About the controllability of y t εy xx + My x = 0 w.r.t. ε

Σχετικά έγγραφα
Example Sheet 3 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Uniform Convergence of Fourier Series Michael Taylor

Homework 3 Solutions

ST5224: Advanced Statistical Theory II

Problem Set 3: Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Every set of first-order formulas is equivalent to an independent set

EE512: Error Control Coding

Other Test Constructions: Likelihood Ratio & Bayes Tests

Statistical Inference I Locally most powerful tests

2 Composition. Invertible Mappings

C.S. 430 Assignment 6, Sample Solutions

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Concrete Mathematics Exercises from 30 September 2016

Approximation of distance between locations on earth given by latitude and longitude

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

4.6 Autoregressive Moving Average Model ARMA(1,1)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Second Order RLC Filters

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lecture 34 Bootstrap confidence intervals

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Lecture 21: Properties and robustness of LSE

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Homework 8 Model Solution Section

Mixed formulations for the direct approximation of L 2 -weighted nul. equation

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

w o = R 1 p. (1) R = p =. = 1

Matrices and Determinants

Fractional Colorings and Zykov Products of graphs

Areas and Lengths in Polar Coordinates

Math221: HW# 1 solutions

Numerical Analysis FMN011

Bounding Nonsplitting Enumeration Degrees

D Alembert s Solution to the Wave Equation

Lecture 13 - Root Space Decomposition II

Reminders: linear functions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Forced Pendulum Numerical approach

Areas and Lengths in Polar Coordinates

derivation of the Laplacian from rectangular to spherical coordinates

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

1 String with massive end-points

Section 8.3 Trigonometric Equations

MA 342N Assignment 1 Due 24 February 2016

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Solutions to Exercise Sheet 5

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Tridiagonal matrices. Gérard MEURANT. October, 2008

The Simply Typed Lambda Calculus

A Note on Intuitionistic Fuzzy. Equivalence Relation

Finite Field Problems: Solutions

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

New bounds for spherical two-distance sets and equiangular lines

Inverse trigonometric functions & General Solution of Trigonometric Equations

On the local exact controllability of micropolar fluids with few controls

Local Approximation with Kernels

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Section 7.6 Double and Half Angle Formulas

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

6.3 Forecasting ARMA processes

The Pohozaev identity for the fractional Laplacian

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

F19MC2 Solutions 9 Complex Analysis

5. Choice under Uncertainty

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Congruence Classes of Invertible Matrices of Order 3 over F 2

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Space-Time Symmetries

Second Order Partial Differential Equations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Appendix S1 1. ( z) α βc. dβ β δ β

A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

A bound from below for the temperature in compressible Navier-Stokes equations

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

12. Radon-Nikodym Theorem

SOME PROPERTIES OF FUZZY REAL NUMBERS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Memoirs on Differential Equations and Mathematical Physics

The semiclassical Garding inequality

Phase-Field Force Convergence

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Lecture 12: Pseudo likelihood approach

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Transcript:

About the controllability of y t εy xx + My x = w.r.t. ε YOUCEF AMIRAT and ARNAUD MÜNCH Nancy - IECN - November 7th 217

Introduction - The advection-diffusion equation Let T >, M R, ε > and Q T := (, 1) (, T ). >< L εy ε := yt ε εyxx ε + My x ε = Q T, y ε (, ) = v ε (t), y ε (1, ) = (, T ), >: y ε (, ) = y ε (, 1), (1) Well-poseddness: y ε H 1 (, 1), v ε L 2 (, T ),! y ε L 2 (Q T ) C([, T ]; H 1 (, 1)) Null control property: From (Russel 7), T >, y H 1 (, 1), v ε L 2 (, T ) such that y ε (, T ) = in H 1 (, 1). Main concern: Behavior of the controls v ε as ε Controllability of conservation law system; Toy model for fluids when Navier-Stokes Euler.

Introduction - The advection-diffusion equation Let T >, M R, ε > and Q T := (, 1) (, T ). >< L εy ε := yt ε εyxx ε + My x ε = Q T, y ε (, ) = v ε (t), y ε (1, ) = (, T ), >: y ε (, ) = y ε (, 1), (1) Well-poseddness: y ε H 1 (, 1), v ε L 2 (, T ),! y ε L 2 (Q T ) C([, T ]; H 1 (, 1)) Null control property: From (Russel 7), T >, y H 1 (, 1), v ε L 2 (, T ) such that y ε (, T ) = in H 1 (, 1). Main concern: Behavior of the controls v ε as ε Controllability of conservation law system; Toy model for fluids when Navier-Stokes Euler.

Cost of control We note the non empty set of null controls by C(y, T, ε, M) := {v L 2 (, T ); y = y(v) solves (5) and satisfies y(, T ) = } For any ε >, we define the cost of control by the following quantity : K (ε, T, M) := sup y L 2 (,1) =1 j ff min u L u C(y,T,ε,M) 2 (,T ). We denote by T M the minimal time for which the cost K (ε, T, M) is uniformly bounded with respect to ε. In other words, (5) is uniformly controllable with respect to ε if and only if T T M.

