.. 1,.. 1,.. 2 [1, 2]. - , ( ) [3].,, - . /., - , - «+». ( ) ( ), p T e T e > T 0. G; ;,, ...,.,

Σχετικά έγγραφα
Phasor Diagram of an RC Circuit V R

α & β spatial orbitals in

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Multi-dimensional Central Limit Theorem

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Multi-dimensional Central Limit Theorem

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Constant Elasticity of Substitution in Applied General Equilibrium

A Class of Orthohomological Triangles

Lifting Entry (continued)

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Math 6 SL Probability Distributions Practice Test Mark Scheme

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

THREE-DIMENSIONAL VISCO-ELASTIC ARTIFICIAL BOUNDARIES IN TIME DOMAIN FOR WAVE MOTION PROBLEMS

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

EE101: Resonance in RLC circuits

Asymptotically Confirmed Hypotheses Method for the Construction of Micropolar and Classical Theories of Elastic Thin Shells

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

Second Order RLC Filters

The Simply Typed Lambda Calculus

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 8.3 Trigonometric Equations

Calculation of ODH classification for Nevis LHe e-bubble Chamber Cryostat


Quantum annealing inversion and its implementation

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

SHUILI XUEBAO km. Honolulu Weatcart Contractor Giggs. Home J. M. U. Jucson

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

LECTURE 4 : ARMA PROCESSES

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

EE512: Error Control Coding

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Numerical Analysis FMN011

Homework 8 Model Solution Section

Homomorphism of Intuitionistic Fuzzy Groups

V. Finite Element Method. 5.1 Introduction to Finite Element Method

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ECON 381 SC ASSIGNMENT 2

Commutative Monoids in Intuitionistic Fuzzy Sets

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant

Section 7.6 Double and Half Angle Formulas

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Strain gauge and rosettes

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Approximation of distance between locations on earth given by latitude and longitude

Eulerian Simulation of Large Deformations

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Higher Derivative Gravity Theories

6.3 Forecasting ARMA processes

Υποέργο 2 - Δράση 2.2 Μέθοδοι Χαλάρωσης στις Διεπαφές (ΜΧΔ)

Durbin-Levinson recursive method

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

.. 2,.. 3,.. 4 , - [1].,, [2],. [2], 1. ,,. - ,..)., , ( - , - A n+1 A n A [5]. [6] : ; ; , - . «..»

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

arxiv: v1 [math.na] 16 Apr 2017

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

2 Composition. Invertible Mappings

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

( y) Partial Differential Equations

Homomorphism in Intuitionistic Fuzzy Automata

8.324 Relativistic Quantum Field Theory II

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Derivation of Optical-Bloch Equations

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Forced vibrations of a two-layered shell in the case of viscous resistance

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Statistical Inference I Locally most powerful tests

, - [1]. - [2]., - - 2:10:20,. -,. -,. -,, -,. -, 1/3,,, [5] -. -

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή διατριβή. Ονοματεπώνυμο: Αργυρώ Ιωάννου. Επιβλέπων καθηγητής: Δρ. Αντρέας Χαραλάμπους

1 Complete Set of Grassmann States

Transcript:

536. 59.63 DOI: 0.459/mmh7003........... E-mal: bedeser@yandex.ru -. - -.. -. : ; ; - ;.. [ ]. - - 0 000. 3 (- 50. 3 [3]. -.. - -. -. - [4] /. - - -. -. (. ( 0 - T 0. T e T e > T 0. : G; ; Bulletn of the South Ural State Unversty Ser. Mathematcs. Mechancs. Physcs 07 vol. 9 no.. 9

