θ p = deg ε n = με ε t = με γ nt = μrad

Σχετικά έγγραφα
1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

Chapter 7 Transformations of Stress and Strain

Strain gauge and rosettes

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

MECHANICAL PROPERTIES OF MATERIALS


Dr. D. Dinev, Department of Structural Mechanics, UACEG

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

Mechanics of Materials Lab

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Spherical Coordinates

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

ADVANCED STRUCTURAL MECHANICS

Chapter 2. Stress, Principal Stresses, Strain Energy

5.0 DESIGN CALCULATIONS

Homework 8 Model Solution Section

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

The logic of the Mechanics of Materials

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Trigonometric Formula Sheet

Lecture 8 Plane Strain and Measurement of Strain

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Chapter 5 Stress Strain Relation

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Lecture 6 Mohr s Circle for Plane Stress

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Section 8.2 Graphs of Polar Equations

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Areas and Lengths in Polar Coordinates

CORDIC Background (2A)

11.4 Graphing in Polar Coordinates Polar Symmetries

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Cross sectional area, square inches or square millimeters

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain

1 String with massive end-points

E T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

Properties of Nikon i-line Glass Series

Parametrized Surfaces


Areas and Lengths in Polar Coordinates

Lifting Entry (continued)

(Mechanical Properties)

Aerodynamics & Aeroelasticity: Beam Theory

MATH 150 Pre-Calculus

Section 9.2 Polar Equations and Graphs

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Consolidated Drained

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΣΤΡΙΨΗ ΜΕΘΟΔΟΙ ΠΡΟΣΔΟΣΗΣ ΤΗΣ ΣΤΡΙΨΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓ ΑΣΙΑ. για την απόκτηση Πτυχίου ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ. με την συνεργασία του Επίκουρου καθηγητή

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

derivation of the Laplacian from rectangular to spherical coordinates

Section 8.3 Trigonometric Equations

Solution to Review Problems for Midterm III

Μιχάλης ΚΛΟΥΒΑΣ 1, Χρήστος ΖΕΡΗΣ 2

Approximation of distance between locations on earth given by latitude and longitude

Math 6 SL Probability Distributions Practice Test Mark Scheme

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Statics and Strength of Materials

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Grey Cast Irons. Technical Data

Rectangular Polar Parametric

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

If we restrict the domain of y = sin x to [ π 2, π 2

Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix

Pipe E235N (St 37.4 NBK) phosphated and oiled

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Answer sheet: Third Midterm for Math 2339

the total number of electrons passing through the lamp.

Second Order RLC Filters

3.5 - Boundary Conditions for Potential Flow

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ

σ zz Stresses in 3-D σ yy τ yx σ xx z τ zy τ zx τ yz τ xz τ xy

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

[1] P Q. Fig. 3.1

Lecture 5 Plane Stress Transformation Equations

EVERFINE GONIOPHOTOMETERS SYSTEM TEST REPORT Page 1 Of 9

ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ. «Γ λ υ κ ό κ α λ ο κ α ι ρ ά κ ι» της Γ ω γ ώ ς Α γ γ ε λ ο π ο ύ λ ο υ

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ

Transcript:

IDE 110 S08 Test 7 Name: 1. The strain components ε x = 946 με, ε y = -294 με and γ xy = -362 με are given for a point in a body subjected to plane strain. Determine the strain components ε n, ε t, and γ nt at the point if the n t axes are rotated with respect to the x y axes by the amount and in the direction indicated by the angle θ = 12. (9 points) ε n = με ε t = με γ nt = μrad Sketch the deformed shape of the element. (3 points)

2. The strain components ε x = -800 με, ε y = 400 με and γ xy = -1350 με are given for a point in a body subjected to plane strain. Determine θ p and the normal and shear strains at the θ p orientation (i.e. the principals ). (12 points) θ p = deg ε n = με ε t = με γ nt = μrad Determine θ s and the normal and shear strains at the θ s orientation (i.e. the average normal strain and in-plane maximum shear strain ). (12 points) θ s = deg ε n = με ε t = με γ nt = μrad Show the angle θ p, the principal strain deformations, and the maximum in-plane shear strain distortion on a sketch. (4 points)

3. The strain components ε x = -200 με, ε y = -700 με and γ xy = 600 με are given for a point in a body subjected to plane strain. Draw Mohr s circle. (5 points) Using the circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. (18 points) ε center = με radius = με ε 1 = με ε 2 = με γ in-plane max = μrad γ absolute max = μrad

4. The strain rosette shown in the figures was used to obtain normal strain data at a point on the free surface of a machine part. Determine the strain components ε x, ε y at the point. To save time, γ xy is not needed. (15 points) ε a = -600 με ε b = 250 με ε c = 800 με ε x = με ε y = με