Cost of control We note the non empty set of null controls by C(y, T, ε, M) := {v L 2 (, T ); y = y(v) solves (5) and satisfies y(, T ) = } For any ε >, we define the cost of control by the following quantity : K (ε, T, M) := sup y L 2 (,1) =1 j ff min u L u C(y,T,ε,M) 2 (,T ). We denote by T M the minimal time for which the cost K (ε, T, M) is uniformly bounded with respect to ε. In other words, (5) is uniformly controllable with respect to ε if and only if T T M.

Reminds Remark Let v ε the control of minimal L 2 -norm for the initial data y ε : then v ε L 2 (,T ) K (ε, T, M) y ε L 2 (,1) Thus, K (ε, T, M) is the norm of the (linear) operator y ε v HUM where v HUM is the control of minimal L 2 -norm. Remark By duality, the controllability property is related to the existence of C > such that ϕ(, ) L 2 (,1) C εϕx (, ) L 2 (,T ), ϕ T H 1 (, 1) H2 (, 1) (2) The quantity C obs (ε, T, M) = sup ϕ T H 1 (,1) ϕ(, ) L2(,1). εϕ x (, ) L 2 (,T ) is the smallest constant for which (2) holds true and K (ε, T, M) = C obs (ε, T, M).

Reminds Remark Let v ε the control of minimal L 2 -norm for the initial data y ε : then v ε L 2 (,T ) K (ε, T, M) y ε L 2 (,1) Thus, K (ε, T, M) is the norm of the (linear) operator y ε v HUM where v HUM is the control of minimal L 2 -norm. Remark By duality, the controllability property is related to the existence of C > such that ϕ(, ) L 2 (,1) C εϕx (, ) L 2 (,T ), ϕ T H 1 (, 1) H2 (, 1) (2) The quantity C obs (ε, T, M) = sup ϕ T H 1 (,1) ϕ(, ) L2(,1). εϕ x (, ) L 2 (,T ) is the smallest constant for which (2) holds true and K (ε, T, M) = C obs (ε, T, M).

The case M = >< yt ε εyxx ε = Q T, y ε (, ) = v ε (t), y ε (1, ) = (, T ), >: y ε (, ) = y ε (, 1), Making the change of variable t = εt, we easily have Lemma T >, ε >, K (ε, T, ) = ε 1/2 K (1, εt, ) Theorem (Miller, Lissy, Tenebaum-Tucsnak,...) K (1, T, ) T + e κ T, κ (1/2, 3/4) Corollary K (ε, T, ) ε + ε 1/2 e κ εt, κ (1/2, 3/4)

The case M = >< yt ε εyxx ε = Q T, y ε (, ) = v ε (t), y ε (1, ) = (, T ), >: y ε (, ) = y ε (, 1), Making the change of variable t = εt, we easily have Lemma T >, ε >, K (ε, T, ) = ε 1/2 K (1, εt, ) Theorem (Miller, Lissy, Tenebaum-Tucsnak,...) K (1, T, ) T + e κ T, κ (1/2, 3/4) Corollary K (ε, T, ) ε + ε 1/2 e κ εt, κ (1/2, 3/4)

The case M = >< yt ε εyxx ε = Q T, y ε (, ) = v ε (t), y ε (1, ) = (, T ), >: y ε (, ) = y ε (, 1), Making the change of variable t = εt, we easily have Lemma T >, ε >, K (ε, T, ) = ε 1/2 K (1, εt, ) Theorem (Miller, Lissy, Tenebaum-Tucsnak,...) K (1, T, ) T + e κ T, κ (1/2, 3/4) Corollary K (ε, T, ) ε + ε 1/2 e κ εt, κ (1/2, 3/4)

M - Direct problem - Behavior of y ε as ε Theorem (Coron- Guerrero) Let T >, M R, y L 2 (, 1). Let (v ε ) (ε) be a sequence of functions in L 2 (, T ) such that for some v L 2 (, T ) v ε v in L 2 (, T ), ε +. For ε >, let us denote by y ε C([, T ]; H 1 (, 1)) the weak solution of >< yt ε εyxx ε + My x ε = Q T, y ε (, ) = v ε (t), y ε (1, ) = (, T ), >: y ε (, ) = y (, 1), (3) Let y C([, T ]; L 2 (, 1)) be the weak solution of y t + My x = Q T, >< y(, ) = v(t) if M > (, T ), y(1, ) = if M < (, T ), >: y(, ) = y (, 1), (4) Then, y ε y in L 2 (Q T ) as ε +.

