Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Σχετικά έγγραφα
Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Electronic Supplementary Information (ESI)

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supporting Information

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

IV. ANHANG 179. Anhang 178

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Supplementary Materials: Exploration of vanadate selenites Solid Phase Space, crystal structures and polymorphism

Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Supporting Information

Synthetic Control of Excited States in Cyclometalated Ir(III) Complexes using Ancillary Ligands

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Electronic Supplementary Information:

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Supplementary Information for

Supporting Information

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Butadiene as a Ligand in Open Sandwich Compounds

Supporting Information

Synthesis and effects of oxadiazole derivatives on tyrosinase activity and SK-MEL-28 malignant melanoma cells

Table of Contents 1 Supplementary Data MCD

Supplementary Material

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Supporting Information

Bloco A, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil. Contents Pages

Experimental. Crystal data

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Supporting Information

Supplementary Material

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Supporting Information

NH-Type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications

Electronic Supplementary Information (ESI)

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates

Triclinic, P1 a = (2) Å b = (3) Å c = (4) Å = (1) = (1) = (1) Data collection.

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Dalton Transactions, 2017, Katarzyna Czerwińska et al.

SUPPORTING INFORMATION TO. On Two Alizarin Polymorphs

Dr. D. Dinev, Department of Structural Mechanics, UACEG

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Supporting Information

Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated

Supplementary materials. Mode Analysis. Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf. Diller

Supporting Information

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Electronic Supplementary Information

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Supplementary information

Electronic Supplementary Information (ESI)

Supporting Material. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays

SUPPORTING INFORMATION

Electronic Supplementary Information

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Supporting Information

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Supporting Information

Electronic Supplementary Information

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Supporting information for

Τεχνικές παρασκευής ζεόλιθου ZSM-5 από τέφρα φλοιού ρυζιού με χρήση φούρνου μικροκυμάτων και τεχνικής sol-gel

Electronic Supplementary Information

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supporting Information. Evaluation of spin-orbit couplings with. linear-response TDDFT, TDA, and TD-DFTB

metal-organic compounds

and Trimethylene Carbonate

data reports 2-(4-Methylphenyl)-2-oxoethyl 3,4-dimethoxybenzoate Structure description Synthesis and crystallization Refinement

Supplementary Information

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Multi odd-even effects on cell parameters, melting. points, and optical properties of chiral crystal solids. based on S-naproxen

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Fused Bis-Benzothiadiazoles as Electron Acceptors

Supporting Information

Transcript:

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships in the Dugganite A 3 B 3 CD 2 O 14 Family (A = Sr, Ba or Pb; B = Mg or Zn; C = Te or W, and D = P or V) Hongwei Yu, Joshua Young, Hongping Wu, Weiguo Zhang James M. Rondinelli, *, and P. Shiv Halasyamani *, Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas 77204-5003, United States Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108, United States CONTENTS 1. Table S1 (Atomic coordinates, displacement parameters and BVS)... S2 2. Table S2 (Selected bond distances and angles)... S3 3. Figure S1 (Experimental and calculated XRD patterns)... S8 4. Figure S2 (The crystal photo and theoretical morphology of Pb 3 Mg 3 TeP 2 O 14 )... S9 5. Figure S3 (The IR spectra)... S10 6. Figure S4 (The computed electron localization function)... S11 7. Figure S5 (The DTA/TG curves)... S12 8. Figure S6 (The XRD patterns of residues after TG/DTA)... S13 S1