...... (. - m - [ 5]. []: t ms ρ ms ρv = Jh = GJ ( ( dv( ( msww = Jh w = ( G J t ( ( mshh = Jh Jh w = J t (3 S w Sh S = (4 S ( = w h -; ( = w h -; v - J ; - wh. ms v (5 ( rad ρ = µ ; µ ; ; -. z [6]: = zρ RT (6 T c z = 0 4l 073 0 (7 T c c R ; T ; c T c -. [7] : T Sh ρc ρcmsvradt ε rad ρcmsηs = dv( λ radt mρhlh (8 t c t t T z ε = ρ c z T ηs = ε ρ c ( s s ( w w w h h h λ = ( m λs m( Sλ Swλw Shλh. ρc = m ρ c m S ρ c S ρ c S ρ c L h ; s - ; s ; c ( = s w h.. - ( (6 (8 : T z S zrt ρ ρh Sh = G (9 t T t z t S t S x mµ x S ρ t T ρc T T mρhlh Sh = ε msηs λ t ρ c µ x x µ x t ρc x x ρc t (0 S h w ρ = w0 ( ( h0 S h. ρ ( w. «..» 07 9. 9 3

: t = 0 x x L : = T = T S = S S = 0 S = S ; ( w 0 0 h h0 w h0 x = xw : = e T = Te ; t > 0: T (3 x = L : = 0 = 0. x x x w L 0 T 0 - S h0 e T e. (9 ( (7 (4 - -. - 5 6 : ; - ; - ( ; -. (4 (7 (9 (. -. -. (9 (0 : ( S ( S T z ( S ( S T T z z z R T = x ρ m x m x ρ ρ ( Sh ( S h h µ µ G S t ρ ( ( ρ c ( ε ρ c µ x x x T T T T = ( ρc ( S ( S c mρhlh h h m( S ( ηs c ( ρc ρ ρ λ x T T T T λ x x. ; (4 (5 4 Bulletn of the South Ural State Unversty Ser. Mathematcs. Mechancs. Physcs 07 vol. 9 no.. 9

....... - (4 (5 - A C B = F A T C T B T = F T T T T A j B j C j (j = T : A A C T z R T ρ = ( x ( S mµ ( x ( S B ( t ( S ( ( S ( S ( ρ z R T ρ mµ = = ρhg ( S ( h S h S T z z R T ρ ρ T m z x µ mµ = λ F = ( x ( ρc ( x ( ρc ; λ ρc T = ρ c µ ( B t ρc CT = ( λ λ ( x ρ c µ ( ρc ρc ( ( ( ( ( FT = T ε m S ηs ( ρ c µ x mρ ( ρc ( S ( S hlh h h (3 j j B j j Fj Aj β α = β j = j Aj α C j Aj α C j j = T: T T T = α T β = α β. : T T α = 0 β = Te T βn β N T N = T N =. α = 0 β = e. α N α N (7: z c T = 0 4 l 073 0 T c c.. (6 :. (4. -. «..» 07 9. 9 5

-. - -.. (6 - -. 3. (5. - -. (. 4. - - 3 - [8] 6 B B 0 Th = ex h = A z T z ; A ln 6 0 ; ; T h h - ; A B (- ( : 50 795: A = 8 486; = 087 40; 795 87 : A = 5 659; = 6 774 09... (T new > T h ((S h ter > 0 - : ( ( ( ( ter ( c S ρ ρ T ter Sh = mn Sh = T Th Sh = h ( S h mρ hlh Gρh S S ter = S. ( ( h h h.. (T new < T h ((S w ter > 0 (S ter > 0 - : S = S = T T S = S = : S S ter = S. ( ( ( ( ter ( ( ter mn ρc S T ρ S w w ρw h h h h h h mρhlh Gρ G h ρ h ( ( h h h 5. (: ( S h w ( S ρ w ( G (( S h ( S = h. ρw 6. (4: ( S ( S w ( S h =. 7. : 6 Bulletn of the South Ural State Unversty Ser. Mathematcs. Mechancs. Physcs 07 vol. 9 no.. 9

...... ter ( S ( S ( ter ter ter z z T T δ = max ; ; ;. z T S : ter ter ter : = ; z = z ; T = T ; ter ter ter h h w w ( S = ( S ( S = ( S ( S = ( S ; ;. > (.. 8. 8. (. [9 0]. (6. -. x ( ( ( - /. - -.... /...: 974. 08.. «..» 07 9. 9 7