5. A strain gage is used to monitor the strain in a spherical steel tank (E = 210 GPa; ν = 0.32), which contains a fluid under pressure. The tank has an inside diameter of 2.50 m and a wall thickness of 100 mm. Determine the internal pressure in the tank when the strain gage reads 120 με. (10 points) p = MPa 6. A closed cylindrical vessel contains a fluid at a pressure of 640 psi. The cylinder, which has an outside diameter of 72 in. and a wall thickness of 1.000 in., is fabricated from stainless steel [E = 28,000 ksi; ν = 0.32]. Determine the axial and hoop stresses and principal strains. (12 points) σ axial = psi σ hoop = psi ε 1 = με ε 2 = με

TRIGONOMETRY sin θ = opp / hyp cos θ = adj / hyp tan θ = opp / adj STATICS Symbol Meaning Equation Units x, y, z centroid position y = Σy i A i / ΣA i in, m I moment of inertia I = Σ(I i + d i 2 A i ) in 4, m 4 J N V M J solid circular shaft polar = πd 4 /32 moment J of inertia hollow circular shaft = π(d 4 o - d 4 i )/32 normal force shear force bending moment equilibrium V = -w(x) dx M = V(x) dx ΣF = 0 ΣM (any point) = 0 in 4, m 4 lb, N lb, N in-lb, Nm lb, N in-lb, Nm MECHANICS OF MATERIALS Topic Symbol Meaning Equation Units σ axial = N/A σ, sigma normal stress τ cutting = V/A σ bearing = F b /A b axial ε, epsilon normal strain ε axial = ΔL/L o = δ/l o ε transverse = Δd/d in/in, m/m γ, gamma shear strain γ = change in angle, γ = cθ rad E Young's modulus, modulus of elasticity σ = Eε (one-dimensional only) G shear modulus, modulus of rigidity G = τ/γ = E / 2(1+ν) ν, nu Poisson's ratio ν = -ε'/ε δ, delta deformation, elongation, deflection in, m δ = NL o /EA + αδtl o α, alpha coefficient of thermal expansion (CTE) in/inf, m/mc F.S. factor of safety F.S. = actual strength / design strength

Topic Symbol Meaning Equation Units τ, tau shear stress τ torsion = Tc/J torsion φ, phi angle of twist φ = TL/GJ rad, degrees θ, theta angle of twist per unit length, rate of twist θ = φ / L rad/in, rad/m P power P = Tω r 2 T 1 = r 1 T 2 watts = Nm/s hp=6600 in-lb/s ω, r 1 ω angular speed, speed of rotation 1 = r ω 2 2 rad/s omega f frequency ω = 2πf Hz = rev/s K stress concentration factor τ max = KTc/J flexure σ, sigma σ, sigma τ, tau normal stress σ beam = -My/I composite beams, n = E B /E A σ A = -My / I T σ B = -nmy / I T shear stress τ beam = VQ/Ib where Q = Σ(y bar i A i ) q shear flow q = V beam Q/I = nv fastener /s v or y beam deflection v = M(x) dx 2 / EI in, m Topic Equations Units stress transformation planar rotations σ u )/2 + (σ x )/2 cos(2θ) + τ xy sin(2θ) σ v )/2 - (σ x )/2 cos(2θ) - τ xy sin(2θ) τ uv = -(σ x )/2 sin(2θ) + τ xy cos(2θ) principals and max in-plane shear tan(2θ p ) = 2τ xy / (σ x ), θ s = θ p ± 45 o σ 1,2 )/2 ± sqrt { [ (σ x )/2 ] 2 + τ xy 2 } τ max = sqrt { [ (σ x )/2 ] 2 + τ xy 2 } = (σ 1 -σ 2 )/2 σ avg )/2 = (σ 1 +σ 2 )/2 strain transformation planar rotations ε u )/2 + (ε x )/2 cos(2θ) + γ xy /2 sin(2θ) ε v )/2 - (ε x )/2 cos(2θ) - γ xy /2 sin(2θ) γ uv /2 = -(ε x )/2 sin(2θ) + γ xy /2 cos(2θ) ε z = -ν (ε x + ε y ) / (1-ν) principals and max in-plane shear tan(2θ p ) = γ xy / (ε x ), θ s = θ p ± 45 o ε 1,2 )/2 ± sqrt { [ (ε x )/2 ] 2 + (γ xy /2) 2 } γ max /2 = sqrt { [ (ε x )/2 ] 2 + (γ xy /2) 2 } ε avg )/2 in/in, m/m Hooke's law 1D strain to stress σ = Eε 2D strain to stress σ x = E(ε x +νε y ) / (1-ν 2 ) σ y = E(ε y +νε x ) / (1-ν 2 ) τ xy = Gγ xy = Eγ xy / 2(1+ν) 2D stress to strain ε x -νσ y ) / E ε y = (σ y -νσ x ) / E ε z = -ν(ε x ) / (1-ν) γ xy = τ xy /G = 2(1+ν)τ xy / E in/in, m/m pressure σ spherical = pr/2t σ cylindrical, hoop = pr/t σ cylindrical, axial = pr/2t maximum principal stress theory σ 1,2 < σ yp σ radial, outside = 0 σ radial, inside = -p failure theories maximum shear stress theory τ max < 0.5 σ yp