General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Σχετικά έγγραφα
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Example Sheet 3 Solutions

Every set of first-order formulas is equivalent to an independent set

The ε-pseudospectrum of a Matrix

Reminders: linear functions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Inverse trigonometric functions & General Solution of Trigonometric Equations

New bounds for spherical two-distance sets and equiangular lines

Statistical Inference I Locally most powerful tests

Congruence Classes of Invertible Matrices of Order 3 over F 2

12. Radon-Nikodym Theorem

Tridiagonal matrices. Gérard MEURANT. October, 2008

Fractional Colorings and Zykov Products of graphs

Jordan Normal Forms for a Skew-Adjoint Operator in the Lorentzian Setting

Other Test Constructions: Likelihood Ratio & Bayes Tests

Partial Differential Equations in Biology The boundary element method. March 26, 2013

derivation of the Laplacian from rectangular to spherical coordinates

ST5224: Advanced Statistical Theory II

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

2 Composition. Invertible Mappings

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 13 - Root Space Decomposition II

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Jordan Form of a Square Matrix

The Jordan Form of Complex Tridiagonal Matrices

Space-Time Symmetries

The Simply Typed Lambda Calculus

Section 8.3 Trigonometric Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Matrices and Determinants

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

A Note on Intuitionistic Fuzzy. Equivalence Relation

Orbital angular momentum and the spherical harmonics

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

EE512: Error Control Coding

Lecture 15 - Root System Axiomatics

Partial Trace and Partial Transpose

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Finite Field Problems: Solutions

SPECIAL FUNCTIONS and POLYNOMIALS

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

On a four-dimensional hyperbolic manifold with finite volume

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Concrete Mathematics Exercises from 30 September 2016

Section 9.2 Polar Equations and Graphs

Chapter 3: Ordinal Numbers

( ) 2 and compare to M.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Uniform Convergence of Fourier Series Michael Taylor

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Homework 8 Model Solution Section

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Lecture 26: Circular domains

Parametrized Surfaces

1 String with massive end-points

On Numerical Radius of Some Matrices

w o = R 1 p. (1) R = p =. = 1

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Abstract Storage Devices

Approximation of distance between locations on earth given by latitude and longitude

Problem Set 3: Solutions

Homework 3 Solutions

F19MC2 Solutions 9 Complex Analysis

Quadratic Expressions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Solutions to Exercise Sheet 5

Notes on the Open Economy

4.6 Autoregressive Moving Average Model ARMA(1,1)

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Durbin-Levinson recursive method

Numerical Analysis FMN011

The challenges of non-stable predicates

Derivation of Optical-Bloch Equations

Solution Series 9. i=1 x i and i=1 x i.

THE BIGRADED RUMIN COMPLEX. 1. Introduction

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

5.4 The Poisson Distribution.

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

D Alembert s Solution to the Wave Equation

Second Order RLC Filters

EQUATIONS OF DEGREE 3 AND 4.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Finite difference method for 2-D heat equation

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Transcript:

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden, 23 June 2011 1 Work in progress with Uwe Günther and Jia-wen Deng Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 1 / 22

Outline Outline 1 Definitions of P, T, and Inner Products Two Choices of T Inner Products in QM 2 P pseudo-hermiticity The General Parity Operator The Most General P-pseudo-Hermitian H The Metric Operator & The Inner Product Jordan Blocks 3 PT Symmetry The General Parity P The Most General PT -Symmetric H The Metric Operator & The Inner Product Jordan Blocks 4 Conclusions Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 2 / 22

Definitions of P, T, and Inner Products Definitions of P and T Two Choices of T Both are involution: P 2 = 1 & T 2 = 1. They commute: P, T = 0. Two choices for T PT Symmetry T AT A P = P H, PT = 0 PHP = H P pseudo-hermiticity T AT A P = P H, PT = 0 PHP = H Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 4 / 22

Inner Products Definitions of P, T, and Inner Products Inner Products in QM Inner products in QM Ballentine, Quantum Mechanics 1 (ψ, φ) is a complex number, 2 (ψ, φ) = (φ, ψ), where denotes complex conjugate, 3 (ψ, c 1 φ 1 + c 2 φ 2 ) = c 1 (ψ, φ 1 ) + c 2 (ψ, φ 2 ), where c 1 and c 2 are complex numbers, 4 (φ, φ) 0, with equality holding iff φ = 0. In general, (ψ, φ) ψ W φ. 1 The metric operator is a Hermitian matrix: W = W 2 All the eigenvalues of W are positive: λ W > 0. A self-adjoint operator in finite dimensions (ψ, Hφ) = (Hψ, φ) W H = H W. Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 5 / 22