First consequence Theorem If T < 1 M, lim ε K (ε, T, M). Consequently, T M 1 M. PROOF. Assume that K (ε, T, M) +. There exists (ε n) (n N) positive tending to such that (K (ε n, T, M)) (n N) is bounded. Let v εn the optimal control driving y to at time T and y εn the corresponding solution. Let T (T, 1/ M ). We extend y εn and v εn by on (T, T ). From the inequality v εn L 2 (,T ) = v εn L 2 (,T ) K (εn, T, M) y L 2 (,1), we deduce that (v εn ) (n N) is bounded in L 2 (, T ), so we extract a subsequence (v εn ) (n N) such that v εn v in L 2 (, T ). We deduce that y εn y in L 2 (Q T ) solution of the transport equation. Necessarily, y on (, 1) (T, T ). Contradiction.

M - Direct problem - Behavior of y ε (, T ) L 2 (,1) as ε for T > 1/ M Lemma The uncontrolled solution (v ε = ) satisfies y ε (, t) L 2 (,1) y ε M2 (, ) L 2 (,1) e 4ε (t M 1 )2, t > 1 M PROOF. Let α >. We check z ε (x, t) = e Mαx 2ε y ε (x, t) solves >< >: Consequently zt ε εzxx ε + M(1 α)zε x M2 4ε (α2 2α)z ε = in Q T, z ε (, ) = z ε (1, ) = on (, T ), z ε (, ) = e Mαx 2ε y ε in (, L), (5) e Mαx 2ε y ε (, t) L 2 (,1) y ε (, t) L 2 (,1) Mαx e 2ε y ε (, ) L 2 (,1) e M2 4ε (α2 2α)t Mαx e+ 2ε L (,1) e Mαx 2ε y ε (, t) L 2 (,1) e + Mαx 2ε and the result with α = t 1 M >. L (,1) e Mαx 2ε y ε (, ) L 2 (,1) e Mα 2ε ` y ε (, ) L 2 (,1) e M2 4ε (α2 2α)t 1 Mt+ Mα 2

M - Direct problem - Behavior of y ε (, T ) L 2 (,1) as ε for T > 1/ M Lemma The uncontrolled solution (v ε = ) satisfies y ε (, t) L 2 (,1) y ε M2 (, ) L 2 (,1) e 4ε (t M 1 )2, t > 1 M PROOF. Let α >. We check z ε (x, t) = e Mαx 2ε y ε (x, t) solves >< >: Consequently zt ε εzxx ε + M(1 α)zε x M2 4ε (α2 2α)z ε = in Q T, z ε (, ) = z ε (1, ) = on (, T ), z ε (, ) = e Mαx 2ε y ε in (, L), (5) e Mαx 2ε y ε (, t) L 2 (,1) y ε (, t) L 2 (,1) Mαx e 2ε y ε (, ) L 2 (,1) e M2 4ε (α2 2α)t Mαx e+ 2ε L (,1) e Mαx 2ε y ε (, t) L 2 (,1) e + Mαx 2ε and the result with α = t 1 M >. L (,1) e Mαx 2ε y ε (, ) L 2 (,1) e Mα 2ε ` y ε (, ) L 2 (,1) e M2 4ε (α2 2α)t 1 Mt+ Mα 2

M - Direct problem - Behavior of y ε (, T ) L 2 (,1) as ε for T > 1/ M Lemma The uncontrolled solution (v ε = ) satisfies y ε (, t) L 2 (,1) y ε M2 (, ) L 2 (,1) e 4ε (t M 1 )2, t > 1 M PROOF. Let α >. We check z ε (x, t) = e Mαx 2ε y ε (x, t) solves >< >: Consequently zt ε εzxx ε + M(1 α)zε x M2 4ε (α2 2α)z ε = in Q T, z ε (, ) = z ε (1, ) = on (, T ), z ε (, ) = e Mαx 2ε y ε in (, L), (5) e Mαx 2ε y ε (, t) L 2 (,1) y ε (, t) L 2 (,1) Mαx e 2ε y ε (, ) L 2 (,1) e M2 4ε (α2 2α)t Mαx e+ 2ε L (,1) e Mαx 2ε y ε (, t) L 2 (,1) e + Mαx 2ε and the result with α = t 1 M >. L (,1) e Mαx 2ε y ε (, ) L 2 (,1) e Mα 2ε ` y ε (, ) L 2 (,1) e M2 4ε (α2 2α)t 1 Mt+ Mα 2

Lower bounds for T M We expect T M = L M and that lim ε K (ε, T, M) = + because the transport eq. is null controlled at time T 1 with v! But, M Theorem (Coron-Guerrero 26) If M >, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < L M. If M <, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < 2 L M. More precisely, the lower bound are obtained using specific initial condition: y (x) = K εe Mx 2ε sin(πx), (K ε = O(ε 3/2 ) s.t. y L 2 (,1) = 1) leading, for M >, to and for M <, to ε 3/2 T 1/2 M 2 «M K (ε, T, M) C 1 1 + M 3 ε 3 exp 2ε (1 TM) π2 εt ε 3/2 T 1/2 M 2 «M K (ε, T, M) C 1 1 + M 3 ε 3 exp 2ε (2 TM) π2 εt