Table S1. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å 2 10 3 ). U eq is defined as one-third of the trace of the orthogonalized U ij tensor. Sr 3 Zn 3 TeP 2 O 14 Atom x y z U eq BVS Sr(1) 4315(1) 10000 10000 17(1) 1.86 Zn(1) 7592(1) 10000 5000 15(1) 2.12 Te(1) 10000 10000 10000 16(1) 6.07 P(1) 3333 6667 5425(5) 18(1) 4.97 O(1) 9076(6) 11264(6) 7901(7) 23(1) 1.98 O(2) 3333 6667 2460(13) 22(2) 1.77 O(3) 5142(7) 8239(7) 6610(9) 53(2) 2.09 Ba 3 Zn 3 TeP 2 O 14 Ba(1) 5648(1) 5648(1) 10000 12(1) 2.12 Te(1) 10000 10000 10000 8(1) 5.95 Zn(1) 7642(1) 10000 5000 11(1) 1.97 P(1) 3333 6667 5344(4) 9(1) 4.95 O(1) 3333 6667 2453(13) 15(1) 1.98 O(2) 9039(6) 11188(6) 7936(7) 16(1) 1.98 O(3) 5181(6) 8113(6) 6450(8) 16(1) 2.05 Pb 3 Zn 3 TeP 2 O 14 Pb(1) 4079(1) 4079(1) 10000 13(1) 1.84 Te(1) 0 0 10000 8(1) 6.08 Zn(1) 2502(2) 0 5000 8(1) 2.05 P(1) 3333 6667 5375(8) 9(1) 4.94 O(1) 2150(9) 1229(10) 7889(11) 14(2) 2.05 O(2) 3333 6667 2450(20) 18(3) 1.72 O(3) 2032(11) 4757(11) 6566(13) 27(2) 1.98 Pb 3 Zn 3 WP 2 O 14 Pb(1) 10000 14059(1) 10000 16(1) 1.86 W(1) 10000 10000 10000 12(1) 6.16 Zn(1) 7491(2) 10000 5000 12(1) 2.07 P(1) 3333 6667 5426(7) 7(1) 4.74 O(1) 9119(9) 11249(9) 7864(11) 17(1) 2.07 O(2) 9039(6) 11188(6) 7936(7) 16(1) 1.67 O(3) 5181(6) 8113(6) 6450(8) 16(1) 1.95 Pb 3 Zn 3 TeV 2 O 14 Pb(1) 3956(1) 3956(1) 10000 24(1) 1.94 Te(1) 0 0 10000 23(1) 5.86 Zn(1) 0 2428(2) 5000 17(1) 2.03 V(1) 6667 3333 5385(7) 14(1) 5.05 O(1) 6667 3333 2160(30) 26(4) 1.81 O(2) 1241(13) 2111(13) 7880(15) 27(2) 2.05 O(3) 4567(14) 1953(15) 6710(19) 34(2) 1.99 S2