P pseudo-hermiticity Definitions of T and P The General Parity Operator Time reversal T T AT = A Parity P, T = 0 P = P P(θ, ϕ) = n r cos θ sin θ e σ = iϕ sin θ e iϕ cos θ where n r (sin θ cos ϕ, sin θ sin ϕ, cos θ). Eigenvalues of P: λ P = ±1., Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 7 / 22

P pseudo-hermiticity The Most General P-pseudo-Hermitian H The Most General P-pseudo-Hermitian H Hamiltonian H = e1 + = with Eigenvalues Eigenstates ( γ n r + iρ sin δ n θ + iρ cos δ n ϕ) σ e + γ cos θ iρ sin θ sin δ (γ sin θ + iρ cos θ sin δ + ρ cos δ)e iϕ (γ sin θ + iρ cos θ sin δ ρ cos δ)e iϕ e γ cos θ + iρ sin θ sin δ n θ (cos θ cos ϕ, cos θ sin ϕ, sin θ) n ϕ ( sin ϕ, cos ϕ, 0) λ H ± = e ± γ 2 ρ 2 H E ± = λ H ± E ± Hermitian limit: ρ = 0. All 2 2 Hermitian matrices are P(θ, ϕ)-pseudo-hermitian. Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 8 / 22

P pseudo-hermiticity The Metric Operator W The Metric Operator & The Inner Product The self-adjointness of H a dynamic W : The metric operator W = u γ1 + with uγ > 0 & v 2 < γ 2 ρ 2 Eigenvalues of W W H = H W ( v n r + ρ cos δ n θ ρ sin δ n ϕ) σ λ W = u γ ± ρ 2 + v 2 > 0 With a proper choice of u & v, W = PC. Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 9 / 22

The Inner Product P pseudo-hermiticity The Metric Operator & The Inner Product Definition: (ψ, φ) W ψ W φ Orthogonality: E + W E = 0 = E W E + Normalization N ± E ± W E ± = n ± 2 u γ 2 ρ (γ 2 ± ) ( ) γ 2 ρ 2 γ 2 ρ 2 ± v > 0 P-inner product defines a Krein space: Orthogonality: E + P E = 0 = E P E + But E + P E + and E P E have opposite signs. Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 10 / 22

Jordan Blocks P pseudo-hermiticity Jordan Blocks Condition: γ 2 = ρ 2 0 Assume γ = ρ Only one eigenstate: H Φ 0 = e Φ 0 Φ 0 = n 0 cos θ 2 e i(δ+ϕ) sin θ 2 sin θ 2 e i(δ+ϕ) cos θ 2 Jordan chain: with arbitrary α. (H e1) Φ 1 = Φ 0 e i(δ+ϕ) sin θ Φ 1 = n 2 0 γ cos θ 2 + α Φ 0 Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 11 / 22

P pseudo-hermiticity Jordan Blocks What goes wrong when H approaches a Jordan block? Close to a Jordan block: ρ 2 γ 2 (1 ɛ) 0, where 0 < ɛ 1 For simplicity, fix u and set v = 0. What happens to W? The larger eigenvalue of W : λ W > 2uγ The smaller eigenvalue of W : λ W < 1 2 uγɛ W stops being positive definite. How about eigenstates? Normalization: N ± n ± 2 uγ 3 ɛ Eigenstates cannot be normalized. Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 12 / 22

Definitions of T and P PT Symmetry The General Parity P Time reversal T T AT = A Parity is real: P, T = 0 P = P Parity #1 P 1 = Parity #2 P 2 = Eigenvalues of P: λ P = ±1. cos θ sin θ e ϕ cosh θ sinh θ e ϕ sin θ e ϕ cos θ sinh θ e ϕ cosh θ Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 14 / 22

