Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Σχετικά έγγραφα
Butadiene as a Ligand in Open Sandwich Compounds

Supporting Information: Design principles for α-tocopherol analogues

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003 Chem. Eur. J Supporting Information. for

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

ELECTRONIC SUPPORTING INFORMATION

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

Supplementary Information for

Fused Bis-Benzothiadiazoles as Electron Acceptors

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Electronic Supplementary Information:

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Supporting Information

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Supporting Information

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information

Supporting Information

Supporting Information

difluoroboranyls derived from amides carrying donor group Supporting Information

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Table of Contents 1 Supplementary Data MCD

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Molecular structure, spectral analysis and hydrogen bonding analysis of ampicillin trihydrate: A combined DFT and AIM approach

of the methanol-dimethylamine complex

Electronic Supplementary Information

Supplementary materials

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Supporting Information for: electron ligands: Complex formation, oxidation and

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

the total number of electrons passing through the lamp.

Supporting Information

Supporting Information

Electronic Supplementary Information (ESI)

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Supporting Information

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

ELECTRONIC SUPPLEMENTARY MATERIAL-RSC Adv.

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

The effect of curcumin on the stability of Aβ. dimers

Channels and Monomolecular Nanotubes

SUPPLEMENTARY INFORMATION

Electronic structure and spectroscopy of HBr and HBr +

Supplementary Information. Unveiling the complex vibronic structure of canonical adenine cation

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Electronic supplementary information for

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

SUPPLEMENTARY INFORMATION

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supporting Information

Oxazines: A New Class Of Second-Order Nonlinear Optical Switches Supporting Information

Supplementary Information

Energy Level Analysis of Nano and Organic Semiconductor by Photoelectron Spectroscopy

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Electronic Supplementary Information

Electronic Supplementary Information (ESI)

Supporting Information

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Electronic Supplementary Information

UMI Number: All rights reserved

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

[1] P Q. Fig. 3.1

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

SUPPORTING INFORMATION TO. On Two Alizarin Polymorphs

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Supporting Information

CE 530 Molecular Simulation

# Institute of Chemistry of the Academy of Sciences of Republic of Moldova, Academiei Str. 3,

Far infrared spectra of solid state aliphatic amino acids in different protonation states

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Transcript:

Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006

Twisting of Conjugated Oligomers and Polymers: Case Study of Oligo- and Polythiophene Sanjio S. Zade and Michael Bendikov* Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel Tel: +972-8-9346028; Fax: +972-8-9344142 E-mail: michael.bendikov@weizmann.ac.il S1

Twist angle 0 View 1 View 2 2 4 6 S2

8 Figure 1 cont. S3

10 12 14 16 18 S4

Figure 1 cont. S5

20 22 24 26 28 S6

Figure 1 cont. S7

30 32 34 36 Figure S1: Two views of optimized sexithiophene each for increment of 2 interring torsion angle S8

Figure S2: PBC (B3LYP/6-31G*) optimized unit cell (24 monomers) of the polymer with 15 interring twist angle (Spiral Conformation) Figure S3: PBC (B3LYP/6-31G*) optimized unit cell (12 monomers) of the polymer with 30 interring twist angle (Spiral Conformation) S9

Figure S4: PBC (B3LYP/6-31G*) optimized unit cell (6 monomers) of the polymer with 60 interring twist angle (Spiral Conformation) S10

Figure S5: PBC (B3LYP/6-31G*) optimized unit cell (4 monomers) of the polymer with 90 interring twist angle (Spiral Conformation) Figure S6: PBC (B3LYP/6-31G*) optimized unit cell of the polymer with 30 interring twist angle (updown Conformation) [2 monomer has taken as a unit cell] Figure S7: PBC (B3LYP/6-31G*) optimized unit cell of the polymer with 60 interring twist angle (updown Conformation) [2 monomer has taken as a unit cell] S11

Figure S8: PBC (B3LYP/6-31G*) optimized unit cell of the polymer with 90 interring twist angle (updown Conformation) [2 monomer has taken as a unit cell] Figure S9: PBC (B3LYP/6-31G*) optimized unit cell of the poly(3-methylthiophene) [2 monomer has taken as a unit cell] Figure S10: PBC (B3LYP/6-31G*) optimized unit cell of the poly(3,4-methylthiophene) [2 monomer has taken as a unit cell] (Interring bond angle: 68 ) S12

