + C 244 (m i p j p k ) + C 225 (m i m j q k ) + C 255 (m i q j q k ) + C 555 (q i q j q k ) + C 334 (n i n j p k ) + C 344 (n i p j p k ) + C 335 (n i n j q k ) + C 355 (n i q j q k ) + C 445 (p i p j q k ) + C 455 (p i q j q k ) + C 234 {m i (n j p k + n k p j )} + C 235 {m i (n j q k + n k q j )} + C 245 {m i (p j q k + p k q j )} + C 345 {n i (p j q k + p k q j )}, where 38 {...} denote the cyclic interchange of i, j, k and summation. For instance; {A ib j C k } = A i B j C k + A j B k C i + A k B i C j. 39

On the conformal change of five-dimensional Finsler spaces 81 Contracting (2.2) with g jk, we get LCm i = C αββ e (α)i. Thus, if we put (2.4) C 222 = H, C 233 = I, C 244 = K, C 333 = J, C 344 = J, C 444 = H, C 334 = I, C 234 = K, C 255 = M, C 355 = J, C 455 = M, C 555 = H, C 335 = I, C 445 = K, C 235 = N, C 245 = N, C 345 = M, C 224 = (H + I + M ), C 225 = ( H + I + K ). then, we have (2.5) H + I + K + M = LC, C 223 = (J + J + J ), 40 41 42 43 Hence, we have the following: Theorem 2.1. In a five-dimensional Finsler space there are seventeen main scalars H, I, J, K, H, I, J, K, H, I, J, K, M, M, M, N, N in which the sum of H, I, K and M is LC which is called unified main scalar. Using (2.4) and (2.5), the equation (2.3) can be rewritten as [11] (2.6) LC ijk = Hm i m j m k (J + J + J ) (m i m j n k ) + I (m i n j n k ) 44 45 46 47 48 49 +J (n i n j n k ) (H + I + M ) (m im j p k ) + H (p i p j p k ) +K (m ip j p k ) (H + I + K ) (m im j q k ) +M (m iq j q k ) + H (q i q j q k ) + I (n in j p k ) + J (n ip j p k ) +I (n in j q k ) + J (n iq j q k ) + K (p ip j q k ) +M (p iq j q k )+K {m i (n j p k + n k p j )}+ N {m i (n j q k + n k q j )} +N {m i (p j q k + p k q j )}+M {n i (p j q k + p k q j )}. ( ) The Cartan s connection CΓ = Γ i jk, Gi j, Ci jk will be used in the following section of this paper. The h and v covariant derivatives of the frame field e (α)i are given by [4] (2.7) e (α)i j=h(α)βγ e (β)i e (γ)j, Le (α)i j = V (α)βγ e (β)i e (γ)j, where H (α)βγ and V (α)βγ, γ being fixed, are given by (2.8) H α)βγ = 0 0 0 0 0 0 0 h γ J γ k γ 0 h γ 0 h γ J γ 0 J γ h γ 0 k γ 0 k γ J γ k γ 0, V α)βγ = 0 δ 2γ δ 3γ δ 4γ δ 5γ δ 2γ 0 u γ v γ w γ δ 3γ u γ 0 u γ v γ δ 4γ v γ u γ 0 w γ δ 5γ w γ v γ w γ 0 In (2.8), we have put (2.9) H 2)3γ = H 3)2γ = h γ, H 2)4γ = H 4)2γ = J γ, H 2)5γ = H 5)2γ = k γ,

82 Gauree Shanker 50 51 52 53 H 3)4γ = H 4)3γ = h γ, H 3)5γ = H 5)3γ = J γ, H 4)5γ = H 5)4γ = k γ, V 2)3γ = V 3)2γ = u γ, V 2)4γ = V 4)2γ = v γ, V 2)5γ = V 5)2γ = w γ, V 3)4γ = V 4)3γ = u γ, V 3)5γ = V 5)3γ = v γ, V 4)5γ = V 5)4γ = w γ. Hence, we have the following: 54 Theorem 2.2. In a five-dimensional Finsler space there exist six h-connection} vectors h i, J i, k i, h i, J i, k i {e whose scalar components with respect to the frame i 55 (α) are h γ, J γ, k γ, h γ, J γ, k γ, i. e., h i = h γ e (γ)i, J i = J γ e (γ)i, k i = k γ e (γ)i, h i = h γe (γ)i, J i 56 = J γe (γ)i, k i 57 = k γe (γ)i. 58 Theorem 2.3. In a five-dimensional Finsler space there exist six v-connection} vectors u i, v i, w i, u i, v i, w i {e whose scalar components with respect to the frame i 59 (α) are u γ, v γ, w γ, u γ, v γ, w γ i. e., u i = u γ e (γ)i, v i = v γ e (γ)i, w i = w γ e (γ)i, u i = u γe (γ)i, v i 60 = v γe (γ)i, w i 61 = w γe (γ)i. In view of equations (2.8), (2.9) and using the theorems (2.2) and (2.3), the equations (2.7) may be explicitly written as [11] (2.10) l i j = 0, m i j = n i h j + p i J j + q i k j, n i