Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Σχετικά έγγραφα
Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Electronic Supplementary Information (ESI)

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Table of Contents 1 Supplementary Data MCD

IV. ANHANG 179. Anhang 178

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Supporting Information

Supporting Information

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Supporting Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Fused Bis-Benzothiadiazoles as Electron Acceptors

Electronic Supplementary Information (ESI)

Supporting Information

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supporting Information

Supporting Information

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Electronic Supplementary Information

Butadiene as a Ligand in Open Sandwich Compounds

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

ELECTRONIC SUPPLEMENTARY MATERIAL-RSC Adv.

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

Supplementary Material

Supporting Information

Supplementary information

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Supporting Information

# Institute of Chemistry of the Academy of Sciences of Republic of Moldova, Academiei Str. 3,

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure,

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Supplementary materials

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Supporting Information

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

Electronic Supplementary Information:

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Electronic Supporting Information

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

difluoroboranyls derived from amides carrying donor group Supporting Information

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Supplementary Information for

(M = Mn, Fe, Co, Ni, Cu and Zn)----Mimicking the M II - Substituted Quercetin 2,3-Dioxygenase

Supporting Information

SUPPLEMENTARY MATERIAL

Switching of the Photophysical Properties of. Bodipy-derived Trans Bis(tributylphosphine) Pt(II) bisacetylide Complexes with Rhodamine

ELECTRONIC SUPPORTING INFORMATION

and Trimethylene Carbonate

Available online at shd.org.rs/jscs/

Electronic Supplementary Information (ESI)

Single Crystal X-Ray Structure Determination of Compounds 8a, 8b and 11a

Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, Wrocław, Poland

Experimental. Crystal data

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Supporting Information. Halogen Photoelimination from Monomeric Ni(III) Complexes Enabled by the Secondary Coordination Sphere

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Supporting Information

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Controlling Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties

Supporting information

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Electronic Supplementary Information

Multi odd-even effects on cell parameters, melting. points, and optical properties of chiral crystal solids. based on S-naproxen

of the methanol-dimethylamine complex

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Transcript:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand Nidhi Tyagi, a Ovender Singh, a Udai P. Singh, a Kaushik Ghosh, a * a Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand INDIA. Fig. S1. IR Spectra of the complexes 1 and 2 Fig. S2. ESI-MS spectra of complexes (A) 1 and (B) 2 Fig. S3. 13 C NMR spectra of Gimpy and complex 2 Fig. S4. 1 H NMR spectra of ligand (Gimpy) and complex 2 Fig. S5. In-situ UV-Visible spectral changes of complex 2 in presence of acidified NaNO 2 Fig. S6. In-situESI-MS spectra of iron-nitrosyl complex [Fe(Gimpy)(NO)(CN)] 2+, 4. 504 Fig. S7. Comparison of orientation of phenyl rings in (a)[fe(gimpy)(cn) 2 ] 3H 2 O and (b)[fe(gimpy-no 2 )(CN) 2 ] CH 2 Cl 2 Fig. S8. Packing diagram of the complex 2 Fig. S9. Geometry optimized structure of complexes 2 and 3. Fig. S10. Frontier orbitals diagram for the HOMO, HOMO-1, HOMO-2 and LUMO, LUMO+1, LUMO+2, for the complex 2 and 3. Fig. S11. UV-vis spectra of the complexes 2 and 3 obtained from TD-DFT calculation. Fig. S12. Frontier orbitals diagram for ligand, Gimpy. Table S1. Crystallographic parameters of the complexes 2 and 3 Table S2. Electrochemical data for Fe(III)/Fe(II) redox couple at 298 K a vs Ag/AgCl. Table S3. Cartesian coordinates for complex [Fe(Gimpy)(CN) 2 ] Table S4. Cartesian coordinates for complex [Fe(Gimpy-NO 2 )(CN) 2 ] Table S5. Bond distances (Å) and bond angles (º) for complexes 2 and 3 with optimized DFT bond parameters in gas. Table S6. Calculated TD-DFT oscillator strengths (f) and nature of transitions in the complexes 2 and 3 Table S7. Percentage orbitals contribution of complex [Fe(Gimpy)(CN) 2 ] Table S8. Percentage orbitals contribution of complex [Fe(Gimpy-NO 2 )(CN) 2 ] Table S9. Percentage contribution for ligand, Gimpy

100 75 Complex 2 Complex 1 %T 50 25 0 4000 3500 3000 2500 2000 1500 1000 500 Wave no. (cm -1 ) Fig. S1. IR Spectra of the complexes 1 and 2 [M + -CN - ]

(A) [M + -Cl - ] (B) Fig.S2.ESI-MS spectra of complexes (A) 1 and (B)2.

