High Energy Break-Up of Few-Nucleon Systems Misak Sargsian Florida International University

Σχετικά έγγραφα
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

4.6 Autoregressive Moving Average Model ARMA(1,1)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Section 8.3 Trigonometric Equations

1 String with massive end-points

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

derivation of the Laplacian from rectangular to spherical coordinates

Areas and Lengths in Polar Coordinates

6.3 Forecasting ARMA processes

Math221: HW# 1 solutions

Statistical Inference I Locally most powerful tests

Exercises to Statistics of Material Fatigue No. 5

C.S. 430 Assignment 6, Sample Solutions

2 Composition. Invertible Mappings

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Srednicki Chapter 55

Example Sheet 3 Solutions

Durbin-Levinson recursive method

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

EE512: Error Control Coding

CRASH COURSE IN PRECALCULUS

D Alembert s Solution to the Wave Equation

Solution Series 9. i=1 x i and i=1 x i.

Homework 8 Model Solution Section

Homework 3 Solutions

Approximation of distance between locations on earth given by latitude and longitude

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

On a four-dimensional hyperbolic manifold with finite volume

Hadronic Tau Decays at BaBar

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Andreas Peters Regensburg Universtity

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Areas and Lengths in Polar Coordinates

Problem Set 3: Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Solutions to Exercise Sheet 5

Partial Trace and Partial Transpose

Other Test Constructions: Likelihood Ratio & Bayes Tests

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

[1] P Q. Fig. 3.1

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Geodesic Equations for the Wormhole Metric


Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Numerical Analysis FMN011

Answer sheet: Third Midterm for Math 2339

Local Approximation with Kernels

( y) Partial Differential Equations

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

NN scattering formulations without partial-wave decomposition

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Section 7.6 Double and Half Angle Formulas

Galatia SIL Keyboard Information

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Derivation of Optical-Bloch Equations

Lecture 21: Scattering and FGR

Iterative Monte Carlo analysis of spin-dependent parton distributions

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

AdS black disk model for small-x DIS

Inverse trigonometric functions & General Solution of Trigonometric Equations

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Second Order RLC Filters

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Higher Derivative Gravity Theories

Assalamu `alaikum wr. wb.

Spherical Coordinates

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Three coupled amplitudes for the πη, K K and πη channels without data

the total number of electrons passing through the lamp.

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Universidade Cruzeiro do Sul. e Tecnológicas - CETEC. Light-Cone QCD, and Nonpertubative Hadrons Physics. Electromagnetic Current of a Composed

Differential equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Lecture 2. Soundness and completeness of propositional logic

Parametrized Surfaces

Empirical best prediction under area-level Poisson mixed models

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

Forced Pendulum Numerical approach

Transcript:

High Energy Break-U of Few-Nucleon Systems Misak Sargsian Florida International University Exclusive Worksho, JLab May 2-24, 2007

Nuclear QCD

Nuclear QCD - identyfy hard subrocess

Nuclear QCD - identyfy hard subrocess - aly factorization

Nuclear QCD - identyfy hard subrocess - aly factorization - aly QCD to hard subrocess

Nuclear QCD - identyfy hard subrocess - aly factorization - aly QCD to hard subrocess - soft art exress through measurable/extractable quatities as PDF s, hadronic amlitudes, FF and calculable nuclear wave functions

Nuclear QCD - identyfy hard subrocess - aly factorization - aly QCD to hard subrocess - soft art exress through measurable/extractable quatities as PDF s, hadronic amlitudes, FF and calculable nuclear wave functions - obtain arameter free results

Nuclear QCD - EMC effect - Formfactors of Few Nucleon Systems at high momentum transfer Text Energy - Color Transarency - DIS at x > - High Energy Break u of two hadrons in Nuclei

Nuclear QCD - EMC effect - Formfactors of Few Nucleon Systems at high momentum transfer Text Energy - Color Transarency - DIS at x > - High Energy Break u of two hadrons in Nuclei

N N N N q q q- q g g g

N N N N q q q- q g g g

- Large CM angle disintegration of nuclei: N γ N D, 3 He(, n) γ Mx N D N s = (k γ + d ) 2 = 2M d E γ + M 2 d Brodsky, Chertock, 976 Holt, 990 Gilman, Gross, 2002 t = (k γ N ) 2 = [cosθ cm ] s M 2 d 2 E γ = 2 GeV, s = 2 GeV 2, t 90 0 4 GeV 2, M x = 2 GeV E γ = 2 GeV, s = 4 GeV 2, t 90 0 8.7 GeV 2, M x = 4.4 GeV