j = m i h j + p i h j + q i J j, p i j = m i J j n i h j + q i k j, q i j = m i k j n i J j p i k j and (2.11) Ll i j = m i m j + n i n j + p i p j + q i q j = g ij l i l j = h ij, Lm i j = l i m j + n i u j + p i v j + q i w j, Ln i j = l i n j m i u j + p i u j + q i v j, Lp i j = l i p j m i v j n i u j + q i w j, Lq i j = l i q j m i w j n i v j p i w j. 62 Since m i, n i, p i, q i are homogeneous functions of degree zero in y i, we have Lm i j l j = Ln i j l j = Lp i j l j = Lq i j l j = 0 which in view of equation (2.11) and theorem (2.3) gives (2.12) u 1 = v 1 = w 1 = u 1 = v 1 = w 1 = 0. 63 64 65 Thus we have the following: Theorem 2.4. In a five-dimensional Finsler space, the first scalar components of v-connection vectors u i, v i, w i, u i, v i, w i vanish identically. The equations (2.11) and (2.6) lead to the following expressions for the partial derivatives with respect to y j : (2.13) L jl i = h ij = m i m j + n i n j + p i p j + q i q j, 66 L j m i = l i m j + n i u j + p i v j + q i w j + Hm i m j + In i n j + Kp i p j + Mq i q j

On the conformal change of five-dimensional Finsler spaces 83 67 68 69 70 71 72 73 74 75 76 77 78 (J + J + J )(m i n j + m j n i ) (H + I + M )(m i p j + m j p i ) (H + I + K )(m i q j + m j q i ) + K (n i p j + n j p i ) + N(n i q j + n j q i ) +N (p i q j + p j q i ), L j n i = l i n j m i u j + p i u j + q iv j (J + J + J )m i m j + Jn i n j + J p i p j +J q i q j + I(m i n j + m j n i ) + K (m i p j + m j p i ) + N(m i q j + m j q i ) +I (n i p j + n j p i ) + I (n i q j + n j q i ) + M (p i q j + p j q i ), L j p i = l i p j m i v j n i u j + q iw j (H + I + M ) m i m j + I n i n j + H p i p j +M q i q j + K (m i n j + m j n i ) + K(m i p j + m j p i ) + N (m i q j + m j q i ) +J (n i p j + n j p i ) + M (n i q j + n j q i ) + K (p i q j + p j q i ), L j q i = l i q j m i w j n i v j p iw j (H + I + M ) m i m j + I n i n j + K p i p j +H q i q j + N(m i n j + m j n i ) + N (m i p j + m j p i ) + M(m i q j + m j q i ) +M (n i p j + n j p i ) + J (n i q j + n j q i ) + M (p i q j + p j q i ), (2.14) L jl i = m i m j + n i n j + p i p j + q i q j, 79 80 81 82 83 84 85 86 87 88 89 90 91 L j mi = l i m j + n i u j + p i v j + q i w j Hm i m j In i n j Kp i p j Mq i q j +(J + J + J )(m i n j + m j n i ) + (H + I + M )(m i p j + m j p i ) +(H + I + K )(m i q j + m j q i ) K (n i p j + n j p i ) N(n i q j + n j q i ) N (p i q j + p j q i ), L j ni = l i n j m i u j + p i u j + qi v j + (J + J + J )m i m j Jn i n j J p i p j J q i q j I(m i n j + m j n i ) K (m i p j + m j p i ) N(m i q j + m j q i ) I (n i p j + n j p i ) I (n i q j + n j q i ) M (p i q j + p j q i ), L j pi = l i p j m i v j n i u j + qi w j + (H + I + M ) m i m j I n i n j H p i p j M q i q j K (m i n j + m j n i ) K(m i p j + m j p i ) N (m i q j + m j q i ) J (n i p j + n j p i ) M (n i q j + n j q i ) K (p i q j + p j q i ), L j qi = l i q j m i w j n i v j pi w j + (H + I + M ) m i m j I n i n j K p i p j H q i q j N(m i n j + m j n i ) + N (m i p j + m j p i ) M(m i q j + m j q i ) + M (n i p j + n j p i ) J (n i q j + n j q i ) M (p i q j + p j q i ),