Table S2. Selected bond distances (Å) and angles (deg). Sr 3 Zn 3 TeP 2 O 14 Sr(1)-O(1)#1 2.492(4) O(2)#4-Sr(1)-O(2)#5 156.33(4) Sr(1)-O(1)#2 2.492(4) O(1)#1-Sr(1)-O(3)#6 72.44(15) Sr(1)-O(3)#3 2.583(5) O(1)#2-Sr(1)-O(3)#6 79.44(13) Sr(1)-O(3) 2.583(5) O(3)#3-Sr(1)-O(3)#6 157.89(6) Sr(1)-O(2)#4 2.766(3) O(3)-Sr(1)-O(3)#6 51.86(19) Sr(1)-O(2)#5 2.766(3) O(2)#4-Sr(1)-O(3)#6 71.43(15) Sr(1)-O(3)#6 2.949(7) O(2)#5-Sr(1)-O(3)#6 115.73(16) Sr(1)-O(3)#7 2.949(7) O(1)#1-Sr(1)-O(3)#7 79.44(13) Zn(1)-O(1) 1.890(4) O(1)#2-Sr(1)-O(3)#7 72.44(15) Zn(1)-O(1)#10 1.890(4) O(3)#3-Sr(1)-O(3)#7 51.86(19) Zn(1)-O(3)#10 1.994(4) O(3)-Sr(1)-O(3)#7 157.89(7) Zn(1)-O(3) 1.994(4) O(2)#4-Sr(1)-O(3)#7 115.73(16) Te(1)-O(1)#12 1.913(4) O(2)#5-Sr(1)-O(3)#7 71.43(15) Te(1)-O(1)#13 1.913(4) O(3)#6-Sr(1)-O(3)#7 147.23(18) Te(1)-O(1)#14 1.913(4) O(1)-Zn(1)-O(1)#10 136.2(3) Te(1)-O(1)#3 1.913(4) O(1)-Zn(1)-O(3)#10 105.76(18) Te(1)-O(1) 1.913(4) O(1)#10-Zn(1)-O(3)#10 102.37(19) Te(1)-O(1)#15 1.913(4) O(1)-Zn(1)-O(3) 102.4(2) P(1)-O(2) 1.535(7) O(1)#10-Zn(1)-O(3) 105.76(18) P(1)-O(3)#6 1.537(5) O(3)#10-Zn(1)-O(3) 98.7(4) P(1)-O(3) 1.537(5) O(1)#12-Te(1)-O(1)#13 171.6(3) P(1)-O(3)#16 1.537(5) O(1)#12-Te(1)-O(1)#14 90.93(16) O(1)-Sr(1)#18 2.492(4) O(1)#13-Te(1)-O(1)#14 95.4(3) O(2)-Sr(1)#19 2.766(3) O(1)#12-Te(1)-O(1)#3 90.93(16) O(2)-Sr(1)#11 2.766(3) O(1)#13-Te(1)-O(1)#3 83.4(2) O(2)-Sr(1)#20 2.766(3) O(1)#14-Te(1)-O(1)#3 90.93(16) O(3)-Sr(1)#16 2.949(7) O(1)#12-Te(1)-O(1) 83.4(2) O(1)#1-Sr(1)-O(1)#2 61.42(17) O(1)#13-Te(1)-O(1) 90.93(16) O(1)#1-Sr(1)-O(3)#3 129.56(15) O(1)#14-Te(1)-O(1) 171.6(3) O(1)#2-Sr(1)-O(3)#3 107.72(17) O(1)#3-Te(1)-O(1) 95.4(3) O(1)#1-Sr(1)-O(3) 107.72(17) O(1)#12-Te(1)-O(1)#15 95.4(3) O(1)#2-Sr(1)-O(3) 129.56(15) O(1)#13-Te(1)-O(1)#15 90.93(16) O(3)#3-Sr(1)-O(3) 113.6(3) O(1)#14-Te(1)-O(1)#15 83.4(2) O(1)#1-Sr(1)-O(2)#4 127.35(11) O(1)#3-Te(1)-O(1)#15 171.6(3) O(1)#2-Sr(1)-O(2)#4 75.28(11) O(1)-Te(1)-O(1)#15 90.93(16) O(3)#3-Sr(1)-O(2)#4 89.84(15) O(2)-P(1)-O(3)#6 113.5(2) O(3)-Sr(1)-O(2)#4 77.19(17) O(2)-P(1)-O(3) 113.5(2) O(1)#1-Sr(1)-O(2)#5 75.28(11) O(3)#6-P(1)-O(3) 105.1(2) O(1)#2-Sr(1)-O(2)#5 127.35(10) O(2)-P(1)-O(3)#16 113.5(2) O(3)#3-Sr(1)-O(2)#5 77.19(17) O(3)#6-P(1)-O(3)#16 105.1(2) O(3)-Sr(1)-O(2)#5 89.84(15) O(3)-P(1)-O(3)#16 105.1(2) Symmetry transformations used to generate equivalent atoms: S3

