Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas

Σχετικά έγγραφα
Analysis & Computation for the Semiclassical Limits of the Nonlinear Schrodinger Equations

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Markov chains model reduction

Example Sheet 3 Solutions

High order interpolation function for surface contact problem

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Homework 8 Model Solution Section

The challenges of non-stable predicates

The Pohozaev identity for the fractional Laplacian

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Heisenberg Uniqueness pairs

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Graded Refractive-Index

Martti M. Salomaa (Helsinki Univ. of Tech.)

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Approximation of dynamic boundary condition: The Allen Cahn equation

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

The ε-pseudospectrum of a Matrix

Higher Derivative Gravity Theories

Forced Pendulum Numerical approach

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

Wavelet based matrix compression for boundary integral equations on complex geometries

Uniform Convergence of Fourier Series Michael Taylor

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Matrices and Determinants

Second Order RLC Filters

Approximation of distance between locations on earth given by latitude and longitude

Homomorphism in Intuitionistic Fuzzy Automata

Lecture 26: Circular domains

Lecture 34 Bootstrap confidence intervals

Variational Wavefunction for the Helium Atom

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Section 8.3 Trigonometric Equations

Phase-Field Force Convergence

Congruence Classes of Invertible Matrices of Order 3 over F 2

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices


Every set of first-order formulas is equivalent to an independent set

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Quick algorithm f or computing core attribute

Ηλεκτρονικοί Υπολογιστές IV

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Reminders: linear functions

2 Composition. Invertible Mappings

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

EE512: Error Control Coding

6.3 Forecasting ARMA processes

Geodesic paths for quantum many-body systems

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

SOME PROPERTIES OF FUZZY REAL NUMBERS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Areas and Lengths in Polar Coordinates

Other Test Constructions: Likelihood Ratio & Bayes Tests

Iterated trilinear fourier integrals with arbitrary symbols

Inverse trigonometric functions & General Solution of Trigonometric Equations

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Fundamentals of Signals, Systems and Filtering

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Finite difference method for 2-D heat equation

Discretization of Generalized Convection-Diffusion

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

4.6 Autoregressive Moving Average Model ARMA(1,1)

Derivation of Optical-Bloch Equations

ST5224: Advanced Statistical Theory II

Space-Time Symmetries

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Abstract Storage Devices

An asymptotic preserving and well-balanced scheme for a chemotaxis model

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Lecture 21: Properties and robustness of LSE

The Simply Typed Lambda Calculus

A General Note on δ-quasi Monotone and Increasing Sequence

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Lecture 21: Scattering and FGR

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Spherical Coordinates

Statistical Inference I Locally most powerful tests

Solutions to Exercise Sheet 5

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

Transcript:

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas Weizhu Bao Department of Mathematics & Center for Computational Science and Engineering National University of Singapore Email: bao@math.nus.edu.sg URL: http://www.math.nus.edu.sg/~bao Collaborators: Y. Cai (Postdoc, NUS), M. Rosenkranz (Postdoc, NUS), N. Ben Abdallah (UPS, France), Z. Lei (Fudan University, China), H. Wang (Yunan Univ. Economics and Finance, China & NUS)

Outline Motivation---dipolar BEC Mathematical models Ground state and its theory Dynamics and its efficient computation Dimension reduction Conclusion & future challenges

Degenerate Quantum Gas Typical degenerate quantum gas Liquid Helium 3 & 4 Bose-Einstein condensation (BEC) Boson vs Fermion condensation One component, two-component & spin-1 Boson-fermion mixture Typical properties Low (mk) or ultracold (nk) temperature Quantum phase transition & closely related to nonlinear wave Superfluids flow without friction & quantized vortices

Recent Developments Quantum transport Move a BEC in an optical lattice Atomic circuit, Quantum computing Interaction of BEC and particles Quantized vortices for superfluidity Vortex states Vortex lattice patterns Interaction between vortices Fermion condensate, Boson-fermion, atom-molecule,

Dipolar Quantum Gas Experimental setup Molecules meet to form dipoles Cool down dipoles to ultracold Hold in a magnetic trap Dipolar condensation Degenerate dipolar quantum gas Experimental realization Chroimum (Cr5) 005@Univ. Stuttgart, Germany PRL, 94 (005) 160401 Big-wave in theoretical study A. Griesmaier,et al., PRL, 94 (005)160401

BEC with strong DDI 164 Dy Lu, Burdick, Youn & Lev, PRL 107 (011), 190401.