Figure S11: PBC (B3LYP/6-31G*) optimized unit cell of the poly(3,4-methylthiophene) [5 monomer has taken as a unit cell] (Interring bond angle: ~33 ) Figure S12: PBC (B3LYP/6-31G*) optimized unit cell of the polythiophene having 3,4-dimethyl groups on alternate thiophene ring [2 monomer has taken as a unit cell] (Interring bond angle: ~40 ) Figure S13: PBC (B3LYP/6-31G*) Optimized unit cell of the polythiophene having 3,4-diethyl groups on alternate thiophene ring [2 monomer has taken as a unit cell] (Interring bond angle: ~45 ) S13

Figure S14: PBC (B3LYP/6-31G*) Optimized unit cell of the polythiophene having 3,4-dibutyl groups on alternate thiophene ring [2 monomer has taken as a unit cell] (Interring bond angle: ~46 ) Figure S14: PBC (B3LYP/6-31G*) Optimized unit cell of the polycyclopenta[c]thiophene S14

6.1 6T 6.0 IP (ev) 5.9 5.8 5.7 0 5 10 15 20 25 30 35 40 Figure S15. Change in IP values for the sexithiophene with twist angle S15

Tables for Relative Energies, Difference in Energies, Frontier Orbital Energies and Band Gaps Table S1. 6T Interring Relative Energy E (kcalmol -1 ) B3LYP/6-31G* 0-3312.077399 2-3312.07745-0.032 4-3312.077473-0.046 6-3312.07746-0.038 8-3312.07741-0.007 10-3312.077333 0.041 12-3312.077251 0.093 14-3312.077167 0.145 16-3312.077067 0.208 18-3312.076938 0.289 20-3312.076761 0.400 22-3312.076523 0.550 24-3312.076232 0.733 26-3312.075893 0.945 28-3312.075496 1.194 30-3312.075036 1.483 32-3312.074547 1.789 34-3312.073945 2.168 36-3312.073374 2.526 Table S2. 6T-updown Interring Relative Energy E (kcalmol -1 ) B3LYP/6-31G* 0-3312.0773098 15-3312.0773986-0.06 30-3312.0760081 0.82 45-3312.0711052 3.89 S16

60-3312.0630408 8.95 Table S3. 15T Interring Relative Energy E (kcalmol -1 ) B3LYP/6-31G* 0-8278.4145810 6.4-8278.4145142 0.04 12.9-8278.4137743 0.51 15-8278.4132662 0.83 30-8278.4065980 5.01 45-8278.3899024 15.49 Table S4. 6T Interring HOMO LUMO Gap 0-4.79686-2.18128 2.62 6-4.80856-2.1701 2.70 12-4.83577-2.14591 2.69 18-4.89129-2.09475 2.80 24-4.96557-2.02427 2.94 30-5.05619-1.93774 3.12 36-5.1517-1.84685 3.30 Table S5. 6T-updown Interring HOMO (ev) LUMO (ev) Gap (ev) 0-4.79686-2.18128 2.62 15-4.84067-2.12985 2.71 30-4.95496-2.00060 2.95 45-5.12775-1.82100 3.31 60-5.38082-1.58752 3.79 Table S6. 15T S17

Interring HOMO (ev) LUMO (ev) Gap (ev) 0-4.64284-2.46428 2.18 6.4-4.66924-2.43653 2.23 12.9-4.70026-2.41258 2.29 15-4.73754-2.37612 2.36 30-4.98299-2.13992 2.84 45-5.32068-1.81066 3.51 Table S7. 6T-Radical Cation Interring Relative Energy E (kcalmol -1 ) B3LYP/6-31G* 0-3311.866719 2-3311.866699 0.01 4-3311.866568 0.09 6-3311.866359 0.23 8-3311.866062 0.41 10-3311.865668 0.66 12-3311.865176 0.97 14-3311.864572 1.35 16-3311.86385 1.80 18-3311.863017 2.32 20-3311.86207 2.92 22-3311.860992 3.59 24-3311.859782 4.35 26-3311.858446 5.19 28-3311.856988 6.11 30-3311.8554 7.09 32-3311.853739 8.15 34-3311.851963 9.26 36-3311.850093 10.43 Table S8. 6T-radical Cation S18