#1 -x+y,-x+2,z #2 y-1,x,-z+2 #3 x-y+1,-y+2,-z+2 #4 x,y,z+1 #5 y,x+1,-z+1 #6 -y+1,x-y+1,z #7 -x+1,-x+y+1,-z+2 #8 y,x+1,-z+2 #9 x-1,y,z #10 x-y+1,-y+2,-z+1 #11 x,y,z-1 #12 -x+2,-x+y+1,-z+2 #13 -y+2,x-y+1,z #14 y,x,-z+2 #15 -x+y+1,-x+2,z #16 -x+y,-x+1,z #17 x+1,y,z #18 -y+2,x-y+2,z #19 -y+1,x-y+1,z-1 #20 -x+y,-x+1,z-1 Ba 3 Zn 3 TeP 2 O 14 Ba(1)-O(2)#1 2.619(4) O(1)#5-Ba(1)-O(1)#6 157.57(4) Ba(1)-O(2)#2 2.619(4) O(2)#1-Ba(1)-O(3) 79.67(12) Ba(1)-O(3)#3 2.773(4) O(2)#2-Ba(1)-O(3) 71.66(14) Ba(1)-O(3)#4 2.773(4) O(3)#3-Ba(1)-O(3) 50.74(17) Ba(1)-O(1)#5 2.822(3) O(3)#4-Ba(1)-O(3) 160.21(4) Ba(1)-O(1)#6 2.822(3) O(1)#5-Ba(1)-O(3) 113.12(15) Ba(1)-O(3) 2.977(4) O(1)#6-Ba(1)-O(3) 73.62(14) Ba(1)-O(3)#7 2.977(4) O(2)#1-Ba(1)-O(3)#7 71.66(14) Te(1)-O(2)#9 1.920(4) O(2)#2-Ba(1)-O(3)#7 79.66(12) Te(1)-O(2)#10 1.920(4) O(3)#3-Ba(1)-O(3)#7 160.21(4) Te(1)-O(2) 1.920(4) O(3)#4-Ba(1)-O(3)#7 50.74(17) Te(1)-O(2)#2 1.920(4) O(1)#5-Ba(1)-O(3)#7 73.62(14) Te(1)-O(2)#7 1.920(4) O(1)#6-Ba(1)-O(3)#7 113.12(15) Te(1)-O(2)#1 1.920(4) O(3)-Ba(1)-O(3)#7 146.95(17) Zn(1)-O(2)#11 1.905(4) O(2)#9-Te(1)-O(2)#10 93.3(3) Zn(1)-O(2) 1.905(4) O(2)#9-Te(1)-O(2) 90.93(17) Zn(1)-O(3)#11 2.039(4) O(2)#10-Te(1)-O(2) 85.1(2) Zn(1)-O(3) 2.039(4) O(2)#9-Te(1)-O(2)#2 90.93(17) P(1)-O(1) 1.527(7) O(2)#10-Te(1)-O(2)#2 174.3(3) P(1)-O(3)#13 1.541(4) O(2)-Te(1)-O(2)#2 90.93(17) P(1)-O(3) 1.541(4) O(2)#9-Te(1)-O(2)#7 85.1(2) P(1)-O(3)#3 1.541(4) O(2)#10-Te(1)-O(2)#7 90.93(17) O(1)-Ba(1)#12 2.822(3) O(2)-Te(1)-O(2)#7 174.3(3) O(1)-Ba(1)#14 2.822(3) O(2)#2-Te(1)-O(2)#7 93.3(3) O(1)-Ba(1)#15 2.822(3) O(2)#9-Te(1)-O(2)#1 174.2(3) O(2)-Ba(1)#9 2.619(4) O(2)#10-Te(1)-O(2)#1 90.93(17) O(3)-Ba(1)#13 2.773(4) O(2)-Te(1)-O(2)#1 93.3(3) O(2)#1-Ba(1)-O(2)#2 59.45(17) O(2)#2-Te(1)-O(2)#1 85.1(2) O(2)#1-Ba(1)-O(3)#3 128.12(14) O(2)#7-Te(1)-O(2)#1 90.93(17) O(2)#2-Ba(1)-O(3)#3 108.87(13) O(2)#11-Zn(1)-O(2) 138.1(3) O(2)#1-Ba(1)-O(3)#4 108.87(13) O(2)#11-Zn(1)-O(3)#11 103.33(18) O(2)#2-Ba(1)-O(3)#4 128.12(14) O(2)-Zn(1)-O(3)#11 102.71(17) O(3)#3-Ba(1)-O(3)#4 114.41(19) O(2)#11-Zn(1)-O(3) 102.71(17) O(2)#1-Ba(1)-O(1)#5 126.40(9) O(2)-Zn(1)-O(3) 103.33(18) O(2)#2-Ba(1)-O(1)#5 75.19(10) O(3)#11-Zn(1)-O(3) 101.8(3) O(3)#3-Ba(1)-O(1)#5 90.99(13) O(1)-P(1)-O(3)#13 112.27(17) O(3)#4-Ba(1)-O(1)#5 76.83(14) O(1)-P(1)-O(3) 112.27(17) O(2)#1-Ba(1)-O(1)#6 75.19(10) O(3)#13-P(1)-O(3) 106.54(19) S4