84 Gauree Shanker The h scalar derivative of the adapted components T αβ of the tensor Tj i is defined as [4] of (1, 1) type (2.15) T αβ,γ = (δ k T αβ ) e k γ) + T µβh µ)αγ + T αµ H µ)βγ, where δ k = k G r k r.similarly, the v-scalar derivative of the adapted components T αβ of the tensor Tj i of (1, 1) type is defined as [4] (2.16) T αβ;γ = L ( kt αβ ) e k γ) + T µβv µ)αγ + T αµ V µ)βγ. Thus, T αβ,γ and T αβ;γ are the adapted components of T i j k and T i j krespectively i. e., (2.17) (2.18) T i j k = T αβ,γ e i (α) e (β)je (γ)k, LT i j k = T αβ;γ e i (α) e (β)je (γ)k. 92 93 94 95 A covariant vector field σ i is called a gradient vector, if there exists a scalar field σ = σ (x) satisfying σ i = i σ. Then, we have Lemma 2.5. A covariant vector field σ i = σ α e α)i is locally a gradient vector, if and only if the scalar components σ α, α = 1, 2, 3, 4, 5. (2.19) σ α,β = σ β,α, α, β = 1, 2, 3, 4, 5. 96 (2.20) σ 1;α = σ α;1 = 0, α = 1, 2, 3, 4, 5 σ 2;2 = σ 2 H + σ 3 (J + J + J ) + σ 4 (H + I + M ) +σ 5 (H + I + K ), σ 3;3 = σ 2 I σ 3 J σ 4 I σ 5 I, σ 4;4 = σ 2 K σ 3 J σ 4 H σ 5 K, σ 5;5 = σ 2 M σ 3 J σ 4 M σ 5 H, σ 2;3 = σ 3;2 = σ 2 (J + J + J ) σ 3 I σ 4 K σ 5 N, σ 2;4 = σ 4;2 = σ 2 (H + I + M ) σ 3 K σ 4 K σ 5 N, σ 2;5 = σ 5;2 = σ 2 (H + I + K ) σ 3 N σ 4 N σ 5 M, σ 3;4 = σ 4;3 = σ 2 K σ 3 I σ 4 J σ 5 M, σ 3;5 = σ 5;3 = σ 2 N σ 3 I σ 4 M σ 5 J, σ 4;5 = σ 5;4 = σ 2 N σ 3 M σ 4 K σ 5 M. 97 Proof. It is obvious that σ i is locally a gradient vector if and only if it satisfies 98 (a) j σ i i σ j = 0, (b) j σ i = 0. These are equivalent, respectively, to (2.10) ( σ i j = j σ i σ k Fij) k = σj i, (2.11) σ i j = σ k Cij k 99. We examine the scalar components σ α of σ i. Then equations (2.17) and (2.18) give σ i j = σ α,β e α)i e β)j, σ i j = σ α;β e α)i e β)j respectively. Then the equations (2.10) and (2.11) are written, respectively, in the forms (2.19) and σ α;β = σ γ C αβγ. This equation together with (2.6) gives (2.20). 100 101 102 103

On the conformal change of five-dimensional Finsler spaces 85 104 3 Conformal change of Cartan s connection We consider a conformal change L(x, y) L(x, y) = e σ(x) L(x, y) of a five-dimensional Finsler space F 5 = (M 5, L(x, y)) with the fundamental function L(x, y), where σ(x) is a scalar function of position x i alone, called the conformal factor. We shall denote the Finsler space with changed fundamental function L(x, y) by F 5 = (M 5, L(x, y))) and quantities of F 5 by upper line. The following change of important quantities are known [1]. (3.1) (3.2) (3.3) l i = e σ l i, m i = e σ m i, n i = e σ n i, p i = e σ p i, q i = e σ q i, g ij = e 2σ g ij, l i = e σ l i, m i = e σ m i, n i = e σ n i, p i = e σ p i, q i = e σ q i, g ij = e 2σ g ij, C ijk = e 2σ C ijk, C i jk = Cjk, i H = H, I = I, J = J, K = K, M = M, N = N, H = H, I = I, J = J, K = K, M = M, N = N, H = H, I = I, J = J, K = K, M = M. 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 Lemma (2.5) leads us to the following useful relations: Proposition 3.1. If we put σ i = i σ(x) = σ α e α)i, then we have the relations (i) σ α,β = σ β,α, α, β = 1, 2, 3, 4, 5. (ii) σ 1;α = σ α;1 = 0, α = 1, 2, 3, 4, 5. σ 2;2 = σ 1 + σ 6, σ 2;3 = σ 3;2 = σ 7, σ 2;4 = σ 4;2 = σ 8, σ 2;5 = σ 5;2 = σ 9, σ 3;3 = σ 1 + σ 10, σ 3;4 = σ 4;3 = σ 11, σ 3;5 = σ 5;3 = σ 12, σ 4;4 = σ 1 + σ 13, σ 4;5 = σ 5;4 = σ 14, σ 5;5 = σ 1 + σ 15, where we have substituted σ 6 = σ 1 σ 2 H + σ 3 (J + J + J ) + σ 4 (H + I + M ) + σ 5 (H + I + K ), σ 7 = σ 2 (J + J + J ) σ 3 I σ 4 K σ 5 N, σ 8 = σ 2 (H + I + M ) σ 3 K σ 4 K σ 5 N, σ 9 = σ 2 (H + I + K ) σ 3 N σ 4 N σ 5 M, σ 10 = σ 1 σ 2 I σ 3 J σ 4 I σ 5 I, σ 11 = σ 2 K σ 3 I σ 4 J σ 5 M, σ 12 = σ 2 N σ 3 I σ 4 M σ 5 J, σ 13 = σ 1 σ 2 K σ 3 J σ 4 H σ 5 K, σ 14 = σ 2 N σ 3 M σ 4 K σ 5 M, σ 15 = σ 1 σ 2 M σ 3 J σ 4 M σ 5 H.