Mathematical Model Gross-Pitaevskii equation (re-scaled) 1 i xt V x ( U ) dip xt t ψ β ψ λ ψ ψ (,) = + ext( ) + + (,) Trap potential Interaction constants 1 Vext( z) = x + y + z ( γ x γ y γ z ) Long-range dipole-dipole interaction kernel ψ = ψ( xt,) x 4π Na s mnµµ β = = a 0 dip (short-range), λ 0 3 a0 (long-range) 3 1 3( n x ) / x 3 1 3cos ( θ ) Udip( x) = =, 3 3 4 π x 4 π x 3 n fixed & satisfies n = 1 References: L. Santos, et al. PRL 85 (000), 1791-1797 S. Yi & L. You, PRA 61 (001), 041604(R); D. H. J. O Dell, PRL 9 (004), 50401 3

Mathematical Model Mass conservation (Normalization condition) N(): t = ψ(,) t = ψ(,) xt dx ψ(,0) x dx= 1 Energy conservation Long-range interaction kernel: It is highly singular near the origin!! At O 3 singularity near the origin!! x Its Fourier transform reads 3( n ξ ) No limit near origin in phase space!! Udip( ξ) = 1 + ξ ξ Bounded & no limit at far field too!! 3 3 1 β 4 λ E( ψ(, t)): = ψ + Vext( x) ψ + ψ + ( Udip ψ ) ψ dx E( ψ0) 3 Physicists simply drop the second singular term in phase space near origin!! Locking phenomena in computation!! 1 3

A New Formulation Using the identity (O Dell et al., PRL 9 (004), 50401, Parker et al., PRA 79 (009), 013617) 3 3( n x) 1 Udip( x) = 1 = δ ( x) 3 3 nn 4πr r 4πr 3( n ξ ) Udip( ξ ) = 1+ ξ Dipole-dipole interaction becomes U r = x & = n & = ( ) dip = 3 nn n nn n n ψ ψ ϕ 1 ϕ = ψ ϕ = ψ 4π r

A New Formulation Gross-Pitaevskii-Poisson type equations (Bao,Cai & Wang, JCP, 10 ) 1 i ψ xt V x β λ ψ λ ϕ ψ xt t ϕ = ψ ϕ = (,) = + ext( ) + ( ) 3 nn (,) ( xt,) ( xt,), lim ( xt,) 0 x Energy 1 β λ 4 3λ E( ψ(, t)): ψ Vext( x) ψ = + + ψ + n ϕ dx 3

Ground State Non-convex minimization problem Nonlinear Eigenvalue problem (Euler-Language eq.) 1 µφ β λ φ λ ϕ φ ϕ = φ ϕ = φ = ( x) = + Vext( x) + ( ) 3 nn ( x) Chemical potential { } E( φ ) : = min E( φ) with S = φ φ = 1& E( φ) < g φ S ( x) ( x), lim ( x) 0, 1 x 1 4 µ : = φ + Vext( x) φ + ( β λ) φ + 3 λ n ϕ dx 3 β λ 3λ = E( φ) + φ + ϕ dx, & ϕ = φ 3 4 n

Ground State Results Theorem (Existence, uniqueness & nonexistence) (Bao, Cai & Wang, JCP, 10 ) Assumptions V x x V x = + 3 ext( ) 0, & lim ext( ) (confinement potential) x Results There exists a ground state Positive ground state is unique Nonexistence of ground state, i.e. Case I: Case II: β < 0 β φg S if β 0 & λ β φ S i 0 φ e θ φ with θ g = lim E ( φ) = β β 0 & λ > β or λ < g 0

Key Techniques in Proof Estimate on the Poisson equation ϕ = φ = ρ ϕ = ϕ ϕ = ϕ = ρ = φ : & lim ( x) 0 n ( ) x Positivity & semi-lower continuous E( φ) E( φ ) = E( ρ), φ S with ρ = φ E( ρ ) ρ The energy is strictly convex in if Confinement potential Non-existence result β β 0 & λ β 1 1 x + y z φ ε 1, ε x 1/ 1/4 ( πε1) ( πε ) ε1 ε ( ) = exp exp, x 3 4