Lower bounds for T M We expect T M = L M and that lim ε K (ε, T, M) = + because the transport eq. is null controlled at time T 1 with v! But, M Theorem (Coron-Guerrero 26) If M >, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < L M. If M <, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < 2 L M. More precisely, the lower bound are obtained using specific initial condition: y (x) = K εe Mx 2ε sin(πx), (K ε = O(ε 3/2 ) s.t. y L 2 (,1) = 1) leading, for M >, to and for M <, to ε 3/2 T 1/2 M 2 «M K (ε, T, M) C 1 1 + M 3 ε 3 exp 2ε (1 TM) π2 εt ε 3/2 T 1/2 M 2 «M K (ε, T, M) C 1 1 + M 3 ε 3 exp 2ε (2 TM) π2 εt

Lower bounds for T M We expect T M = L M and that lim ε K (ε, T, M) = + because the transport eq. is null controlled at time T 1 with v! But, M Theorem (Coron-Guerrero 26) If M >, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < L M. If M <, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < 2 L M. More precisely, the lower bound are obtained using specific initial condition: y (x) = K εe Mx 2ε sin(πx), (K ε = O(ε 3/2 ) s.t. y L 2 (,1) = 1) leading, for M >, to and for M <, to ε 3/2 T 1/2 M 2 «M K (ε, T, M) C 1 1 + M 3 ε 3 exp 2ε (1 TM) π2 εt ε 3/2 T 1/2 M 2 «M K (ε, T, M) C 1 1 + M 3 ε 3 exp 2ε (2 TM) π2 εt

Lower bounds for T M We expect T M = L M and that lim ε K (ε, T, M) = + because the transport eq. is null controlled at time T 1 with v! But, M Theorem (Coron-Guerrero 26) If M >, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < L M. If M <, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < 2 L M. More precisely, the lower bound are obtained using specific initial condition: y (x) = K εe Mx 2ε sin(πx), (K ε = O(ε 3/2 ) s.t. y L 2 (,1) = 1) leading, for M >, to and for M <, to ε 3/2 T 1/2 M 2 «M K (ε, T, M) C 1 1 + M 3 ε 3 exp 2ε (1 TM) π2 εt ε 3/2 T 1/2 M 2 «M K (ε, T, M) C 1 1 + M 3 ε 3 exp 2ε (2 TM) π2 εt

Lower bounds for T M We expect T M = L M and that lim ε K (ε, T, M) = + because the transport eq. is null controlled at time T 1 with v! But, M Theorem (Coron-Guerrero 26) If M >, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < L M. If M <, then K (ε, T, M) Ce c/ε, c, C >, when ε for T < 2 L M. More precisely, the lower bound are obtained using specific initial condition: y (x) = K εe Mx 2ε sin(πx), (K ε = O(ε 3/2 ) s.t. y L 2 (,1) = 1) leading, for M >, to and for M <, to ε 3/2 T 1/2 M 2 «M K (ε, T, M) C 1 1 + M 3 ε 3 exp 2ε (1 TM) π2 εt ε 3/2 T 1/2 M 2 «M K (ε, T, M) C 1 1 + M 3 ε 3 exp 2ε (2 TM) π2 εt

Upper bounds for T M Theorem (Coron-Guerrero 26) If M >, then K (ε, T, M) Ce c/ε when ε for T 4.3 M. If M <, then K (ε, T, M) Ce c/ε when ε for T 57.2 M.

Estimates for T M Theorem (Coron-Guerrero 26) T M [1, 4.3] 1 M if M >, [2, 57.2] 1 M if M <. Theorem (Glass 29) T M [1, 4.2] 1 M if M >, [2, 6.1] 1 M if M <. Theorem (Lissy 215) T M [1, 2 3] 1 M if M >, [2 2, 2(1 + 1 3)] M if M <. (2 3 3.46) Theorem (Darde-Ervedoza 217) T M [1, K ] 1 M if M >, K 3.34

Estimates for T M Theorem (Coron-Guerrero 26) T M [1, 4.3] 1 M if M >, [2, 57.2] 1 M if M <. Theorem (Glass 29) T M [1, 4.2] 1 M if M >, [2, 6.1] 1 M if M <. Theorem (Lissy 215) T M [1, 2 3] 1 M if M >, [2 2, 2(1 + 1 3)] M if M <. (2 3 3.46) Theorem (Darde-Ervedoza 217) T M [1, K ] 1 M if M >, K 3.34

Estimates for T M Theorem (Coron-Guerrero 26) T M [1, 4.3] 1 M if M >, [2, 57.2] 1 M if M <. Theorem (Glass 29) T M [1, 4.2] 1 M if M >, [2, 6.1] 1 M if M <. Theorem (Lissy 215) T M [1, 2 3] 1 M if M >, [2 2, 2(1 + 1 3)] M if M <. (2 3 3.46) Theorem (Darde-Ervedoza 217) T M [1, K ] 1 M if M >, K 3.34