86 Gauree Shanker Now we consider the change of Christoffel symbols γ ijk = g jr γ r ik = 1 2 ( kg ij + i g jk j g ki ) constructed from g ij (x, y) with respect to x i, then we have (3.4) γ i jk = γ i jk + δ i jσ k + δ i kσ j g jk σ i, ( σ i = g ij σ j ). Thus the change of the well-known quantities 2G i = γ i jk yj y k = γ i 00 is given by (3.5) 2G i = 2G i + L 2 ( σ 1 l i σ 2 m i σ 3 n i σ 4 p i σ 5 q i). Differentiating (3.5) with respect to y j, using proposition (3.1) and equation (2.14), we get (3.6) G i j = G i j + Ll i (σ 1 l j + σ 2 m j + σ 3 n j + σ 4 p j + σ 5 q j ) Lm i 130 (σ 2 l j + σ 6 m j + σ 7 n j + σ 8 p j + σ 9 q j ) Ln i 131 (σ 3 l j + σ 7 m j + σ 10 n j + σ 11 p j + σ 12 q j ) Lp i 132 (σ 4 l j + σ 8 m j + σ 11 n j + σ 13 p j + σ 14 q j ) Lq i 133 (σ 5 l j + σ 9 m j + σ 12 n j + σ 14 p j + σ 15 q j ). On the other hand, the connection coefficients Fjk i 134 of CΓ are given by [4] F ijk = g jr Fik r = γ ijk C ijr G r k C jkrg r i + C ikrg r 135 j. Then the equations (2.6), (3.4) and (3.6) lead to 136 137 138 139 140 141 142 143 144 145 146 147 148 149 (3.7) +l i m i n i p i q i F i jk = F i jk σ 1 l j l k + σ 2 (l j m k + l k m j ) + σ 3 (l j n k + l k n j ) + σ 4 (l j p k + l k p j ) + σ 5 (l j q k + l k q j ) +σ 6 m j m k + σ 7 (m j n k + m k n j ) + σ 8 (m j p k + m k p j ) + σ 9 (m j q k + m k q j ) + σ 10 n j n k +σ 11 (n j p k + n k p j ) + σ 12 (n j q k + n k q j ) + σ 13 p j p k + σ 14 (p j q k + p k q j ) + σ 15 q j q k σ 2 l j l k + σ 6 (l j m k + l k m j ) + σ 7 (l j n k + l k n j ) + σ 8 (l j p k + l k p j ) + σ 9 (l j q k + l k q j ) +σ 16 m j m k + σ 17 (m j n k + m k n j ) + σ 18 (m j p k + m k p j ) + σ 19 (m j q k + m k q j ) + σ 20 n j n k +σ 21 (n j p k + n k p j ) + σ 22 (n j q k + n k q j ) + σ 23 p j p k + σ 24 (p j q k + p k q j ) + σ 25 q j q k σ 3 l j l k + σ 7 (l j m k + l k m j ) + σ 10 (l j n k + l k n j ) + σ 11 (l j p k + l k p j ) + σ 12 (l j q k + l k q j ) +σ 26 m j m k + σ 27 (m j n k + m k n j ) + σ 28 (m j p k + m k p j ) + σ 29 (m j q k + m k q j ) + σ 30 n j n k + σ 31 (n j p k + n k p j ) + σ 32 (n j q k + n k q j ) + σ 33 p j p k + σ 34 (p j q k + p k q j ) + σ 35 q j q k σ 4 l j l k + σ 8 (l j m k + l k m j ) + σ 11 (l j n k + l k n j ) + σ 13 (l j p k + l k p j ) + σ 14 (l j q k + l k q j ) +σ 36 m j m k + σ 37 (m j n k + m k n j ) + σ 38 (m j p k + m k p j ) + σ 39 (m j q k + m k q j ) + σ 40 n j n k +σ 41 (n j p k + n k p j ) + σ 42 (n j q k + n k q j ) + σ 43 p j p k + σ 44 (p j q k + p k q j ) + σ 45 q j q k σ 5 l j l k + σ 9 (l j m k + l k m j ) + σ 12 (l j n k + l k n j ) + σ 14 (l j p k + l k p j ) + σ 15 (l j q k + l k q j ) +σ 46 m j m k + σ 47 (m j n k + m k n j ) + σ 48 (m j p k + m k p j ) + σ 49 (m j q k + m k q j ) + σ 50 n j n k +σ 51 (n j p k + n k p j ) + σ 52 (n j q k + n k q j ) + σ 53 p j p k + σ 54 (p j q k + p k q j ) + σ 55 q j q k where σ 16 = σ 2 σ 6 H + σ 7 (J + J + J ) + σ 8 (H + I + M ) + σ 9 (H + I + K ), σ 17 = σ 3 σ 7 H + σ 10 (J + J + J ) + σ 11 (H + I + M ) + σ 12 (H + I + K ), σ 18 = σ 4 σ 8 H + σ 11 (J + J + J ) + σ 13 (H + I + M ) + σ 14 (H + I + K ), σ 19 = σ 5 σ 9 H + σ 12 (J + J + J ) + σ 14 (H + I + M ) + σ 15 (H + I + K ), σ 20 = σ 2 + σ 6 I + σ 7 (3J + 2J + 2J ) + σ 8 I + σ 9 I 2σ 10 I 2σ 11 K 2σ 12 N, σ 21 = σ 6 K + σ 7 (H + 2I + M ) + σ 8 (J + 2J + J ) + σ 9 M σ 10 K σ 11 (K + I) σ 12 N σ 13 K σ 14 N,,