HC HC N N N N N N -CN CN Ph N N HC N Fe HC N N N Ph CN Fig. 3. 13 C NMR spectra of Gimpy and complex 2.

(a) (b) (c) Fig.S4. 1 H NMR spectra of (a) ligand (Gimpy), (b) complex 2 and (c) expanded 1 H NMR spectra of ligand and complex 2.

Fig. S5. In-situ UV-Visible spectral changes of complex 2 in presence of acidified NaNO 2 Fig. S6. In-situ ESI-MS spectra of iron-nitrosyl complex [Fe(Gimpy)(NO)(CN)] 2+, 4. 504

(a) (b) Fig. S7. Comparison of orientation of phenyl rings in (a)[fe(gimpy)(cn) 2 ] 3H 2 O and (b)[fe(gimpy-no 2 )(CN) 2 ] CH 2 Cl 2

Fig. S8. Packing diagram ofcomplex2along c axis Complex 2 Complex 3 Fig. S9. Geometry optimized structure for complexes 2 and 3

HOMO LUMO HOMO-1 LUMO+1 HOMO-2 LUMO+2 (a)

HOMO LUMO HOMO-1 LUMO+1 HOMO-2 LUMO+2 (b) Fig. S10.Frontier orbitals diagram for the HOMO, HOMO-1, HOMO-2, and LUMO, LUMO+1, LUMO+2, of (a) complex 2(b) complex 3. Absorbance 0.6 0.5 0.4 0.3 0.2 Absorbance 0.6 0.4 0.2 0.1 0.0 200 400 600 800 Wavelength(nm) a 0.0 200 400 600 800 Wavelength(nm) Wavelength(nm) b Fig. S11. UV-vis spectra of complexes a)2 and b) 3 obtained from TD-DFT calculation

HOMO LUMO+2 HOMO-1 LUMO+1 HOMO-2 LUMO Fig. S12.Frontier orbitals diagram for ligand, Gimpy.

Table S1.Crystallographic parameters of complex 2 and 3 Complex Complex 2 Complex 3 Colour purple green Formula weight [g mol - 554.40 661.31 1 ] Temperature [K] 293(2) 293(2) λ [Å] (Mo-Kα) 0.71073 0.71073 Crystal system orthorhombic Triclinic Space group Pn21a P -1 a [Å] 16.979(5) 9.885(4) b [Å] 15.130(5) 12.712(5) c [Å] 10.163(5) 13.207(5) α [º] 90.000(5) 94.82(2) β [º] 90.000(5) 111.057(19) γ [º] 90.000(5) 101.56(2) V [Å 3 ] 2610.8(17) 1495.1(11) Crystal size[mm] 0.28 x 0.19 x 0.10 0.29 x 0.19 x 0.11 Z 4 2 ρcalc [gcm -3 ] 1.373 1.469 F(000) 1152.0 678 θ range for data 2.34-28.33 1.66-22.88 Collection Index ranges -22<h<22, -19<k<19, -13<l<13-10<h<10, -13<k<13, -14<l<14 Refinement method Full matrix least-squares on F 2 Full matrix least-squares on F 2 Data/restraints/paramet 6180/1/375 3809/0/384 ers GOF on F 2 0.813 1.085 R 1b [I>2σ(I)] 0.0367 0.0842 R 1 [all data] 0.0582 0.1754 wr 2c [I> 2σ(I)] 0.0964 0.2154 wr 2 [all data] 0.1160 0.2650 a GOF = [Σ[w(F o2 -F c2 ) 2 ] /M-N)] 1/2 (M = number of reflections, N = number of parameters refined). b R 1 = Σ F o - F c /Σ F o, c wr 2 = [Σ[w(F o2 -F c2 ) 2 ]/Σ [w(f o2 ) 2 ]] 1/2

Table S2.Electrochemical data for Fe(III)/Fe(II) redox couple at 298 K a vsag/agcl Complex Fe(III)/Fe(II) E pa /V E pc /V E 1/2b, V ( E pc, mv) 1-0.082-0.435-2 0.860 0.703 0.782 (157) 3 1.210 1.120 1.165 (90) a measured in dichloromethane for 1, 2 and 3 with 0.1 M tetrabutylammonium perchlorate (TBAP). b Data from cyclic voltammetric measurements; E 1/2 is calculated as average of anodic (E pa ) and cathodic (E pc ) peak potentials E 1/2 = 1/2(E pa +E pc ); and c ΔE p = E pa -E pc at scan rate 0.1 V/s. Table S3: Cartesian coordinates for complex [Fe(Gimpy)(CN) 2 ] Atom types=4 Charge=26.0 Atoms=1 Fe 0.000099000 0.732841000 0.000149000 Charge=7.0 Atoms=8 N 1.728058000 1.817882000 0.009819000 N 2.575749000-0.372278000 0.005649000 N 1.229650000-0.688409000 0.004019000 N -1.229400000-0.688460000-0.003171000 N -2.575501000-0.372380000-0.005201000 N -1.727912000 1.817820000-0.010061000 N 0.015529000 0.974061000-3.143391000 N -0.019011000 0.977331000 3.143389000 Charge=6.0 Atoms=26 C 0.010789000 0.879341000-1.954611000 C -0.011101000 0.880631000 1.954789000 C 1.909508000 3.158572000 0.016469000 C 3.176358000 3.755702000 0.021079000