Estimates for T M Theorem (Coron-Guerrero 26) T M [1, 4.3] 1 M if M >, [2, 57.2] 1 M if M <. Theorem (Glass 29) T M [1, 4.2] 1 M if M >, [2, 6.1] 1 M if M <. Theorem (Lissy 215) T M [1, 2 3] 1 M if M >, [2 2, 2(1 + 1 3)] M if M <. (2 3 3.46) Theorem (Darde-Ervedoza 217) T M [1, K ] 1 M if M >, K 3.34

Objective Objective: estimate the uniform minimal control time T M!!?? We can try the following two approaches : Numerical estimation of K (ε, T, M) with respect to ε and T 1 M (for M > and M < ) Asymptotic analysis with respect to the parameter ε of the corresponding optimality system.

Objective Objective: estimate the uniform minimal control time T M!!?? We can try the following two approaches : Numerical estimation of K (ε, T, M) with respect to ε and T 1 M (for M > and M < ) Asymptotic analysis with respect to the parameter ε of the corresponding optimality system.

Attempt 1 : Numerical estimation of K (ε, T, M)

Reformulation of the cost of control K 2 (ε, T, M) = sup y L 2 (,1) (A εy, y ) L 2 (,1) (y, y ) L 2 (,1) where A ε : L 2 (, 1) L 2 (, 1) is the control operator defined by A εy := ˆϕ() where ˆϕ solves the adjoint system < : ϕ t εϕ xx Mϕ x = in Q T, ϕ(, ) = ϕ(1, ) = on (, T ), ϕ(, T ) = ϕ T in (, 1), (6) associated to the initial condition ϕ T H 1 (, 1), solution of the extremal problem inf ϕ T H 1 (,L) J (ϕ T ) := 1 2 Z T (εϕ x (, )) 2 dt + (y, ϕ(, )) L 2 (,T ). REFORMULATION - K (ε, T, M) is solution of the generalized eigenvalue problem : ff λ supj R : y L 2 (, 1), y, s.t. A εy = λy in L 2 (, 1).

The generalized eigenvalue problem by the power iterated method In order to get the largest eigenvalue of the operator A ε, we may employ the power iterate method (Chatelain 9): y L2 (, 1) given such that y L 2 (,1) = 1, >< ỹ k+1 = A εy k, k, >: y k+1 ỹ k+1 = ỹ k+1, k. L 2 (,1) (7) The real sequence { ỹ k L 2 (,1) } k> converges to the eigenvalue with largest module of the operator A ε: q ỹ k L 2 (,1) K (ε, T, M) as k. () The L 2 sequence {y k } k then converges toward the corresponding eigenvector. The first step requires to compute the image of A ε: this is done by determining the control of minimal L 2 norm by minimizing J with y k as initial condition for (5).

Computation of the control of minimal L 2 -norm For a fixed initial data y L 2 (, 1) and ε small, the numerical approximation of controls of minimal L 2 -norm is a serious challenge : the minimization of J is ill-posed : the infimum ϕ T lives in a huge dual space!!! this implies that the minimizer ϕ T is highly oscillating at time T leading to highly oscillation of the control εϕ,x. Tychonoff like regularization inf ϕ T H 1 (,1) J β (ϕ T ) := J (ϕ T ) + β ϕ T H 1 (,1) y ε (, T ) H 1 (,1) β (9) is meaningless here for T > 1/ M because the uncontrolled solution y ε (, T ) goes to zero with ε. Boundary layers occurs for y ε and ϕ ε on the boundary and requires fine discretization. We use the variational approach developed in [Fernandez-Cara-Munch, 213], [De Souza-Munch, 215] leading to convergent approximation with respect to the discretization parameter (ε being fixed).

Computation of the control of minimal L 2 -norm For a fixed initial data y L 2 (, 1) and ε small, the numerical approximation of controls of minimal L 2 -norm is a serious challenge : the minimization of J is ill-posed : the infimum ϕ T lives in a huge dual space!!! this implies that the minimizer ϕ T is highly oscillating at time T leading to highly oscillation of the control εϕ,x. Tychonoff like regularization inf ϕ T H 1 (,1) J β (ϕ T ) := J (ϕ T ) + β ϕ T H 1 (,1) y ε (, T ) H 1 (,1) β (9) is meaningless here for T > 1/ M because the uncontrolled solution y ε (, T ) goes to zero with ε. Boundary layers occurs for y ε and ϕ ε on the boundary and requires fine discretization. We use the variational approach developed in [Fernandez-Cara-Munch, 213], [De Souza-Munch, 215] leading to convergent approximation with respect to the discretization parameter (ε being fixed).