Numerical Method for Ground State Gradient flow with discrete normalization 1 φ( xt,) = Vext( x) ( β λ) φ + 3 λ nnϕ φ( xt,), t ϕ xt = φ xt ϕ xt = x Ω t t< t φ( xt, ) φ (,) (,), lim (,) 0, & n n+ 1, x + n+ 1 ( xt, n+ 1): = φ( xt, n+ 1) =, x Ω& n 0, φ( xt, n+ 1) φ( xt, ) = ϕ( xt, ) = 0, t 0; φ( x,0) = φ ( x) 0, x Ω, with φ = 1. x Ω x Ω 0 0 Full discretization Backward Euler sine pseudospectal (BESP) method Avoid to use zero-mode in phase space via DST!!

Dynamics and its Computation The Problem 1 i ψ( xt,) = + Vext( x) + ( β λ) ψ 3 λ nnϕ ψ( xt,) t ϕ = ψ ϕ = > ψ Mathematical questions Existence & uniqueness & finite time blow-up??? Existing results 3 ( xt,) ( xt,), lim ( xt,) 0, x, t 0 x ψ 3 ( x,0) = 0( x), x, Carles, Markowich & Sparber, Nonlinearity, 1 (008), 569-590 Antonelli & Sparber, 09, preprint --- existence of solitary waves.

Well-posedenss Results Theorem (well-posedness) (Bao, Cai & Wang, JCP, 10 ) Assumptions 3 3 α 3 (i) Vext( x) C ( ), Vext( x) 0, x & D Vext( x) L ( ) α 1 3 (ii) ψ 0 X= u H ( ) u = u + u + Vext( x) u( x) dx< X L L 3 Results Local existence, i.e. T (0, ], s. t. the problem has a unique solution ψ C([0, T ), X) max If β β 0 & λ β global existence, i.e. max T max = +

Finite Time Blowup Results Theorem (finite time blowup) (Bao, Cai & Wang, JCP, 10 ) Assumptions Results: β (i) β<0 or β 0 & λ < or λ> β 3 (ii) 3 V ( x) + x V ( x) 0, x For any ψ ( x ) X, there exists finite time blowup, i.e. 0 If one of the following conditions holds (i) E( ψ 0) < 0 (ii) E( ψ ) = 0 & Im ψ ( x) ( x ψ ( x)) dx< 0 ext 0 0 0 3 ext T max < + (iii) E( ψ0) > 0 & Im ψ0( x) ( x ψ0( x)) dx< 3 E( ψ0) xψ0 L 3

Numerical Method for dynamics Time-splitting sine pseudospectral (TSSP) method, [ tn, t n + 1] Step 1: Discretize by spectral method & integrate in phase space exactly 1 i tψ(,) xt = ψ Step : solve the nonlinear ODE analytically i tψ( xt,) = Vext( x) + ( β λ) ψ( xt,) 3 λ nnϕ( xt,) ψ( xt,) ϕ( xt,) = ψ( xt,), ψ xt = ψ xt = ψ xt ϕ xt = ϕ xt i tψ( xt, ) = Vext( x) + ( β λ) ψ( xt, n) 3 λ nnϕ( xt, n) ψ( xt,) ϕ( xt, n) = ψ( xt, n), i( t tn)[ Vext ( x) + ( β λψ ) ( xt, n) 3 λ nnϕ( xt, n)] ψ( xt, ) = e ψ( xt, ) t( (, ) ) 0 (, ) (, n) & (, ) (, n) n

Dimension Reduction Gross-Pitaevskii-Poisson equations 1 i ψ( xt,) = + Vext( x) + ( β λ) ψ 3 λ nnϕ ψ( xt,) t ϕ xt = ψ xt ϕ xt = x t> Strongly anisotropic potential 1 Vext( x) = γ x x + γ y y + γ z z ( ) Case I: 3D D T z x y & n = ( n1, n, n3), n = n1 + n + n3 = 1 Case II: 3D 1D γ γ γ 3 (,) (,), lim (,) 0,, 0 x γ γ & γ γ z x y x