C 4.308628000 2.917163000 0.018999000 C 4.140749000 1.527033000 0.013429000 C 2.828919000 1.007752000 0.009389000 C -1.909432000 3.158490000-0.017131000 C -3.176312000 3.755569000-0.022141000 C -4.308542000 2.916979000-0.019991000 C -4.140591000 1.526849000-0.013931000 C -2.828741000 1.007630000-0.009511000 C -0.721850000-1.913159000-0.000801000 C 0.722160000-1.913139000 0.002089000 C 5.075341000-2.892997000 1.209839000 C 4.088370000-1.890017000 1.220919000 C 3.600850000-1.386938000-0.001261000 C 4.080340000-1.880477000-1.230561000 C 5.067271000-2.883507000-1.233721000 C -4.087580000-1.890401000-1.220761000 C -3.600560000-1.387081000 0.001519000 C -4.080510000-1.880411000 1.230719000 C -5.067399000-2.883481000 1.233689000 C -5.564499000-3.388782000 0.015369000 C -5.074529000-2.893401000-1.209871000 C 5.564861000-3.388577000-0.015511000 Charge=1.0 Atoms=20 H 1.011128000 3.761691000 0.018849000 H 3.267887000 4.836192000 0.026219000

H 5.309448000 3.339903000 0.022159000 H 4.992549000 0.857533000 0.012469000 H -1.011092000 3.761670000-0.019501000 H -3.267893000 4.836049000-0.027611000 H -5.309382000 3.339648000-0.023441000 H -4.992361000 0.857309000-0.012861000 H 5.458511000-3.283857000 2.148719000 H 3.696170000-1.496707000 2.155369000 H 3.681960000-1.479857000-2.159271000 H 5.444231000-3.267027000-2.178121000 H -3.695020000-1.497251000-2.155121000 H -3.682500000-1.479601000 2.159519000 H -5.444709000-3.266852000 2.178009000 H -6.327329000-4.163382000 0.020729000 H -5.457319000-3.284452000-2.148831000 H 6.327721000-4.163146000-0.021021000 H -1.316989000-2.818400000-0.000631000 H 1.317331000-2.818349000 0.002119000 Table S4: Cartesian coordinates for complex [Fe(Gimpy-NO 2 )(CN) 2 ] Atom types=5 Charge=26.0 Atoms=1 Fe -0.109501000 0.910856000-0.119861000 Charge=8.0 Atoms=2 O 2.345968000-2.852464000-1.510872000

O 0.641445000-4.012520000-0.560680000 Charge=7.0 Atoms=9 N 1.130481000-0.456366000-0.419574000 N 2.467333000-0.112732000-0.407177000 N -1.335973000-0.513058000-0.044317000 N -2.662003000-0.207827000 0.175303000 N -1.785594000 1.960471000 0.377823000 N 1.243588000-2.911311000-0.854975000 N 0.593110000 0.857848000 2.948424000 N -0.938494000 1.522902000-3.091251000 N 1.520544000 2.050879000-0.403349000 Charge=6.0 Atoms=26 C 1.618133000 3.394937000-0.538458000 C 2.848793000 4.046938000-0.674143000 C 4.022866000 3.267704000-0.677479000 C 3.929896000 1.873781000-0.576536000 C 2.652099000 1.295228000-0.455728000 C 0.584361000-1.682567000-0.488510000 C -0.846869000-1.713290000-0.278622000 C -2.889227000 1.157100000 0.412807000 C -4.174721000 1.665397000 0.690232000 C -4.306786000 3.034059000 0.954566000 C -3.164894000 3.860349000 0.947633000 C -1.926248000 3.277713000 0.655314000 C 3.491568000-0.955812000 0.204303000