Computation of the control of minimal L 2 -norm For a fixed initial data y L 2 (, 1) and ε small, the numerical approximation of controls of minimal L 2 -norm is a serious challenge : the minimization of J is ill-posed : the infimum ϕ T lives in a huge dual space!!! this implies that the minimizer ϕ T is highly oscillating at time T leading to highly oscillation of the control εϕ,x. Tychonoff like regularization inf ϕ T H 1 (,1) J β (ϕ T ) := J (ϕ T ) + β ϕ T H 1 (,1) y ε (, T ) H 1 (,1) β (9) is meaningless here for T > 1/ M because the uncontrolled solution y ε (, T ) goes to zero with ε. Boundary layers occurs for y ε and ϕ ε on the boundary and requires fine discretization. We use the variational approach developed in [Fernandez-Cara-Munch, 213], [De Souza-Munch, 215] leading to convergent approximation with respect to the discretization parameter (ε being fixed).

Computation of the control of minimal L 2 -norm For a fixed initial data y L 2 (, 1) and ε small, the numerical approximation of controls of minimal L 2 -norm is a serious challenge : the minimization of J is ill-posed : the infimum ϕ T lives in a huge dual space!!! this implies that the minimizer ϕ T is highly oscillating at time T leading to highly oscillation of the control εϕ,x. Tychonoff like regularization inf ϕ T H 1 (,1) J β (ϕ T ) := J (ϕ T ) + β ϕ T H 1 (,1) y ε (, T ) H 1 (,1) β (9) is meaningless here for T > 1/ M because the uncontrolled solution y ε (, T ) goes to zero with ε. Boundary layers occurs for y ε and ϕ ε on the boundary and requires fine discretization. We use the variational approach developed in [Fernandez-Cara-Munch, 213], [De Souza-Munch, 215] leading to convergent approximation with respect to the discretization parameter (ε being fixed).

Computation of the control of minimal L 2 -norm For a fixed initial data y L 2 (, 1) and ε small, the numerical approximation of controls of minimal L 2 -norm is a serious challenge : the minimization of J is ill-posed : the infimum ϕ T lives in a huge dual space!!! this implies that the minimizer ϕ T is highly oscillating at time T leading to highly oscillation of the control εϕ,x. Tychonoff like regularization inf ϕ T H 1 (,1) J β (ϕ T ) := J (ϕ T ) + β ϕ T H 1 (,1) y ε (, T ) H 1 (,1) β (9) is meaningless here for T > 1/ M because the uncontrolled solution y ε (, T ) goes to zero with ε. Boundary layers occurs for y ε and ϕ ε on the boundary and requires fine discretization. We use the variational approach developed in [Fernandez-Cara-Munch, 213], [De Souza-Munch, 215] leading to convergent approximation with respect to the discretization parameter (ε being fixed).

Picture of controls with respect to ε, y fixed y (x) = sin(πx); T = 1; M = 1.6.4.2.2.4.6 1 5 5 1 15 4 2 2 4 6 1..2.4.6. 1 t 2.2.4.6. 1 t 12.2.4.6. 1 t Control of minimal L 2 (, T )-norm v ε (t) [, T ] for ε = 1 1, 1 2 and 1 3

Picture of controls with respect to ε, y fixed y (x) = sin(πx); T = 1; M = 1 6 4 2 2 4 6 4 3 2 1 1 2 3 25 2 15 1 5 5 1 15 2.2.4.6. 1 t 4.2.4.6. 1 t 25.2.4.6. 1 t Control of minimal L 2 (, T )-norm v ε (t) [, T ] for ε = 1 1, 1 2 and 1 3

Cost of control K (ε, T, M) w.r.t. ε - M = 1 25 2 6 2 15 1 5 15 1 5 5 4 3 2 1.2.4.6..1.2.4.6..1.2.4.6..1 Cost of control w.r.t. ε for T =.95 1 M, T = 1 M and T = 1.5 1 M In agreement with Coron-Guerrero 26, ε 3/2 T 1/2 M 2 «M K (ε, T, M) C 1 1 + M 3 ε 3 exp 2ε (1 TM) π2 εt (1)

Corresponding worst initial condition 5 4 3 2 1.2.4.6. 1 x Figure: T = 1 - M = 1 - The optimal initial condition y in (, 1) for ε = 1 1 (full line), ε = 1 2 (dashed line) and ε = 1 3 (dashed-dotted line). = y is close to e Mx 2ε sin(πx)/ e Mx 2ε sin(πx) L 2 (,1)

Cost of control K (ε, T, M) w.r.t. ε - M = 1 x 14 7 6 5 4 3 2 1.2.4.6..1 2 1 1 2 3 x 14 3.95.96.97.9.99 1 t Left: Cost of control w.r.t. ε for T = 1 M ; Right: Corresponding control v ε in the neighborhood of T for ε = 1 3

Corresponding worst initial condition for M = 1 6 5 4 3 2 1.2.4.6. 1 x Figure: T = 1 - M = 1 - The optimal initial condition y in (, 1) for ε = 1 1 (full line), ε = 1 2 (dashed line) and ε = 1 3 (dashed-dotted line).