O(2)#2-Ba(1)-O(1)#6 126.40(9) O(1)-P(1)-O(3)#3 112.27(17) O(3)#3-Ba(1)-O(1)#6 76.83(14) O(3)#13-P(1)-O(3)#3 106.53(19) O(3)#4-Ba(1)-O(1)#6 90.99(13) O(3)-P(1)-O(3)#3 106.54(19) Symmetry transformations used to generate equivalent atoms: #1 x-y+1,-y+2,-z+2 #2 -y+2,x-y+1,z #3 -x+y,-x+1,z #4 -x+1,-x+y,-z+2 #5 y,x,-z+1 #6 x,y,z+1 #7 y,x,-z+2 #8 -x+y,-x+1,z+1 #9 -x+y+1,-x+2,z #10 -x+2,-x+y+1,-z+2 #11 x-y+1,-y+2,-z+1 #12 -y+1,x-y+1,z-1 #13 -y+1,x-y+1,z #14 x,y,z-1 #15 -x+y,-x+1,z-1 Pb 3 Zn 3 TeP 2 O 14 Pb(1)-O(1) 2.379(7) O(1)#2-Te(1)-O(1)#3 90.4(3) Pb(1)-O(1)#1 2.379(7) O(1)#1-Te(1)-O(1)#4 172.2(4) Pb(1)-O(3)#1 2.725(9) O(1)#2-Te(1)-O(1)#4 95.4(4) Pb(1)-O(3) 2.725(9) O(1)#3-Te(1)-O(1)#4 84.4(4) Te(1)-O(1)#1 1.912(6) O(1)#1-Te(1)-O(1)#5 95.4(4) Te(1)-O(1)#2 1.912(6) O(1)#2-Te(1)-O(1)#5 84.4(4) Te(1)-O(1)#3 1.912(6) O(1)#3-Te(1)-O(1)#5 172.2(5) Te(1)-O(1)#4 1.912(6) O(1)#4-Te(1)-O(1)#5 90.4(3) Te(1)-O(1)#5 1.912(6) O(1)#1-Te(1)-O(1) 84.4(4) Te(1)-O(1) 1.912(6) O(1)#2-Te(1)-O(1) 172.2(4) Zn(1)-O(1) 1.925(6) O(1)#3-Te(1)-O(1) 95.4(4) Zn(1)-O(1)#6 1.925(6) O(1)#4-Te(1)-O(1) 90.4(3) Zn(1)-O(3)#7 1.979(7) O(1)#5-Te(1)-O(1) 90.4(3) Zn(1)-O(3)#4 1.979(7) O(1)-Zn(1)-O(1)#6 130.2(4) P(1)-O(2) 1.518(12) O(1)-Zn(1)-O(3)#7 101.3(3) P(1)-O(3)#8 1.545(7) O(1)#6-Zn(1)-O(3)#7 104.3(3) P(1)-O(3) 1.545(7) O(1)-Zn(1)-O(3)#4 104.3(3) P(1)-O(3)#9 1.545(7) O(1)#6-Zn(1)-O(3)#4 101.3(3) O(1)-Pb(1)-O(1)#1 65.3(3) O(3)#7-Zn(1)-O(3)#4 116.7(6) O(1)-Pb(1)-O(3)#1 85.4(2) O(2)-P(1)-O(3)#8 113.6(3) O(1)#1-Pb(1)-O(3)#1 74.0(3) O(2)-P(1)-O(3) 113.6(3) O(1)-Pb(1)-O(3) 74.0(3) O(3)#8-P(1)-O(3) 105.1(3) O(1)#1-Pb(1)-O(3) 85.4(2) O(2)-P(1)-O(3)#9 113.6(3) O(3)#1-Pb(1)-O(3) 155.7(3) O(3)#8-P(1)-O(3)#9 105.1(3) O(1)#1-Te(1)-O(1)#2 90.4(3) O(3)-P(1)-O(3)#9 105.1(3) O(1)#1-Te(1)-O(1)#3 90.4(3) Symmetry transformations used to generate equivalent atoms: #1 y,x,-z+2 #2 -x,-x+y,-z+2 #3 x-y,-y,-z+2 #4 -x+y,-x,z #5 -y,x-y,z #6 x-y,-y,-z+1 #7 y,x,-z+1 #8 -x+y,-x+1,z #9 -y+1,x-y+1,z Pb 3 Zn 3 WP 2 O 14 Pb(1)-O(1) 2.368(6) O(1)#4-W(1)-O(1)#5 97.0(4) Pb(1)-O(1)#1 2.368(6) O(1)#1-W(1)-O(1)#2 90.0(3) Pb(1)-O(3)#2 2.759(10) O(1)#4-W(1)-O(1)#2 83.9(4) Pb(1)-O(3)#3 2.759(10) O(1)#5-W(1)-O(1)#2 90.0(3) W(1)-O(1)#1 1.911(6) O(1)#1-W(1)-O(1) 83.9(4) S5