Dimension Reduction Existing results BEC without dipole-dipole interaction: λ = 0 Formal asymptotic (Bao, Markowich, Schmeiser & Weishaupl, M3AS, 05 ) Numerical results (Bao, Ge, Jaksch, Markowich & Weishaeupl, CPC, 07 ) Rigorous proof (Ben Abdallah, Mehats et al., SIMA, 05; JDE 08 ) From N-body to mean field theory (Lieb, Seiringer & Yngvason, CMP, 04 ; Erdos, Schlein & Yau, Ann. Math., 10 ) Dipolar BEC (Carles, Markowich & Sparber, Nonlinearity, 08 ) formal result

Dimension Reduction (3D D) L Assumptions z γ z γ x & γ y = O(1) & Vext( x) = V D( xy, ) +, ε : = 4 ε Decomposition of the linear operator 1 1 L: = + Vext ( x) = + V D( xy, ) + L 1 z 1 1 z = + = + ε ε Ansatz z zz 4 zz it 1 z ψ( xyzt,,,) e ε ψ(, xyt,) ωε() z & ωε() z = exp 1/4 ( επ) ε z 1 γ z

Dimension Reduction (3D D) D equations (Bao, Cai, Lei, Rosenkranz, PRA, 10 ) 1 β λ(1 3 n3 ) i ψ( xyt,, ) = [ + V D( xy, ) + ψ t ε π ϕ D ( xyt,,) = Uε ψ, 3 λ ( n n n3 ) ϕ ] ψ ( xyt,,) ( s ) 1 exp / U (, x y) = U () r = ds, r = x + y D D ε ε 3/ π r + ε s

Asymptotic of D Kernel For fixed U D ε () r When π ε > 0 3/ ε 0 1 ε D 1 ε ( ε ) ln r+ ln + C, r 0 1, π r U () r, r 0 π r > r

Fourier Transform of D Kernel Fourier transform ( ) 1 exp ε s / D D Uε ( ξ1, ξ) = Uε ( ξ ) = ds π ξ + s Asymptotic For fixed When D U ε ε > 0 1, ξ 0 ξ ( ξ ) 1/ 1, ξ π ε ξ ε 0 1 U ε ( ξ ), ξ ξ D

Ground State Results for quais-d f f L ( ) L ( ) Cb : = inf ---- Gagliardo-Nirenberg inequality 1 4 0 f H ( ) f 4 L ( ) Theorem (Existence & uniqueness) (Bao, Ben Abdallah, Cai, SIMA, 1 ) V ( x) 0, x & lim V ( x) = + (confinement potential) Results D There exists a ground state Case I: Or case II x i 0 Positive ground state is unique g e θ g with Case I: λ 0 & β λ 0 Or case II λ ( λ < 0 & β + 1+ 3 n ) 3 1 0 No ground state if λ ( β + 1 3n ) 3 < ε πc b D φ S λ 0& β λ > ε πcb g λ λ < 0 & β + ( 1+ 3 n3 1 ) > ε πc b if φ = φ θ 0

γ γ = = γ x : ε 0 z

Dimension Reduction (3D D) D equations when ε 0 (Bao, Cai, Lei, Rosenkranz, PRA, 10 ) 1 β λ + 3λn3 i ψ( xyt,, ) = [ + V D( xy, ) + ψ t ε π 3 λ ( n n n3 ) ϕ ] ψ ( xyt,,) ϕ xyt = ψ xyt ϕ xyt = 1/ ( ) (,,) (,,), lim (,,) 0 ( xy, ) Energy 1 1 E( ψ(, t)): = { ψ + V ( x) ψ + ( β λ + 3 λn ) ψ 3 ε π 4 D 3 3λ 1/4 1/4 + [ n ( ) ϕ n3 ( ) ϕ ]} dx 4