On the conformal change of five-dimensional Finsler spaces 87 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 σ 22 = σ 6 N + σ 7 (H + 2I + K ) + σ 8 M + σ 9 (J + J + 2J ) σ 10 N σ 11 N σ 12 (I + M) σ 14 K σ 15 N, σ 23 = σ 2 + σ 6 K + σ 7 J + σ 8 (3H + 2I + 2M ) + σ 9 K 2 (σ 11 K + σ 13 K + σ 14 N ), σ 24 = σ 6 N + σ 7 M + σ 8 (H + I + K ) + σ 9 (H + I + 2M ) σ 11 N σ 12 K σ 13 N σ 14 (M + K), σ 25 = σ 2 +σ 6 M+σ 7 J +σ 8 M +σ 9 (3H + 2I + 2K ) 2 (σ 12 N + σ 14 N + σ 15 M), σ 26 = σ 3 + 2σ 6 (J + J + J ) σ 7 (H + 2I) 2 (σ 8 K + σ 9 N) σ 10 (J + J + J ) σ 11 (H + I + M ) σ 12 (H + I + K ), σ 27 = σ 2 σ 6 I σ 7 J σ 8 I σ 9 I, σ 28 = σ 6 K + σ 8 (J + J ) σ 7 (H + 2I + M ) σ 9 M + σ 10 K +σ 11 (K I) + σ 12 N σ 13 K σ 14 N, σ 29 = σ 6 N σ 7 (H + 2I + M ) σ 8 M + σ 9 (J + J ) + σ 10 N +σ 11 N + σ 12 (M I) σ 14 K σ 15 N, σ 30 = σ 3 σ 7 I σ 10 J σ 11 I σ 12 I, σ 31 = σ 4 σ 8 I σ 11 J σ 13 I σ 14 I, σ 32 = σ 5 σ 9 I σ 12 J σ 14 I σ 15 I, σ 33 = σ 3 + σ 7 K 2σ 8 K + σ 11 (H 2I ) + σ 12 K 2σ 13 J 2σ 14 M, σ 34 = σ 7 N σ 8 N σ 9 K + σ 10 M σ 11 (K I ) + σ 12 (M I ) σ 13 M σ 14 (J + J ) σ 15 M, σ 35 = σ 3 + σ 7 M 2σ 9 N + σ 10 J + σ 11 M + σ 12 (H 2I ) σ 14 M σ 15 J, σ 36 = σ 4 + 2σ 6 (H + I + M ) 2σ 7 K + σ 8 (H 2K) 2σ 9 N σ 11 (J + J + J ) σ 13 (H + I + M ) σ 14 (H + I + K ), σ 37 = σ 6 K + σ 7 (H + M ) σ 8 (J + 2J + J ) σ 9 M σ 10 K +σ 11 I K σ 12 N + σ 13 K + σ 14 N, σ 38 = σ 2 σ 6 K σ 7 J σ 8 H σ 9 K, σ 39 = σ 6 N σ 7 M σ 8 (H + I + 2K ) + σ 9 (H + I ) + σ 11 N σ 12 K + σ 13 N σ 14 (K M) σ 15 N, σ 40 = σ 4 2σ 7 K + σ 8 I 2σ 10 I + σ 11 (J 2J ) 2σ 12 M + σ 13 I + σ 14 I, σ 41 = σ 3 σ 7 K σ 10 J σ 11 H σ 12 K, σ 42 = σ 7 N + σ 8 N σ 9 K σ 10 M σ 11 (K I ) σ 12 (M + I ) + σ 13 M +σ 14 (J J ) σ 15 M, σ 43 = σ 4 σ 8 K σ 11 J σ 13 H σ 14 K, σ 44 = σ 5 σ 9 K σ 12 J σ 14 H σ 15 K, σ 45 = σ 4 + σ 8 M σ 9 N + σ 11 J σ 12 M + σ 13 M + σ 14 (H K ) σ 15 M, σ 46 = σ 5 +2σ 6 (H + I + K ) 2σ 7 N 2σ 8 N +σ 9 (H 2M) σ 12 (J + J + J ) σ 14 (H + I + M ) σ 15 (H + I + K ), σ 47 = σ 6 N + σ 7 (H + K ) σ 8 M σ 9 (J + J + J ) σ 10 N σ 11 N σ 12 (M I) + σ 14 K + σ 15 N, σ 48 = σ 6 N σ 7 M + σ 8 (H + I ) σ 9 (H + I + 2M ) σ 11 N +σ 12 K σ 13 N + σ 14 (K M) + σ 15 N, σ 49 = σ 2 σ 6 M σ 7 J σ 8 M σ 9 H, σ 50 = σ 5 2σ 7 N + σ 9 I 2σ 10 I 2σ 11 M + σ 12 (J 2J ) + σ 14 I + σ 15 I, σ 51 = σ 7 N σ 8 N + σ 9 K σ 10 M σ 11 (K + I ) σ 12 (M I ) σ 13 M σ 14 (J J ) + σ 15 M, σ 52 = σ 3 σ 7 M σ 10 J σ 11 M σ 12 H, σ 53 = σ 5 2σ 8 N + σ 9 K 2σ 11 M + σ 12 J 2σ 13 K

88 Gauree Shanker 197 198 199 200 201 202 +σ 14 (H 2M ) + σ 15 K, σ 54 = σ 4 σ 8 M σ 11 J σ 13 M σ 14 H, σ 55 = σ 5 σ 9 M σ 12 J σ 14 M σ 15 H. Now we shall deal with the conformally invariant scalar field S(x, y). Its h-covariant derivative S i with respect to the changed CΓ is defined by S i = i S ( j S) G j i. It is enough for the later use to treat a positively homogeneous scalar field S of degree zero in y i so that S ;1 = 0. Then from (3.6), we have (3.8) S i = S i + S ;2 (σ 2 l i + σ 6 m i + σ 7 n i + σ 8 p i + σ 9 q i ) 203 204 205 +S ;3 (σ 3 l i + σ 7 m i + σ 10 n i + σ 11 p i + σ 12 q i ) +S ;4 (σ 4 l i + σ 8 m i + σ 11 n i + σ 13 p i + σ 14 q i ) +S ;5 (σ 5 l i + σ 9 m i + σ 12 n i + σ 14 p i + σ 15 q i ). Since S i = S, 1 l i + S, 2 m i + S, 3 n i + S, 4 p i + S, 5 q i, from the equations (3.2) and (3.8) we have the relations: (3.9) S, 1 = S i l i = e σ (S, 1 +S ;2 σ 2 + S ;3 σ 3 + S ;4 σ 4 + S ;5 σ 5 ), 206 207 208 209 S, 2 = S i m i = e σ (S, 2 +S ;2 σ 6 + S ;3 σ 7 + S ;4 σ 8 + S ;5 σ 9 ), S, 3 = S i n i = e σ (S, 3 +S ;2 σ 7 + S ;3 σ 10 + S ;4 σ 11 + S ;5 σ 12 ), S, 4 = S i p i = e σ (S, 4 +S ;2 σ 8 + S ;3 σ 11 + S ;4 σ 13 + S ;5 σ 14 ), S, 5 = S i q i = e σ (S, 5 +S ;2 σ 9 + S ;3 σ 12 + S ;4 σ 14 + S ;5 σ 15 ). On the other hand, the v-covariant derivative S i with respect to the changed CΓ is defined by S i = i S = S i. Making use of the relation (3.2), this equation gives (3.10) S ;1 = LS i l i = 0, S ;2 = LS i m i = S ;2, 210 211 212 213 214 215 216 217 218 S ;3 = LS i n i = S ;3, S ;4 = LS i p i = S ;4, S ;5 = LS i q i = S ;5. Proposition 3.2. Let S be a conformally invariant scalar field, which is positively homogeneous of degree zero in y i. Then the conformal changes of scalar derivatives of S are given by (3.9) and (3.10). For the conformal change of the adapted components h α, J α, k α, h α, J α, k α of the six h-connection vectors h i, J i, k i, h i, J i, k i, from (3.1) and (2.10), we have m i j = e σ (σ j m i + m i j ), n i j = e σ (σ j n i + n i j ), p i j = e σ (σ j p i + p i j ), q i j = e σ (σ j q i + q i j ) which in view of (3.6) and (3.7) leads to (3.11) (a) h j = h j + {σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5 } l j + {σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 17 + σ 56 } m j + {σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 20 + σ 57 } n j + {σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 21 + σ 58 } p j + {σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 22 + σ 59 } q j.