W(1)-O(1)#4 1.911(6) O(1)#4-W(1)-O(1) 90.0(3) W(1)-O(1)#5 1.911(6) O(1)#5-W(1)-O(1) 170.7(4) W(1)-O(1)#2 1.911(6) O(1)#2-W(1)-O(1) 97.0(4) W(1)-O(1) 1.911(6) O(1)#1-W(1)-O(1)#3 97.0(4) W(1)-O(1)#3 1.911(6) O(1)#4-W(1)-O(1)#3 90.0(3) Zn(1)-O(1) 1.933(6) O(1)#5-W(1)-O(1)#3 83.9(4) Zn(1)-O(1)#6 1.933(6) O(1)#2-W(1)-O(1)#3 170.7(4) Zn(1)-O(3) 1.964(7) O(1)-W(1)-O(1)#3 90.0(3) Zn(1)-O(3)#6 1.964(7) O(1)-Zn(1)-O(1)#6 128.1(4) P(1)-O(2) 1.528(12) O(1)-Zn(1)-O(3) 104.7(3) P(1)-O(3)#7 1.563(7) O(1)#6-Zn(1)-O(3) 102.9(3) P(1)-O(3) 1.563(8) O(1)-Zn(1)-O(3)#6 102.9(3) P(1)-O(3)#8 1.563(7) O(1)#6-Zn(1)-O(3)#6 104.7(3) O(1)-Pb(1)-O(1)#1 65.3(3) O(3)-Zn(1)-O(3)#6 113.9(6) O(1)-Pb(1)-O(3)#2 85.1(2) O(2)-P(1)-O(3)#7 113.1(3) O(1)#1-Pb(1)-O(3)#2 74.0(2) O(2)-P(1)-O(3) 113.1(3) O(1)-Pb(1)-O(3)#3 74.0(2) O(3)#7-P(1)-O(3) 105.6(3) O(1)#1-Pb(1)-O(3)#3 85.1(2) O(2)-P(1)-O(3)#8 113.1(3) O(3)#2-Pb(1)-O(3)#3 155.1(3) O(3)#7-P(1)-O(3)#8 105.6(3) O(1)#1-W(1)-O(1)#4 170.7(4) O(3)-P(1)-O(3)#8 105.6(3) O(1)#1-W(1)-O(1)#5 90.0(3) Symmetry transformations used to generate equivalent atoms: #1 -x+2,-x+y+1,-z+2 #2 x-y+1,-y+2,-z+2 #3 -x+y+1,-x+2,z #4 -y+2,x-y+1,z #5 y,x,-z+2 #6 x-y+1,-y+2,-z+1 #7 -y+1,x-y+1,z #8 -x+y,-x+1,z Pb 3 Zn 3 TeV 2 O 14 Pb(1)-O(2) 2.341(9) O(2)#2-Te(1)-O(2)#3 90.7(4) Pb(1)-O(2)#1 2.341(9) O(2)#1-Te(1)-O(2) 83.0(5) Pb(1)-O(3) 2.658(11) O(2)#2-Te(1)-O(2) 96.5(6) Pb(1)-O(3)#1 2.658(11) O(2)#3-Te(1)-O(2) 170.5(6) Te(1)-O(2)#1 1.926(9) O(2)#1-Te(1)-O(2)#4 170.5(6) Te(1)-O(2)#2 1.926(9) O(2)#2-Te(1)-O(2)#4 83.0(5) Te(1)-O(2)#3 1.926(9) O(2)#3-Te(1)-O(2)#4 96.5(6) Te(1)-O(2) 1.926(9) O(2)-Te(1)-O(2)#4 90.7(4) Te(1)-O(2)#4 1.926(9) O(2)#1-Te(1)-O(2)#5 96.5(6) Te(1)-O(2)#5 1.926(9) O(2)#2-Te(1)-O(2)#5 170.5(6) Zn(1)-O(2) 1.933(8) O(2)#3-Te(1)-O(2)#5 83.0(5) Zn(1)-O(2)#6 1.933(8) O(2)-Te(1)-O(2)#5 90.7(4) Zn(1)-O(3)#7 1.977(11) O(2)#4-Te(1)-O(2)#5 90.7(4) Zn(1)-O(3)#4 1.977(11) O(2)-Zn(1)-O(2)#6 130.7(6) V(1)-O(1) 1.674(16) O(2)-Zn(1)-O(3)#7 101.8(4) V(1)-O(3)#8 1.733(10) O(2)#6-Zn(1)-O(3)#7 102.5(4) V(1)-O(3) 1.733(10) O(2)-Zn(1)-O(3)#4 102.5(4) V(1)-O(3)#9 1.733(10) O(2)#6-Zn(1)-O(3)#4 101.8(4) O(2)-Pb(1)-O(2)#1 66.1(4) O(3)#7-Zn(1)-O(3)#4 119.2(7) S6