- Large CM angle disintegration of nuclei: N γ N D, 3 He(, n) γ Mx N D N s = (k γ + d ) 2 = 2M d E γ + M 2 d Brodsky, Chertock, 976 Holt, 990 Gilman, Gross, 2002 t = (k γ N ) 2 = [cosθ cm ] s M 2 d 2 E γ = 2 GeV, s = 2 GeV 2, t 90 0 4 GeV 2, M x = 2 GeV E γ = 2 GeV, s = 4 GeV 2, t 90 0 8.7 GeV 2, M x = 4.4 GeV

Consider A+B C + D A C f( t s ) B D s A F ( t s ) s n A +n B +n C +n D 2 2 Brodsky, Farrar 975 Matveev, Muradyan, Takhvelidze, 975 dσ dt A 2 s 2 = F 2 ( t s ) s n A+n B +n C +n D 2

Consider A+B C + D A C f( t s ) B D additional A F ( t s ) s n A +n B +n C +n D 2 2 s s Brodsky, Farrar 975 Matveev, Muradyan, Takhvelidze, 975 dσ dt A 2 s 2 = F 2 ( t s ) s n A+n B +n C +n D 2

γd n Exclusive large-momentum-transfer scattering scaling Dimensional counting rule: d σ -(N= n A + nb + nc + nd -2) dt AB CD S f( t s ) For γ d ( high t ) + n ( high t ) N = + 6 + 3 + 3 2 = Notice: dσ dσ ( Eγ = GeV/c) / ( Eγ = 4 GeV/c) 0 dt dt 4

γd n 20 (GeV 2 ) W 2 # m d 2 5 0 50 52 66 86 x=0 x=0.5 x=.0 x=.5 x=2.0 5 7 0 3 N$ NN 0 2 3 4 5! = E " = Q 2 /2mx (GeV) Gilman, Gross, 2002

Hard Rescattering Mx Mmax=w > 2 GeV Mx w 2E γ m N q E γ 2.5 GeV d k + q A k 2 k 2 B

Hard Rescattering Mx Mmax=w > 2 GeV Mx w 2E γ m N q QCD E γ 2.5 GeV d k + q A k 2 k 2 B

Hard Rescattering Mx Mmax=w > 2 GeV Mx w 2E γ m N q QCD E γ 2.5 GeV d k + q A k 2 k 2 B N N N N NN -amlitude

l regen k k 2 z l regen Landau, Pameranchuk, Migdal

l regen k k 2 z l regen > Z Landau, Pameranchuk, Migdal

l regen k k 2 z l regen > Z Landau, Pameranchuk, Migdal

l regen k k 2 z l regen > Z l regen E γ R 2 Landau, Pameranchuk, Migdal

l regen k k 2 z l regen > Z l regen E γ R 2 E> 2.5GeV Landau, Pameranchuk, Migdal

l regen k k 2 z l regen > Z l regen E γ R 2 E> 2.5GeV z Landau, Pameranchuk, Migdal

l regen k k 2 z l regen > Z l regen E γ R 2 E> 2.5GeV z > fm Landau, Pameranchuk, Migdal

q Frankfurt, Miller, MS, Strikman PRL 2000 d k + q A k 2 k 2 B T = ( ψ N (x 2, B, k 2 ) x ū( B 2 + k 2 ) [ igtc F γ ν] e q 2 u(k + q)ū(k + q) [ ieq (k + q) 2 m 2 ɛ γ ] u(k ) ψ ) N(x,, k ) q + iɛ x { ψ N (x, A, k ) x G µν Ψ d(α, ) α ū( A + k ) [ igt F c γ µ ] u(k2 ) ψ N(x 2, 2, k 2 x 2 dx d 2 k dx 2 d 2 k 2 dα x 2(2π) 3 x 2 2(2π) 3 α d 2 2(2π) 3,

We use the reference frame where d = ( d0, dz, ) ( s 2 + M 2 d 2, s s 2 M 2 d 2, 0), s with s = (q + d ) 2, s s MD 2, and the hoton four-momentum is q = ( s 2, s 2, 0). -The knocked-out quark roagator. (k + q) 2 m 2 q = x s [( + s (M d 2 m2 n + 2 ) α ) α x m 2 R + k2 + ] m2 q( x ) ( x )x s 2 2 k x s -We are concerned with momenta such that 2 m2 N s and α 2 neglect terms of order 2, m2 N /s to obtain: () so we (k + q) 2 m 2 q + iɛ x s (α α c + iɛ), α c x m 2 R + k2 ( x )x. looking for α (2) s c 2 contribution Here s s ( + M 2 d s ) and m R is the recoil mass of the sectator quark-gluon system of the first nucleon. - The integration over k in the region k 2 ( x )x s 2 x m 2 R does rovide α c = 2.