On the conformal change of five-dimensional Finsler spaces 89 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 (b) J j = J j + {σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5 } l j + {σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 18 + σ 60 } m j + {σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 21 + σ 61 } n j + {σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 23 + σ 62 } p j, + {σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 24 + σ 63 } q j. (c) k j = k j + {σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5 } l j + {σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 19 + σ 64 } m j + {σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 22 + σ 65 } n j + {σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 24 + σ 66 } p j + {σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 25 + σ 67 } q j. (d) h j = h j + {σ 2u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5} l j + {σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 28 + σ 68 } m j + {σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 31 + σ 69 } n j + {σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 33 + σ 70 } p j + {σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 34 + σ 71 } q j. (e) J j = J j + {σ 2v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5} l j + {σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 29 + σ 72 } m j + {σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 32 + σ 73 } n j + {σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 34 + σ 74 } p j, + {σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 35 + σ 75 } q j. (f) k j = k j + {σ 2w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5} l j + {σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 39 + σ 76 } m j + {σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 42 + σ 77 } n j + {σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 44 + σ 78 } p j + {σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 45 + σ 79 } q j. where we have put σ 56 = σ 6 (J + J + J ) + σ 7 I + σ 8 K + σ 9 N, σ 57 = σ 7 (J + J + J ) + σ 10 I + σ 11 K + σ 12 N, σ 58 = σ 8 (J + J + J ) + σ 11 I + σ 13 K + σ 14 N, σ 59 = σ 9 (J + J + J ) + σ 12 I + σ 14 K + σ 15 N, σ 60 = σ 6 (H + I + M ) + σ 7 K + σ 8 K + σ 9 N, σ 61 = σ 7 (H + I + M ) + σ 10 K + σ 11 K + σ 12 N, σ 62 = σ 8 (H + I + M ) + σ 11 K + σ 13 K + σ 14 N, σ 63 = σ 9 (H + I + M ) + σ 12 K + σ 14 K + σ 15 N, σ 64 = σ 6 (H + I + K ) + σ 7 N + σ 8 N + σ 9 M, σ 65 = σ 7 (H + I + K ) + σ 10 N + σ 11 N + σ 12 M, σ 66 = σ 8 (H + I + K ) + σ 11 N + σ 13 N + σ 14 M, σ 67 = σ 9 (H + I + K ) + σ 12 N + σ 14 N + σ 15 M, σ 68 = σ 6 K + σ 7 I + σ 8 J + σ 9 M, σ 69 = σ 7 K + σ 10 I + σ 11 J + σ 12 M, σ 70 = σ 8 K + σ 11 I + σ 13 J + σ 14 M, σ 71 = σ 9 K + σ 12 I + σ 14 J + σ 15 M, σ 72 = σ 6 N + σ 7 I + σ 8 M + σ 9 J, σ 73 = σ 7 N + σ 10 I + σ 11 M + σ 12 J, σ 74 = σ 8 N + σ 11 I + σ 13 M + σ 14 J, σ 75 = σ 9 N + σ 12 I + σ 14 M + σ 15 J, σ 76 = σ 6 N + σ 7 M + σ 8 K + σ 9 M,