Ground State Results for quais-d V x x V x D( ) 0, & lim D( ) = + (confinement potential) x Theorem (Existence & uniqueness) (Bao, Ben Abdallah, Cai, SIMA, 1 ) There exists a ground state Case I: Or case II Or case III Positive ground state is unique Case I: λ = 0 & β 0 Or case II Or case III φ S λ < 0, n3 1 / & β λ 1 3n3 0 No ground state > 0& n3 0 or < 0&n3 < 1 or = 0& < Cb g λ = 0& β > ε πcb λ > = β λ > ε π 0, n3 0 & Cb λ > 0, n = 0 & β λ 3 if ( ) λ < n β λ n > ε πc 0, 3 1 / & 1 3 3 b i 0 φ e θ φ with θ g = g ( ) λ λ λ β ε π 0

Well-posedness & convergence rate Well-posedness of the Cauchy problem related to the D equations Finite time blow-up may happen!! Theorem (convergence rate) (Bao, Ben Abdallah, Cai, SIMA, 1 ) β Assume β 0, λ β, β = O( ε), λ = O( ε) Then we have it ε ψ(, xyzt,,) e ψ( xyt,,) ω () z Cε, 0 t T ε L T

Dimension Reduction (3D 1D) Assumptions x + y γ x = γ y γ z = O(1) & Vext( x) = V1 D( z) +, ε : = 4 ε Decomposition of the linear operator 1 1 L: = + V ( x) = + V ( z) + L ext zz 1D xy 1 γ x L Ansatz 1 x + y 1 1 x + y = + = + ε ε xy xy 4 xy it 1 x ε ψ( xyzt,,, ) e ψ( zt, ) ωε( xy, ) & ωε( xy, ) = exp πε + y ε

Dimension Reduction (3D 1D) 1D equations (Bao, Cai, Lei, Rosenkranz, PRA, 10 ) 1 β + λ(1 3 n3 ) i ψ(,) zt = [ zz + V1 D() z + ψ t 4πε Linear case if 3 λ(1 3 n3 ) + 8ε π ϕ ] ψ(,) zt z /ε 1D 1 D e s /ε ϕ( z,) t = Uε ψ, Uε ( z) = e ds, π z n β λ = 1/3& = 0& 0 3 zz

Asymptotic of 1D Kernel For fixed U 1D ε When ε > 0 1 z + Oz ( ), z 0 πε ( z) ε, z π z ε 0 1D 1, z = 0 Uε ( z) 0, z 0

Fourier Transform of 1D Kernel Fourier transform Asymptotic For fixed When 1D U ε ε > 0 U 1D ε ε ε γe ln ξ ln, ξ 0 π ( ξ ), ξ ε π ξ ε 0 ( ε s ) ε exp / ( ξ ) = ds, 0 π ξ + s 1 D U ε ( ξ )??, ξ

Ground State Results for quais-1d V ( z) 0, z & lim V ( z) = + (confinement potential) 1D Theorem (Existence & uniqueness) (Bao, Ben Abdallah, Cai, SIMA, 1 ) There exists a ground state Positive ground state is unique Case I: ( n ) Or case II for any Dynamics results global well-posedness of the Cauchy problem Convergence rate if it z 1D φ S λ 1 3 0 & β λ(1 3 n ) 0 3 3 g i 0 φ φ θ ( n3) ( n3) g βλε,,,n 1 = e θ with λ 1 3 < 0 & β + λ 1 3 / 0 β = O ε λ = ε ( )& O( ) ε ψ( xyzt,,,) e ψ(,) ztω (, xy) Cε, 0 t T ε L T g 0

γ x 1 γ : = γ = ε z

Reduction in Multilayered Potential With multilayered potential in z-direction V ( x) = V ( xy, ) + Vsin ( πz) Vω ext D 0 0

Reduction in Multilayered Potential GPEs with infinite many equations; Effective single-mode approximation; Bogoliubov enegies (Rosenkranz, Cai &Bao, PRA, 88 (013) 013616)

Conclusion & future challenges Conclusion Ground state in 3D existence, uniqueness & nonexistence Dynamics in 3D well-posedness & finite time blowup Efficient numerical methods via DST Dimension Reduction --- 3D D & 3D1D Ground states and dynamics in quasi-d & quasi-1d Future challenges Convergence rate for reduction in O(1) regime In rotating frame & multi-component & spin-1 Dipolar BEC with random potential disorder!!