PT Symmetry The Most General PT -Symmetric H The Most General PT -Symmetric H Hamiltonian #1 H 1 = Hamiltonian #2 Eigenvalues e + γ cos θ cos δ iρ sin θ (γ sin θ cos δ iγ sin δ + iρ cos θ)e ϕ (γ sin θ cos δ + iγ sin δ + iρ cos θ)e ϕ e γ cos θ cos δ + iρ sin θ H 2 = e + γ cos(δ + iθ) iγ sin(δ + iθ) ρe ϕ iγ sin(δ + iθ) + ρe ϕ λ H ± = e ± γ 2 ρ 2 Eigenstates of H: H E ± = λ H ± E ± e γ cos(δ + iθ) When PT symmetry is not broken (ρ 2 γ 2 ), they are also the eigenstates of PT : PT E ± P E ± = λ PT ± E ±. Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 15 / 22

Hermitian Limit PT Symmetry The Most General PT -Symmetric H Hamiltonian #1: ρ = φ = 0 e + γ cos θ cos δ γ sin θ cos δ iγ sin δ H 1 γ sin θ cos δ + iγ sin δ e γ cos θ cos δ All 2 2 Hermitian matrices are P 1 T -symmetric. Hamiltonian #2: ρ = φ = θ = 0 e + γ cos δ iγ sin δ H 2 iγ sin δ e γ cos δ Only some Hermitian matrices are P 2 T -symmetric. Hermitian H 2 is just a special case of Hermitian H 1 with θ = 0. H 1 and H 2 coincide when φ = θ = 0. Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 16 / 22

The Metric W PT Symmetry The Metric Operator & The Inner Product The self-adjointness of H a dynamic W : Metric operator #1 W 1 = u W H = H W γ + cos θ(ρ sin δ + v cos δ) e ϕ sin θ(ρ sin δ + v cos δ) + i(ρ cos δ v sin δ) Metric operator #2 W 2 = u γ cosh θ + (ρ sin δ + v cos δ) e ϕ γ sinh θ + i(ρ cos δ v sin δ) γ sinh θ i(ρ cos δ v sin δ) γ cosh θ (ρ sin δ + v cos δ) e ϕ Both with uγ > 0 & v 2 < γ 2 ρ 2 Eigenvalues of W λ W = u γ ± ρ 2 + v 2 > 0 Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 17 / 22

The Inner Product PT Symmetry The Metric Operator & The Inner Product Definition: (ψ, φ) W ψ W φ Orthogonality E + W E = 0 = E W E + Normalization N ± E ± W E ± = n ± 2 uγ ( ) γ 2 ρ 2 γ 2 ρ 2 ± v > 0 Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 18 / 22

Jordan Blocks PT Symmetry Jordan Blocks Condition: γ 2 = ρ 2 0 Assume γ = ρ One eigenstate: H 1 Φ 0 = e Φ 0 Φ 0 = n 0 cos θ 2 (1 sin δ) + ie ϕ sin θ 2 cos δ sin θ 2 (1 sin δ) + ie ϕ cos θ 2 cos δ It is also an eigenstate of PT : PT Φ 0 = n 0 n 0 Φ 0 The Jordan chain: (H 1 e1) Φ 1 = Φ 0 Φ 1 = n 0 1 sin δ γ cos δ cos θ 2 sin θ 2 + α Φ 0 with arbitrary α. When α is real, Φ 1 is also an eigenstate of PT with same eigenvalue, PT Φ 1 = n 0 n 0 Φ 1 Similar results for Case #2. Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 19 / 22

PT Symmetry Jordan Blocks What goes wrong when H approaches a Jordan block? Exactly the same thing happens. Close to a Jordan block: ρ 2 γ 2 (1 ɛ) 0, where 0 < ɛ 1 For simplicity, fix u and set v = 0. What happens to W? The larger eigenvalue of W : λ W > 2uγ The smaller eigenvalue of W : λ W < 1 2 uγɛ W stops being positive definite. How about eigenstates? Normalization: N ± n ± 2 uγ 3 ɛ Eigenstates cannot be normalized. Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 20 / 22

Concluding Remarks Conclusions All 2 2 Hermitian matrices are both P-pseudo-Hermitian and PT -symmetric with respect to some P. In P pseudo-hermiticity, P can be used to define a Krein space. When PT symmetry is not broken, eigenstates of PT -symmetric H are also eigenstates of PT. Both P-pseudo-Hermitian and PT -symmetric matrices may form Jordan block. When H forms a Jordan block, W becomes ill-defined and the eigenstates cannot be normalized. Qing-hai Wang (NUS) General PT -Symmetric Matrices & Jordan Blocks PHHQPX11 22 / 22