Interring SOMO (α) LUMO Eg(α) HOMO SOMO (β) Eg(β) 0-7.59938-5.29456 2.30-7.84266-6.64290 1.20 6-7.60700-5.28613 2.32-7.85272-6.65841 1.19 12-7.64075-5.28014 2.36-7.87830-6.68943 1.19 18-7.69109-5.26327 2.43-7.90524-6.74494 1.16 24-7.76265-5.23987 2.52-7.93953-6.81324 1.13 30-7.85272-5.21265 2.64-7.98171-6.89950 1.08 36-7.96157-5.19660 2.76-8.04429-7.00046 1.04 Table S9. 6T-radical Cation-TD Interring Eg(α) (ev) Eg(α) nm f Eg(β) (ev) Eg(β) nm f 0 1.787 693.9 1.8338 0.943 1314.3 0.4287 6 1.795 690.9 1.8101 0.947 1310.0 0.4377 12 1.814 683.5 1.7304 0.950 1305.8 0.4642 18 1.845 671.9 1.5789 0.945 1311.7 0.509 24 1.886 657.6 1.3247 0.934 1327.8 0.5584 30 1.906 650.4 0.6953 0.912 1359.1 0.5973 36 2.097 591.3 0.9214 0.886 1399.9 0.607 Table S10. 15T- Radical Cation Interring Relative Energy E (kcalmol -1 ) B3LYP/6-31G* 0-8278.2233486 15-8278.2185407 3.02 30-8278.2029144 12.82 45-8278.1742564 30.81 Table S11. 15T-Radical Cation Interring SOMO (α) LUMO Eg(α) HOMO SOMO (β) Eg(β) S19

0-6.21486-4.24202 1.97-6.01730-5.74546 0.27 15-6.30139-4.14950 2.15-6.07826-5.84097 0.24 30-6.52942-3.88473 2.64-6.25785-6.08179 0.18 45-6.84127-3.51193 3.33-6.52915-6.39881 0.13 Table S12. 6T-Dication Interring Relative Energy E (kcalmol -1 ) B3LYP/6-31G* 0-3311.5549219 6-3311.5541965 0.46 18-3311.5482967 4.16 24-3311.5431044 7.42 36-3311.5292081 16.14 Table S13. 6T-dication Interring HOMO (ev) LUMO (ev) HOMO- LUMO Gap (ev) 0-10.61661-9.32079 1.30 6-10.62286-9.32732 1.30 18-10.66477-9.37086 1.29 24-10.69797-9.40079 1.30 36-10.79130-9.45630 1.34 Table S14. 6T-Ionization Potential Interring Ionization Potential (ev) 6T E 0 5.733 2 5.735 0.001 4 5.739 0.005 6 5.744 0.010 8 5.751 0.016 10 5.760 0.025 S20

12 5.771 0.036 14 5.785 0.049 16 5.802 0.064 18 5.821 0.082 20 5.842 0.102 22 5.865 0.124 24 5.890 0.147 26 5.917 0.171 28 5.946 0.197 30 5.976 0.226 32 6.009 0.256 34 6.040 0.287 36 6.076 0.318 Table S15. Charge Distribution in 6T cation radical at different twist angle. Ring 6T-0 6T-90 6T-150 6T-180 Number 1 0.173 0.166 0.153 0.143 2 0.162 0.163 0.166 0.168 3 0.165 0.171 0.181 0.188 4 0.165 0.171 0.181 0.188 5 0.162 0.164 0.166 0.168 6 0.173 0.165 0.153 0.143 Table S16. Effect of twisting on band gap and relative energies in polythiophene (PBC- B3LYP/6-31G*). Twist Polythiophene angle Up-down twisting Spiral twisting Band gap (ev) E a (kcalmol -1 ) Band gap (ev) E (kcalmol -1 ) 0 2.06 2.06 15 2.15 0.08 2.26 0.06 30 2.47 0.59 2.81 0.41 60 3.47 3.40 4.30 2.27 90 5.09 7.30 4.91 3.45 Table S17. Effect of arrangement (head-to-tail (HT) and head-to-head(hh)) on band gap and relative energies in polythiophene (PBC-B3LYP/6-31G*). S21

Absolute energy Twist angle Band Gap (ev) E a (kcalmol -1 ) Poly(3-methylthiophene)-HT -1182.263432 0 2.00 Poly(3-methylthiophene)-HH -1182.261385 5 2.03 1.28 polycyclopenta[c]thiophene -1337.100232 0 2.03 Poly(3-ethylthiophene)-HT-conf1-1260.886823 0 1.94 0.40 Poly(3-ethylthiophene)-HT-conf2-1260.887454 20 2.18 0.00 Poly(3-ethylthiophene)-HH-conf1-1260.884015 22 2.18 2.16 Poly(3-ethylthiophene)-HH-conf2-1260.884869 32 2.43 1.62 Poly(3-ethylthiophene)-HH-planar b -1260.883879 0 1.97 2.24 a energy difference compared to minimal structure. b constrained to be planar S22