C 3.390769000-1.224477000 1.583590000 C 4.396721000-1.991905000 2.199272000 C 5.489614000-2.465583000 1.447664000 C 5.577360000-2.180018000 0.070244000 C 4.571888000-1.427231000-0.559259000 C -3.702976000-1.203113000 0.062739000 C -4.087638000-1.940015000 1.199004000 C -5.085961000-2.924005000 1.075171000 C -5.687081000-3.165807000-0.176289000 C -5.290929000-2.426019000-1.308867000 C -4.293252000-1.440957000-1.194311000 C 0.301810000 0.890932000 1.793343000 C -0.596908000 1.272476000-1.977739000 Charge=1.0 Atoms=19 H 0.685095000 3.943325000-0.551951000 H 2.882859000 5.126030000-0.775431000 H 4.997374000 3.737693000-0.772670000 H 4.813639000 1.249126000-0.592802000 H -1.417678000-2.629968000-0.331012000 H -5.032423000 1.003747000 0.700953000 H -5.286790000 3.449207000 1.171836000 H -3.228784000 4.920610000 1.165081000 H -1.017274000 3.865277000 0.656963000 H 2.559776000-0.825906000 2.161541000 H 4.329868000-2.205116000 3.262657000

H 6.264840000-3.056028000 1.929654000 H 6.411829000-2.558068000-0.514087000 H 4.595918000-1.241716000-1.628357000 H -3.609853000-1.742378000 2.155131000 H -5.389042000-3.498264000 1.946394000 H -6.455992000-3.928511000-0.269331000 H -5.751651000-2.616994000-2.274200000 H -3.969270000-0.864992000-2.057568000 Table S5. Selected bond distances (Å) for complexes 2 and 3 with optimized DFT bond parameters in gas phase. Bond distances (Å) Complex 2 Complex 3 Fe1-N6 2.04042 Fe1-N1 2.00924 Fe1-N4 1.87929 Fe1-N3 1.86994 Fe1-N3 1.87930 Fe1-N4 1.88082 Fe1-N1 2.04041 Fe1-N6 2.03928 Table S6. Calculated TD-DFT oscillator strengths (f) and nature of transitions in the complexes 2 and 3 λ max (nm) f Transition Significant contribution Energy for transition Complex 2 370 0.2274 HOMO-1 LUMO+1 19.6% 3.3466eV Complex 3 609 0.0210 HOMO-1 LUMO 70% 2.0350 ev HOMO-2 LUMO 2.2% 484 0.0691 HOMO LUMO 11% 2.5615 ev HOMO-3 LUMO 42% 430 0.0721 HOMO LUMO+1 63% 2.8806 ev HOMO-1 LUMO 3.2% 326 0.1120 HOMO LUMO+1 2.14% 3.7927 ev

Table S7. Percentage orbitals contribution of complex [Fe(Gimpy)(CN) 2 ] Orbitals Fe CN-1 CN-2 Py-1 Py-2 Ph-1 Ph-2 Nimi-1 Nimi-2 Main bond type LUMO+3 2 0 0 34 33 13 14 2 2 d(fe)+ π*(l) LUMO+2 0 0 0 0 0 48 46 2 2 π*(l) LUMO+1 1 0 0 37 38 11 11 1 1 d(fe)+ π*(l) LUMO 9 3 3 14 14 0 0 28 28 d(fe)+ π*(l) HOMO 51 3 3 6 6 0 0 15 15 d(fe)+ π(l) HOMO-1 65 10 10 1 1 0 0 6 6 d(fe)+ π(l) HOMO-2 84 2 2 3 3 1 1 2 2 d(fe)+ π(l) HOMO-3 18 13 13 11 11 1 1 15 15 d(fe)+ π(l) Table S8. Percentage orbitals contribution of complex [Fe(Gimpy-NO 2 )(CN) 2 ] Orbitals Fe CN-1 CN-2 Py-1 Py-2 Ph-1 Ph-2 NO2 Nimi-1 Nimi-2 Main bond type LUMO+3 2 0 0 61 21 8 0 1 2 5 d(fe)+ π*(l) LUMO+2 2 0 0 23 70 2 1 0 1 1 d(fe)+ π*(l) LUMO+1 3 1 1 17 6 0 1 31 7 32 d(fe)+ π*(l) LUMO 12 2 2 2 6 0 1 45 27 3 d(fe)+ π*(l) HOMO 42 3 2 9 4 1 1 4 13 20 d(fe)+ π(l) HOMO-1 65 11 10 1 3 0 1 1 8 5 d(fe)+ π(l) HOMO-2 51 15 10 7 5 1 1 0 6 6 d(fe)+ π(l) HOMO-3 52 6 5 10 6 1 5 0 6 9 d(fe)+ π(l) Table S9.Percentage contribution of ligand, Gimpy Orbitals Nimine1 Nimine2 Phenyl1 Phenyl2 Pyridine1 Pyridine2 LUMO+2 4 4 13 13 33 33 LUMO+1 1 1 7 7 43 43 LUMO 32 32 0 0 17 17 HOMO 34 34 1 1 15 15 HOMO-1 26 26 1 1 23 23 HOMO-2 17 17 25 25 8 8 End