α c = 2

x = ( m2 R α c s ) - Keeing only the imaginary art of the quark roagator (eikonal aroximation) leads to α = α c and corresonds to keeing the contribution from the soft comonent of the deuteron wave function. Next we calculate the hoton-quark hard scattering vertex ū(k +q)[γ ]u(k ) and use Eq. (2) to integrate over α -By taking into account only second term in the decomosition of struck quark roagator: (α α c + ɛ) P(α α c ) iπδ(α α c ): q d k + q A k 2 k 2 B ū β (k + q) [ ieɛ µ (λ γ )γ µ ] u α (k ) = ie q 2 2E 2 E( λ γ )δ β,α δ λ γ,α

λ A, λ B A λ γ, λ D = { ψ λ B,η 2 N ( B, x 2, k 2 ) ψ λ A,η x 2 N ( B, x, k ) x Ψ λ D,λ,λ 2 (α, ) ( α)α (η,η 2 ),(ξ 2 ),(λ,λ 2 ) eq 2 [ ( αc )x ]( α c )x x s ū η2 ( B k 2 )[ igt F c γ ν ] u λγ ( k + q) ψλ,λ γ N (, x, k ) x ū η ( A k )[ igt F c γ µ ]u ξ2 ( 2 k 2 ) ψλ 2,ξ 2 N ( 2, x 2, k 2 ) x 2 G µ,ν (r) dx x d 2 k 2(2π) 3 dx 2 x 2 d 2 k 2 2(2π) 3 d 2 4(2π) 2. } () A QIM n = ψ N (x 2, B, k 2 ) x 2 ū( B 2 + k 2 ) [ igt F c γ ν] u(k + q) ψ N(x,, k ) x ψ N (x, F, k ) x ū( A + k ) [ igt F ] c γ µ u(k2 ) ψ N (x 2, 2, k 2 ) G µν x 2 dx x d 2 k 2(2π) 3 dx 2 x 2 d 2 k 2 2(2π) 3 ()

Frankfurt, Sargsian, Strikman, Phys.Rev. Lett 2000 λ A, λ B, A Qi λ γ, λ D = (η,η 2 ),(ξ 2 ),(λ,λ 2 ) eqi f(θ cm ) 2s η 2, λ B η, λ A A i QIM (s, l 2 ) λ, λ γ λ 2 ξ 2 Ψ λ D,λ,λ 2 (α c, ) d2 (2π) 2() Notation used λ nucleon, λ quark Assuming λ = λ γ NN NN γn n a b A NN QIM ab = 2 a b i a, j b Brodsky,Carlson,Likin Phys.Rev.D 979 [I i I j + τ i τ j ]F i,j (s, t) ab a b A Q QIM ab a,b D = 2 a b [I i I j + τ i τ j ](Q i +Q j )F i,j (s, t) ab = (Q u +Q d ) a b A n QIM ab i a, j b (Q u + Q d ) a b A n QIM ab = 3 a b A n ab. A n QIM A n

λa, n λb A λ γ, λ D = λ 2 f(θ cm ) 3 2s ( λa, n λb A n (s, t n ) λγ, n λ2 λa, n λb A n (s, u n ) n λγ λ2 ) Ψ λ D,λ γ,λ 2 (α c, ) d2 (2π) 2 () Ψ λ D,λ λ 2 = (2π) 3 2 Ψ J D,λ,λ 2 NR m = [u(k) + w(k) 8 S 2]ξ λ D,λ,λ 2 dσ γd n dt = 8α 9 π4 t )dσn n (s, t) C( s s dt Ψ NR d ( z = 0, ) d 2 m N (2π) 2 2, C( t s ) θ cm =90=

NN NN R.Feynman Photon Hadron Interactions

NN NN R.Feynman Photon Hadron Interactions

NN NN before R.Feynman Photon Hadron Interactions

NN NN x x 2 before R.Feynman Photon Hadron Interactions

NN NN x x 2 before after R.Feynman Photon Hadron Interactions

B NN NN x x 2 x x 2 C before after R.Feynman Photon Hadron Interactions

B NN NN x x 2 x x 2 C before after γd n R.Feynman Photon Hadron Interactions

B NN NN x x 2 x x 2 C before after γd n R.Feynman Photon Hadron Interactions

B NN NN x x 2 x x 2 C before A after γd n x x 2 R.Feynman Photon Hadron Interactions x + x 2 = x γ = 2 B C 2 x x 2 x x 2