Part 2 Attempt 2 : Asymptotic analysis w.r.t. ε We take M >. Optimality system : L εy ε =, L ε ϕε =, (x, t) Q T, y ε (, ) = y ε, x (, 1), >< v ε (t) = y ε (, t) = εϕ ε x (, t), t (, T ), y ε (1, t) =,. t (, T ), ϕ >: ε (, t) = ϕ ε (1, t) =, t (, T ), βϕ ε xx (, T ) + y ε (, T ) =, x (, 1). (11) β > - Regularization parameter

Part 2 Attempt 2 : Asymptotic analysis w.r.t. ε We take M >. Optimality system : L εy ε =, L ε ϕε =, (x, t) Q T, y ε (, ) = y ε, x (, 1), >< v ε (t) = y ε (, t) = εϕ ε x (, t), t (, T ), y ε (1, t) =,. t (, T ), ϕ >: ε (, t) = ϕ ε (1, t) =, t (, T ), βϕ ε xx (, T ) + y ε (, T ) =, x (, 1). (11) β > - Regularization parameter

Direct problem - Asymptotic expansion yt ε εyxx ε + Myx ε =, (x, t) (, 1) (, T ), >< y ε (, t) = v ε (t), t (, T ), y >: ε (1, t) =, t (, T ), y ε (x, ) = y (x), x (, 1), (12) y and v ε are given functions. We assume that mx v ε = ε k v k, k= the functions v, v 1,, v m being known. We construct an asymptotic approximation of the solution y ε of (12) by using the matched asymptotic expansion method.

Direct problem - Asymptotic expansion Let us consider two formal asymptotic expansions of y ε : the outer expansion mx ε k y k (x, t), (x, t) (, T ), the inner expansion k= mx ε k Y k (z, t), k= z = 1 x ε (, ε 1 ), t (, T ).

Direct problem - Outer expansion Putting mx ε k y k (x, t) into equation (12) 1, the identification of the powers of ε yields k= ε : y t + My x =, ε k : y k t + My k x = y k 1 xx, for any 1 k m. Taking the initial and boundary conditions into account we define y and y k (1 k m) as functions satisfying the transport equations, respectively, y >< t + Myx =, (x, t) Q T, y (, t) = v (t), t (, T ), >: y (x, ) = y (x), x (, 1), (13) and > y < t k + Myx k = y xx k 1, (x, t) Q T, y k (, t) = v k (t), t (, T ), >: y k (x, ) =, x (, 1). (14)

Direct problem - Outer expansion < y (x Mt) x > Mt, y (x, t) = : v t x, x < Mt. M Using the method of characteristics we find that, for any 1 k m, Z t >< yxx k 1 (x + (s t)m, s)ds, x > Mt, y k (x, t) = >: v k t x Z x/m + yxx k 1 (sm, t x + s)ds, x < Mt. M M Remark < t y y 1 (x Mt), x > Mt, (x, t) = : v 1 t x + x M M 3 (v ) t x, x < Mt, M >< y 2 (x, t) = v 2 t x M >: t 2 2 y (4) (x Mt), x > Mt, + x M 3 (v 1 ) t x M 2x M 5 (v ) (3) t x + x 2 M 2M 6 (v ) (4) t x, x < Mt. M

Direct problem - Outer expansion < y (x Mt) x > Mt, y (x, t) = : v t x, x < Mt. M Using the method of characteristics we find that, for any 1 k m, Z t >< yxx k 1 (x + (s t)m, s)ds, x > Mt, y k (x, t) = >: v k t x Z x/m + yxx k 1 (sm, t x + s)ds, x < Mt. M M Remark < t y y 1 (x Mt), x > Mt, (x, t) = : v 1 t x + x M M 3 (v ) t x, x < Mt, M >< y 2 (x, t) = v 2 t x M >: t 2 2 y (4) (x Mt), x > Mt, + x M 3 (v 1 ) t x M 2x M 5 (v ) (3) t x + x 2 M 2M 6 (v ) (4) t x, x < Mt. M

Direct problem - Inner expansion mx Now we turn back to the construction of the inner expansion. Putting ε k Y k (z, t) k= into equation (12) 1, the identification of the powers of ε yields ε 1 : Yzz (z, t) + MY z (z, t) =, ε k 1 : Yzz k (z, t) + MY z k k 1 (z, t) = Yt (z, t), for any 1 k m. We impose that Y k (, t) = for any k m and use the asymptotic matching conditions Y (z, t) y (1, t), as z +, Y 1 (z, t) y 1 (1, t) yx (1, t)z, as z +, Y 2 (z, t) y 2 (1, t) y 1 x (1, t)z + 1 2 y xx (1, t)z2, as z +, Y m (z, t) y m (1, t) y m 1 x as z +. (1, t)z + 1 2 y xx m 2 (1, t)z 2 + + 1 m! (y ) (m) x (1, t)( z) m,

