From the finite to the transfinite: Λµ-terms and streams

Σχετικά έγγραφα
C.S. 430 Assignment 6, Sample Solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

About these lecture notes. Simply Typed λ-calculus. Types

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Example Sheet 3 Solutions

The Simply Typed Lambda Calculus

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Matrices and Determinants

2 Composition. Invertible Mappings

EE512: Error Control Coding

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Finite Field Problems: Solutions

A Lambda Model Characterizing Computational Behaviours of Terms

Chapter 3: Ordinal Numbers

Section 8.3 Trigonometric Equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Every set of first-order formulas is equivalent to an independent set

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Formal Semantics. 1 Type Logic

Homework 3 Solutions

Homomorphism in Intuitionistic Fuzzy Automata

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;

Fractional Colorings and Zykov Products of graphs

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Inverse trigonometric functions & General Solution of Trigonometric Equations

ST5224: Advanced Statistical Theory II

Chap. 6 Pushdown Automata

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

D Alembert s Solution to the Wave Equation

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

The λ-calculus. Lecturer: John Wickerson. Phil Wadler

Solutions to Exercise Sheet 5

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Abstract Storage Devices

derivation of the Laplacian from rectangular to spherical coordinates

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Other Test Constructions: Likelihood Ratio & Bayes Tests

Models for Probabilistic Programs with an Adversary

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Lecture 26: Circular domains

Derivation of Optical-Bloch Equations

( y) Partial Differential Equations

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Math 6 SL Probability Distributions Practice Test Mark Scheme

Areas and Lengths in Polar Coordinates

Mean-Variance Analysis

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Assalamu `alaikum wr. wb.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Homework 8 Model Solution Section

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

4.6 Autoregressive Moving Average Model ARMA(1,1)

Bounding Nonsplitting Enumeration Degrees

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

( ) 2 and compare to M.

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Tridiagonal matrices. Gérard MEURANT. October, 2008

CRASH COURSE IN PRECALCULUS

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

the total number of electrons passing through the lamp.

1 String with massive end-points

Areas and Lengths in Polar Coordinates

Math221: HW# 1 solutions

Section 7.6 Double and Half Angle Formulas

Forced Pendulum Numerical approach

Example 1: THE ELECTRIC DIPOLE

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Finitary proof systems for Kozen s µ

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Approximation of distance between locations on earth given by latitude and longitude

Μηχανική Μάθηση Hypothesis Testing

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

The challenges of non-stable predicates

Reminders: linear functions

Second Order Partial Differential Equations

Lecture 2. Soundness and completeness of propositional logic

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

5. Choice under Uncertainty

PARTIAL NOTES for 6.1 Trigonometric Identities

Elements of Information Theory

Numerical Analysis FMN011

ECON 381 SC ASSIGNMENT 2

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

6.3 Forecasting ARMA processes

Srednicki Chapter 55

TMA4115 Matematikk 3

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Transcript:

From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014

The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u µα.t (t)α λ-variables: x..., µ-variables: α, β... Type system for Λµ: Γ, x : A x : A Var Γ, x : A t : B λabs Γ λx A.t : A B Γ t : A B Γ u : A λapp Γ (t)u : B Γ t :, α : A Γ µα A.t : A µabs Γ t : A, α : A Γ (t)α :, α : A µapp

Example with Peirce s law: Var Γ, x : A t : B Γ, x : A x : A λabs Γ λx A.t : A B Γ t : A B Γ u : A λapp Γ (t)u : B Γ t :, α : A Γ t : A, α : A µabs µapp Γ µα A.t : A Γ (t)α :, α : A λx.µα.((x)λy.µβ.(y)α)α : ((A B) A) A Var y : A y : A µapp y : A (y)α : α : A µabs y : A µβ.(y)α : B α : A Var λabs x : (A B) A x : (A B) A λy.µβ.(y)α : A B α : A λapp x : (A B) A (x)λy.µβ.(y)α : A α : A µapp x : (A B) A ((x)λy.µβ.(y)α)α : α : A µabs x : (A B) A µα.((x)λy.µβ.(y)α)α : A λabs call/cc : ((A B) A) A

fst -reduction An example with the reduction fst : µα. z 1 λx 1 µα. z

fst -reduction An example with the reduction fst : µα. z 2 λx 1 λx 2 µα. z

fst -reduction An example with the reduction fst : µα. z 3 λx 1 λx 2 λx 3 µα. z and so on...

fst -reduction µα.z n fst λx 1... x n.µα.z x 1,..., x n z, n ω µα.t fst λx.µβ.t{(u)xβ/(u)α} µα λx 1 x 2...