B NN NN x x 2 x x 2 C before A after γd n x x 2 R.Feynman Photon Hadron Interactions x + x 2 = x γ = 2 when x, x 2 B = B B C 2 x x 2 x x 2

dσ γd n dt = 8α 9 π4 t )dσn n (s, t) C( s s dt Frankfurt, Miller, M.S. Sargsian PRL 2000 Ψ NR d ( z = 0, ) d 2 m N (2π) 2 2, 0.8 89 0 0.6 0.4 0.2 s d"/dt (kb-gev 20 ).5 2 2.5 3 3.5 4 4.5 5 5.5 0 0-69 0.5 2 2.5 3 3.5 4 4.5 5 5.5 0 52 0.5 2 2.5 3 3.5 4 4.5 5 5.5 E! (GeV)

s d"/dt (kb-gev 20 ) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.! + d # + n s d"/dt (kb GeV 20 ) 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4 3.5 3 2.5 E!, GeV 2.5 0.5 0 0 20 40 60 80 00 20 40 60 80

0 Mirazita, et al, Phys. Rev. C 2004 FIG. 7: (Color) Angular distributions of the deuteron hotodisintegration cross section measured by the CLAS (full/red circles) in the incident hoton energy range 0.50.70 GeV. Results from Mainz [26] (oen squares, average of the measured values in the given hoton energy intervals), SLAC [5, 6, 7] (full/green down-triangles), JLab Hall A [0] (full/blue squares) and Hall C [8, 9] (full/black u-triangles) are also shown. Error bars reresent the statistical uncertainties only. The solid line and the hatched area reresent the redictions of the QGS [8] and the HRM [27] models, resectively. FIG. 8: (Color) Same as Fig. 7 for hoton energies.7 3.0 GeV.

Secifics of Hard Rescattering Model Helicity Selection Rule - Photon selects nucleon in the nucleus with helicity = to its own - Due to dominance of Helicity Conserving amlitudes in NN scattering, hoton helicity will roogate to the helicty of one of the final nucleons. q d k + q A k 2 k 2 B

Polarization Observables λa, n λb A λ γ, λ D = λ 2 f(θ cm ) 3 2s ( λa, n λb A n (s, t n ) λγ, n λ2 λa, n λb A n (s, u n ) n λγ λ2 ) Ψ λ D,λ γ,λ 2 (α c, ) d2 (2π) 2 C x P y C z Gilman, Gross, 2002

{ } 2Im φ 5 [2(φ + φ 2 ) + φ 3 φ 4 ] P y = 2 φ 2 + 2 φ 2 2 + φ 3 2 + φ 4 2 + 6 φ 5 { } 2 2Re φ 5 [2(φ φ 2 ) + φ 3 + φ 4 ] C x = 2 φ 2 + 2 φ 2 2 + φ 3 2 + φ 4 2 + 6 φ 5 2 2 φ 2 2 φ 2 2 + φ 3 2 φ 4 2 C z = 2 φ 2 + 2 φ 2 2 + φ 3 2 + φ 4 2 + 6 φ 5 [ ] 2 2Re φ 5 2 φ 3 φ 4 Σ = 2 φ 2 + 2 φ 2 2 + φ 3 2 + φ 4 2 + 6 φ 5 2, φ (s, t n, u n ) = +, + A n +, + φ 2 (s, t n, u n ) = +, + A n, φ 3 (s, t n, u n ) = +, A n +, φ 4 (s, t n, u n ) = +, A n, + φ 5 (s, t n, u n ) = +, + A n +,. () φ φ 3, φ 4 > φ 5 > φ 2.