... - /......: 06. 38. 3... /.... //. 00.. 38 53. 4... /.. // -. -.. 05.. 3(3.. 64 75. 5... /.... // -. -.. 04. 7..43 50. 6... /.... - //. 969... 7 9. 7... /........: 993. 46. 8... /......: 99. 36. 9... /.. -. -....: 97. 70. 0... /..........: 990. 35. 7 07. Bulletn of the South Ural State Unversty Seres Mathematcs. Mechancs. Physcs 07 vol. 9 no.. 9 8 DOI: 0.459/mmh7003 MATHEMATICAL MODEL AND ALGORITHM FOR SOLVING THE PROBLEM OF NON-ISOTHERMAL GAS FILTRATION IN RESERVOIR IN CASE OF HYDRATE DECOMPOSITION N.G. Musaaev S.L. Borodn D.S. Belsh Tyumen Branch of Khrstanovch Insttute of Theoretcal and Aled Mechancs SB RAS Tyumen Russan Federaton Tyumen State Unversty Tyumen Russan Federaton E-mal: bedeser@yandex.ru The aer formulates a roblem of njecton nto orous bed flled u n the ntal condton wth hydrate and as warm (wth the temerature hher than the ntal temerature of the bed as. A mathematcal model of non-sothermal as fltraton n case of as hydrate dssocaton s develoed to solve ths roblem. The artcle resents a soluton alorthm where an mlct dfference scheme a swee method and a method of smle nteraton are aled. The method for calculatn hydrate saturaton from several lmtn condtons s suested. It can be used for soluton of other hase-chane roblems also for multdmensonal Stefan roblems as well as roblems wth an extended hase transton zone. After that the roblem s consdered n one-dmensonal lane-arallel formulaton wth reard to requred ntal and boundary condtons for fndn a comutatonal soluton of a set of equatons descrbn ths model. At the end the aer resents the roblem calculaton results usn the suested method on the bass of whch the dstrbuton of arameter values for some tme ntervals are shown. In the erformed calculatons the reservor n the ntal condton s flled u wth methane and ts hydrate. Keywords: non-sothermal fltraton of as; as hydrate; numercal method; hase transton. Bulletn of the South Ural State Unversty Ser. Mathematcs. Mechancs. Physcs 07 vol. 9 no.. 9

...... References. Maoon Yu.F. Gdraty rrodnyh azov (Natural as hydrates. Moscow Nedra 974 08. (n Russ... Shaaov V.Sh. Musaaev N.G. Dnama obrazovanya razlozhenya dratov v sstemah dobych transortrov hranenya aza (Dynamcs of hydrate formaton and decomoston n the systems for as roducton transortaton and storn. Moscow Naua Publ. 06 38. (n Russ.. 3. Kollett T.S. L'yus R. Uchda T. Nefteazovoe obozrene Autumn 00. 38 53. (n Russ.. 4. Borodn L.S. Tyumen State Unversty Herald. Physcal and Mathematcal Modeln. Ol Gas Enery 05 Vol. no. 3(3. 64 75. (n Russ.. 5. Musaaev N.G. Khasanov M.K. Tyumen State Unversty Herald. Physcal and Mathematcal Modeln. Ol Gas Enery 04 no. 7. 43 50. (n Russ.. 6. Latonov V.V. Gurevch G.R. Gazovaya romyshlennost' 969 no.. 7 9. (n Russ.. 7. Basnev K.S. Kochna I.N. Masmov V.M. Podzemnaya dromehana (Subsurface hydromechancs Moscow Nedra Publ. 993 46. (n Russ.. 8. Istomn V.A. Yaushev V.S. Gazovye draty v rrodnyh uslovyah (Gas hydrates n natural envronment Moscow Nedra Publ. 99 36. (n Russ.. 9. Varaft N.B. Sravochn o telofzchesm svoystvam azov zhdostey (Reference boo on heat-transfer roertes of as and lqud. Moscow Naua Publ. 97 70. (n Russ.. 0. Varaft N.B. Flov L.P. Tarzmanov A.A. Totsy E.E. Sravochn o telorovodnost zhdostey azov (Reference boo on heat conductvty of lqud and as. Moscow Eneroatomzdat Publ. 990 35. (n Russ.. Receved January 7 07. «..» 07 9. 9 9