90 Gauree Shanker 266 267 268 σ 77 = σ 7 N + σ 10 M + σ 11 K + σ 12 M, σ 78 = σ 8 N + σ 11 M + σ 13 K + σ 14 M, σ 79 = σ 9 N + σ 12 M + σ 14 K + σ 15 M. ( Thus the adapted components h α, J α, k α, h α, J α, k α, of h i, J i, k i M 5, L(x, y) ) are given by in F 5 = (3.12) (a) h 1 = e σ {h 1 + σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5 }, h 2 = e σ {h 2 + σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 17 + σ 56 }, h 3 = e σ {h 3 + σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 20 + σ 57 }, h 4 = e σ {h 4 + σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 21 + σ 58 }, h 5 = e σ {h 5 + σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 22 + σ 59 }. 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 (b) J 1 = e σ {J 1 + σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5 }, J 2 = e σ {J 2 + σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 18 + σ 60 }, J 3 = e σ {J 3 + σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 21 + σ 61 }, J 4 = e σ {J 4 + σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 23 + σ 62 }, J 5 = e σ {J 5 + σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 24 + σ 63 }. (c) k 1 = e σ {k 1 + σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5 }, k 2 = e σ {k 2 + σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 19 + σ 64 }, k 3 = e σ {k 3 + σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 22 + σ 65 }, k 4 = e σ {k 4 + σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 24 + σ 66 }, k 5 = e σ {k 5 + σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 25 + σ 67 }. (d) h 1 = e σ {h 1 + σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5}, h 2 = e σ {h 2 + σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 28 + σ 68 }, h 3 = e σ {h 3 + σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 31 + σ 69 }, h 4 = e σ {h 4 + σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 33 + σ 70 }, h 5 = e σ {h 5 + σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 34 + σ 71 }. (e) J 1 = e σ {J 1 + σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5}, J 2 = e σ {J 2 + σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 29 + σ 72 }, J 3 = e σ {J 3 + σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 32 + σ 73 }, J 4 = e σ {J 4 + σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 34 + σ 74 }, J 5 = e σ {J 5 + σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 35 + σ 75 }. (f) k 1 = e σ {k 1 + σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5}, k 2 = e σ {k 2 + σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 39 + σ 76 }, k 3 = e σ {k 3 + σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 42 + σ 77 }, k 4 = e σ {k 4 + σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 44 + σ 78 }, k 5 = e σ {k 5 + σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 45 + σ 79 }. For the conformal change of the adapted components u α, v α, w α, u α, v α, w α, of six v-connection vectors u i, v i, w i, u i, v i, w i, we again use (3.1) and (2.11). Thus we get u j = e σ u j, v j = e σ v j, w j = e σ w j, u j = e σ u j, v j = e σ v j, w j = e σ w j, which lead to (3.13) (a) u 1 = u 1 = 0, u 2 = u 2, u 3 = u 3, u 4 = u 4, u 5 = u 5, 294 295 296 (b) v 1 = v 1 = 0, v 2 = v 2, v 3 = v 3, v 4 = v 4, v 5 = v 5, (c) w 1 = w 1 = 0, w 2 = w 2, w 3 = w 3, w 4 = w 4, w 5 = w 5, (d) u 1 = u 1 = 0, u 2 = u 2, u 3 = u 3, u 4 = u 4, u 5 = u 5,

On the conformal change of five-dimensional Finsler spaces 91 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 (e) v 1 = v 1 = 0, v 2 = v 2, v 3 = v 3, v 4 = v 4, v 5 = v 5, (f) w 1 = w 1 = 0, w 2 = w 2, w 3 = w 3, w 4 = w 4, w 5 = w 5. From (3.11) and (3.13), we have the following: Theorem 3.3. The adapted components of all the six v-connection vectors of fivedimensional Finsler space are invariant under any conformal change. Theorem 3.4. The h-connection vector h i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5 = 0, (ii) σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 17 + σ 56 = 0, (iii) σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 20 + σ 57 = 0, (iv) σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 21 + σ 58 = 0, (v) σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 22 + σ 59 = 0. Theorem 3.5. The h-connection vector J