Outline Böhm trees for the Λµ-calculus Transfinite calculi and Λµ Current directions

Böhm trees for λ-calculus Let t Λ, then t can be written: λ x 0. (t 0 ) t 1 where t 0 variable or redex : If t has no hnf, B t = Ω If t λx 1... x n.(x)t 1... t k, and B 1,..., B k Böhm trees of t 1,..., t k B t = λx 1... λx n. x B 1... B k Böhm trees B for λ-calculus : B ::= Ω λ(x i ) i ν.(y)(b j ) j γ ν, γ ω

Böhm trees for λ-calculus Any term can be written: λ x 0. (t 0 ) t 1 where t 0 variable or redex Böhm trees B for λ-calculus : B ::= Ω λ(x i ) i ν.(y)(b j ) j γ ν, γ ω Böhm trees for Λµ Any Λµ-term can be written: λ x 0 µα 0... µα n λx n+1.(t 0 ) t 1 β 1... β m t m+1, where t 0 variable or pre-redex Böhm trees for ΛµB Λµ-BT: B ::= Ω λ(x i ) i ν.(y)(b j ) j γ ν, γ ω 2

An example Let t = µα.λx.µβ.λy.((x)y (( ) )β) β. Intuition: t λx1 α... λx. λx β 1 }{{}... λy.((x)y (( ) ) x β 1 }{{}... ) x β 1 }{{}}{{.. }. ω ω ω ω B = λ(z i ) i ω 2+1.(z ω )(B j ) j ω with B 0 = z ω 2, B 1 = Ω and B j+1 = z ω+j for 1 j < ω. λ(z i ) i ω 2+1. z ω z ω 2... z ω+1 z ω+2 Ω

Outline Böhm trees for the Λµ-calculus Transfinite calculi and Λµ Current directions

Infinite terms from Λµ-terms Limits at root-positions: infinitary representations of µα.(x)α: @. @ x x 1 λx 1 λx 2.. x 2 x λx 1 λx 2 @ @ s x 1 @ s. x2.. To solve this issue we introduce a constructor for streams: Terms Streams t ::= x λx.t (t)u µα.t (t)s S ::= α [t S] µα.t fst λx.µβ.(t{[x β]/α}) The resulting terms are not infinitary terms since they have subterms at infinite depth: See Ketema et al.

Outline Böhm trees for the Λµ-calculus Transfinite calculi and Λµ Current directions

Ketema et al. transfinite terms Transfinite (Tr.) position p : length(p) N, Tr. term t : P Σ X, P set of positions p P q < p, q P, t(p) function symbol of arity n = (p i P iff 1 i n), (p has limit ordinal length and q < p, q P) = p P

Ketema et al. transfinite terms Transfinite (Tr.) position p : length(p) N, Tr. term t : P Σ X, P set of positions p P q < p, q P, t(p) function symbol of arity n = (p i P iff 1 i n), (p has limit ordinal length and q < p, q P) = p P Tr. Term Rewriting System (ttrs): pair (Σ, R), where Σ set of symbols of finite arity, R set of tr. rewrite rules, Tr. rewrite steps: rewriting a tr. term s = C[σ(l)] into t = C[σ(r)] if l r R, C[ ] one-hole context and σ substitution.

Intuition behind Ketema et al. transfinite terms Two representations for the transfinite term (f 1 (f 2 (f 3 (... x)))): @ f 1 @ f2 @ f 1 f 2... x f 3. f 3 x

Contrasting transfinite terms with infinitary Λµ-terms (I) Transfinite terms that extend Λµ-terms: Example of µα.(y ) λf.f and µα.x: λx λx λx 1 λx 2 λx. λx 3. x (Y ) λx. (f )x (f )(f )... : subterm at limit ordinal not defined @ f @ f f @...

Contrasting transfinite terms with infinitary Λµ-terms (II) Weak convergence with fst Weak convergence with β βs µγ.(µα.x) γ: fst? Consider µγ.x βs µγ.(µα.x) γ 2 fst λzµγ.(λyµα.x) [z γ] β λzµγ.(µα.x) γ }{{}}{{}}{{} A B A A and B alternate in the reduction sequence After fst reductions: λx 1x 2.... (λy 1y 2.... t)x 1x 2..., β-redex at constant depth Consider fst separately from β

Contrasting transfinite terms with infinitary Λµ-terms (III): Push down/pull up In ΛµS µα 0.x fst λx α 0.µα 1.x fst... fst λx α 0 x α 1... x α n.µα n+1.x fst... Push down: λx α 0 x α 1... x α n....x λx 1 x 2.... (λy 1 y 2.... t)x 1 x 2... could be pulled up to λx 1 x 2.... t. In Ketema et al. In µα 0.x, x is pushed down but µα stays: λx α 0 x α 1... x α n....µα.x We would want λx 1 x 2.... (λy 1 y 2.... t)x 1 x 2... to become λx 1 x 2.... t after ω steps: pull up t

Contrasting transfinite terms with infinitary Λµ-terms (IV) Study fst separately from β-reduction Find a more trivial topology than Ketema et al. Consider infinitary terms: λx1λx 2.... t Balls that do not only include prefixes of a term (non-haussdorff) Conjecture on the limits via fst Example: t = µα λy µβ.(y)α should converge to: λxαλx 1 α 2... λy λxβλx 1 β 2....(y)[xα 1 xα 2... ]

Perspectives Strong convergence for fst Interaction between β and fst What we expect: Understand properties: separability Extend to more general calculi: stream hierarchy