O(2)-Pb(1)-O(3) 73.3(3) O(1)-V(1)-O(3)#8 113.4(3) O(2)#1-Pb(1)-O(3) 84.8(3) O(1)-V(1)-O(3) 113.4(3) O(2)-Pb(1)-O(3)#1 84.8(3) O(3)#8-V(1)-O(3) 105.3(4) O(2)#1-Pb(1)-O(3)#1 73.3(3) O(1)-V(1)-O(3)#9 113.4(3) O(3)-Pb(1)-O(3)#1 154.0(5) O(3)#8-V(1)-O(3)#9 105.3(4) O(2)#1-Te(1)-O(2)#2 90.7(4) O(3)-V(1)-O(3)#9 105.3(4) O(2)#1-Te(1)-O(2)#3 90.7(4) Symmetry transformations used to generate equivalent atoms: #1 y,x,-z+2 #2 -x,-x+y,-z+2 #3 x-y,-y,-z+2 #4 -y,x-y,z #5 -x+y,-x,z #6 -x,-x+y,-z+1 #7 y,x,-z+1 #8 -y+1,x-y,z #9 -x+y+1,-x+1,z S7

Figure S1 Experimental and calculated X-ray powder diffraction patterns. The curves on the above are the experimental patterns, the underneath curves are the calculated ones. S8

Figure S2. The crystal photos of Pb 3 Mg 3 TeP 2 O 14 (a) As-grown Pb 3 Mg 3 TeP 2 O 14 crystal, (b) The calculated morphology of the Pb 3 Mg 3 TeP 2 O 14 crystal S9

Figure S3 The IR infrared spectrum S10

Figure S4. The electron localization function (ELF, η = 0.8) computed for (a) SZTP, (b) BZTP, (c) PZWP, (d) PZTV, (e) PMTP, and (f) PZTP. The stereoactive lone pair of the Pb 2+ cations is clearly visible. S11

Figure S5 The TG/DTA curves for A 3 B 3 CD 2 O 14 (A=Sr, Ba or Pb; B=Mg or Zn; C=Te or W, D=P or V) compounds. S12

Figure S6a. The powder XRD pattern of the residues after TG/DTA for Sr 3 Zn 3 TeP 2 O 14 S13

Figure S6b The powder XRD pattern of the residues after TG/DTA for Ba 3 Zn 3 TeP 2 O 14 S14

Figure S6c The powder XRD pattern of the residues after TG/DTA for Pb 3 Zn 3 TeP 2 O 14. S15

Figure S6d The powder XRD pattern of the residues after TG/DTA for Pb 3 Mg 3 TeP 2 O 14. S16

Figure S6e The powder XRD pattern of the residues after TG/DTA for Pb 3 Zn 3 WP 2 O 14. S17

Figure S6f The powder XRD pattern of the residues after TG/DTA for Pb 3 Zn 3 TeV 2 O 14. S18