i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5 = 0, (ii) σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 18 + σ 60 = 0, (iii) σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 21 + σ 61 = 0, (iv) σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 23 + σ 62 = 0, (v) σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 24 + σ 63 = 0. Theorem 3.6. The h-connection vector k i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5 = 0, (ii) σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 19 + σ 64 = 0, (iii) σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 22 + σ 65 = 0, (iv) σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 24 + σ 66 = 0, (v) σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 25 + σ 67 = 0. Theorem 3.7. The h-connection vector h i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 u 2 + σ 3 u 3 + σ 4 u 4 + σ 5 u 5 = 0, (ii) σ 6 u 2 + σ 7 u 3 + σ 8 u 4 + σ 9 u 5 + σ 28 + σ 68 = 0, (iii) σ 7 u 2 + σ 10 u 3 + σ 11 u 4 + σ 12 u 5 + σ 31 + σ 69 = 0, (iv) σ 8 u 2 + σ 11 u 3 + σ 13 u 4 + σ 14 u 5 + σ 33 + σ 70 = 0, (v) σ 9 u 2 + σ 12 u 3 + σ 14 u 4 + σ 15 u 5 + σ 34 + σ 71 = 0. Theorem 3.8. The h-connection vector J i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 v 2 + σ 3 v 3 + σ 4 v 4 + σ 5 v 5 = 0, (ii) σ 6 v 2 + σ 7 v 3 + σ 8 v 4 + σ 9 v 5 + σ 29 + σ 72 = 0, (iii) σ 7 v 2 + σ 10 v 3 + σ 11 v 4 + σ 12 v 5 + σ 32 + σ 73 = 0, (iv) σ 8 v 2 + σ 11 v 3 + σ 13 v 4 + σ 14 v 5 + σ 34 + σ 74 = 0, (v) σ 9 v 2 + σ 12 v 3 + σ 14 v 4 + σ 15 v 5 + σ 35 + σ 75 = 0.

92 Gauree Shanker 337 338 339 340 341 342 343 Theorem 3.9. The h-connection vector k i of F 5 is invariant under σ-conformal change if and only if (i) σ 2 w 2 + σ 3 w 3 + σ 4 w 4 + σ 5 w 5 = 0, (ii) σ 6 w 2 + σ 7 w 3 + σ 8 w 4 + σ 9 w 5 + σ 39 + σ 76 = 0, (iii) σ 7 w 2 + σ 10 w 3 + σ 11 w 4 + σ 12 w 5 + σ 42 + σ 77 = 0, (iv) σ 8 w 2 + σ 11 w 3 + σ 13 w 4 + σ 14 w 5 + σ 44 + σ 78 = 0, (v) σ 9 w 2 + σ 12 w 3 + σ 14 w 4 + σ 15 w 5 + σ 45 + σ 79 = 0. 344 345 346 347 348 349 350 351 352 353 354 References [1] M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto Univ. 16 (1976), 25-50. [2] M. Matsumoto, Conformal change of two-dimensional Finsler space and curvature of one-form metric, Tensor N. S. 53 (1993), 149-161. [3] M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars, Demonstratio Mathematica 6 (1973), 1-29. [4] M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsu, 520, Japan, 1986. [5] M. Matsumoto and R. Miron, On an invariant theory of Finsler spaces, Period. Math. Hungar. 8 (1977), 73-82. 355 [6] A. Moor, Über. die Torsions-Und Krümmung invarianten der dreidimensonalen 356 Finslerschen Räume, Math. Nachr. 16 (1957), 85-99. 357 [7] T. N. Pandey and D. K. Divedi, A theory of four-dimensional Finsler spaces in 358 terms of scalars, J. Nat. Acad. Math. 11 (1997), 176-190. 359 [8] B. N. Prasad and D. K. Diwedi, Conformal change of three-dimensional Finsler 360 space, Tensor N. S. 61 (1999), 148-157. 361 [9] B. N. Prasad, G. C. Chaubey and G. S. Patel, The four-dimensional Finsler 362 space with constant unified main scalar, Bull. Calcutta Math. Soc. 99, 2 (2007), 363 113-122. 364 [10] B. N. Prasad and G. Shanker, Conformal change of four-dimensional Finsler 365 space, Bull. Calcutta Math. Soc. 102, 5 (2010), 423-432. 366 [11] G. Shanker, G. C. Chaubey and V. Pandey, On the main scalars of a five- 367 dimensional Finsler space, Int. J. Pure Appl. Math. 5, 2 (2012), 69-78. 368 [12] G. Shanker, Five dimensional Finsler space with constant unified main scalar, 369 Tensor N. S. 72, 1 (2010), 79-85. 370 [13] U. P. Singh and B. Kumari, Conformal change of three-dimensional Finsler space 371 with constant unified main scalars, J. Pur. Acad. Sci. 6 (2000), 1-13. 372 373 374 375 376 377 Author s address: Gauree Shanker Department of Mathematics and Statistics, Banasthali University, Banasthali, Rajasthan-304022, India. E-mail: grshnkr2007@gmail.com