P y 0.8 0.6 0.4 0.2 0-0.2-0.4-0.6-0.8-2 4 6 E γ, GeV C x 0.8 0.6 0.4 0.2 0-0.2-0.4-0.6-0.8-2 4 6 E γ, GeV C z 0.75 0.5 0.25 0-0.25-0.5-0.75-2 4 6 E γ, GeV Σ.5.25 0.75 0.5 0.25 0-0.25-0.5-0.75-2 4 6 E γ, GeV Sargsian, Phys. Lett. B 2004 q d k + q A k 2 k 2 B

Jiang, PRL2007

- Hard Photodisintegration of air: γ + 3 He + n Magnitude of vs. n hard hotodisintegration σ ( γ At low hoton energy For 3 E γ He 0.5 GeV/c ) / σ ( γ 3 He n) % σ γ << σ γn σ γ 0 γ 0 π, ρ MEC is the dominant rocess air : only a neutral ion can be exchanged, its couling to the hoton is weak. Laget NP A497 (89) 39, (Saclay data). - Three Body Processes are Dominant

Hard Disintegration of from 3He q Brodsky, Frankfurt, Gilman,Hiller, Miller,Piasetzky,M.S. Strikman Phys.Lett. B 2003 A k k 2 r 2 B n n dσ dtd 3 n = ( ) 2 4 8π 4 α EM 5 s M 2 3 He dσ (s, t N ) dt 2 sins Ψ 3 He (, 2, n ) M N d 2 2T (2π) 2 2, where s = (P γ + P3 He) 2, t = (P P γ ) s t N = ( a α ) 2 2 t. = (P γ + P3 He P n ) 2, and

- Hard Photodisintegration of air: MS, Carlos Granados,2007 λ A, λ B A Qi λ γ, λ = ef(θcm ) Q λ 2 2s i λ A, λ B A i QIM (s, l 2 ) λ γ, λ 2 Ψ λ,λ γ,λ 2 (α c, ) d2 (2π) 2 a b A Q QIM ab a,b = 2 a b i a, j b [I i I j + τ i τ j ](Q i +Q j )F i,j (s, t) ab = 4 5 a b A QIM ab A QIM A

- Hard Photodisintegration of air: MS, Carlos Granados,2007 λ A, λ B A Qi λ γ, λ = ef(θcm ) Q λ 2 2s i λ A, λ B A i QIM (s, l 2 ) λ γ, λ 2 Ψ λ,λ γ,λ 2 (α c, ) d2 (2π) 2 a b A Q QIM ab a,b = 2 a b i a, j b [I i I j + τ i τ j ](Q i +Q j )F i,j (s, t) ab = 4 5 a b A QIM ab He3 q A QIM A roton(uud) A k k 2 r roton(uud) n neutron 2 B n

Ā 2 = const 2 [ φ 2 S + (φ 2 3 + φ 4 )S 34 ] S = 2 ψ 2 3 He (λ, λ 2, λ 3 )m d2 2 (2π) 2 2 λ =λ 2,λ 3 = 2 S 34 = 2 ψ 2 3 He (λ, λ 2, λ 3 )m d2 2 (2π) 2 2 λ = λ 2,λ 3 = 2

dσ dtd 3 n = ( ) 2 4 6π 4 α 5 S M 2 3 He ( 2c 2 + 2c 2 )dσ dt (s, t n ) S 34 E n c = φ 3,4 φ 2 s d!/dt (kb GeV 20 ) 0 0-0 -2 0 0.5.5 2 2.5 3 3.5 4 E g

Polarization Observables λ A, λ B A Qi λ γ, λ = ef(θcm ) Q λ 2 2s i λ A, λ B A i QIM (s, l 2 ) λ γ, λ 2 Ψ λ,λ γ,λ 2 (α c, ) d2 (2π) 2 { } 2Im φ 5 [2(φ + φ 2 ) + φ 3 φ 4 ] P y = 2 φ 2 + 2 φ 2 2 + φ 3 2 + φ 4 2 + 6 φ 5 { } 2 2Re φ 5 [2(φ φ 2 ) + φ 3 + φ 4 ] C x = 2 φ 2 + 2 φ 2 2 + φ 3 2 + φ 4 2 + 6 φ 5 2 2 φ 2 2 φ 2 2 + φ 3 2 φ 4 2 C z = 2 φ 2 + 2 φ 2 2 + φ 3 2 + φ 4 2 + 6 φ 5 [ ] 2 2Re φ 5 2 φ 3 φ 4 Σ = 2 φ 2 + 2 φ 2 2 + φ 3 2 + φ 4 2 + 6 φ 5 2, () Helicity Selection Rule C z = 0!

Conclusion and Outlook - High Energy Photodisintegration of Few Nucleon System may eventually rovide a framework of robing the QCD structure of NN force - Hard Rescattering Mechanism reresents one such examle - disintegration data are crucial for verifying the validity of the HR mechanism New Venues - Hard disintegration into Delta airs σ(γd ++ ) σ(γd n) A(NN ++ ) A(NN NN) 2 - Hard Disintegraion into Strange Baryons