Direct problem - Inner expansion Lemma Y (z, t) = y (1, t) 1 e Mz, (z, t) (, + ) (, T ). For any 1 k m, the solution of reads where Y k (z, t) = Q k (z, t) + e Mz P k (z, t), (z, t) (, + ) (, T ), (15) P k (z, t) = kx i= 1 i y k i i! x i (1, t)z i, Q k (z, t) = kx ( 1) i i y k i i! x i (1, t)z i. i=

Asymptotic approximation Let X : R [, 1] denote a C 2 cut-off function satisfying ( 1, s 2, X (s) =, s 1, 1 X ε(x) 1 2ε γ 1 ε γ Figure: The function X ε. 1 x We define, for γ (, 1), the function X ε(x) = X 1 x ε γ, then introduce the function mx mx «1 x wm(x, ε t) = X ε(x) ε k y k (x, t) + (1 X ε(x)) ε k Y k, t, (16) ε k= k= defined to be an asymptotic approximation at order m of the solution y ε of (12).

Compatibility conditions - Regularity Lemma (i) Assume that y C 2m+1 [, 1], v C 2m+1 [, T ] and the following C 2m+1 -matching conditions are satisfied M p (y ) (p) () + ( 1) p+1 (v ) (p) () =, p 2m + 1. (17) Then the function y belongs to C 2m+1 ([, 1] [, T ]). (ii) Additionally, assume that v k C 2(m k)+1 [, T ], and the following C 2(m k)+1 -matching conditions are satisfied, respectively, (v k ) (p) () = X ( 1) i M i p+1 y k 1 x i+2 t j (, ), p 2(m k) + 1. (1) i+j=p 1 Then the function y k belongs to C 2(m k)+1 ([, 1] [, T ]).

Compatibility conditions - example with m = 2 Lemma (i) Assume that y C 5 [, 1], v C 5 [, T ] and the following C 5 -matching conditions are satisfied M p (y ) (p) () + ( 1) p+1 (v ) (p) () =, p 5. (19) Then the function y belongs to C 5 ([, 1] [, T ]). (ii) Additionally, assume that v 1 C 3 [, T ], v 2 C 1 [, T ] and the following C 3 and C 1 -matching conditions are satisfied, respectively, >< >: v 1 () =, (v 1 ) (1) () = M 2 (v ) (2) () = y (2) (), (v 1 ) (2) () = 2M 2 (v ) (3) () = 2My (3) (), (v 1 ) (3) () = 3M 2 (v ) (4) () = 3M 2 y (4) (), (2) v 2 () =, (v 2 ) (1) () =. (21) Then the function y 1 belongs to C 3 ([, 1] [, T ]), and the function y 2 belongs to C 1 ([, 1] [, T ]).

Estimate of L ε w ε m Lemma Let wm ε be the function defined by (16). Assume the previous regularity and compatibility. Then there is a constant c m independent of ε such that L ε(w ε m)(x, t) = P 5 i=1 Ji ε(x, t), L ε(w ε m ) C([,T ];L 2 (,1)) Jε(x, 1 t) = ε m+1 yxx m (x, t)x ε(x), «1 x Jε 2 (x, t) = εm (1 X ε(x))yt m, t, «1 x Jε(x, 3 t) = MX ε γ ε γ «1 x Jε(x, 4 t) = X ε γ ε 1 2γ «1 x Jε 5 (x, t) = 2X ε γ ε m X k= m X cm ε (2m+1)γ 2. (22) «1 x ε k Y k, t ε «1 x ε k Y k, t ε! mx ε k y k (x, t), k=! mx ε k y k (x, t), k= k= X m «! 1 x mx ε 1 γ ε 1 ε k Yz k, t + ε k yx k ε (x, t). k= k=

Asymptotic approximation- Convergence Theorem Let y ε be the solution of problem (12) and let w ε m be the function defined by (16). Assume that the assumptions of Lemma 6 hold true. Then there is a constant c m independent of ε such that y ε w ε m C([,T ];L 2 (,1)) 2m+1 cmε 2 γ. (23) Introduce the function z ε = y ε wm ε. It satisfies >< L ε(z ε ) = L ε(wm ε ), (x, t) (, 1) (, t), z ε (, t) = z ε (1, t) =, t (, T ), (24) >: z ε (x, ) = z ε (x), x (, 1), Using the Gronwall Lemma it holds that z ε (, t) 2 L 2 (,1) L ε(wm) ε 2 L 2 (Q T ) + zε 2 L 2 e t, t (, T ]. (25) (,1) We have z ε (x) = (1 Xε(x)) y (x) mx k= 1 x ε k Y k, «!, ε

Convergence with respect to m Theorem Let, for any m N, y ε m denote the solution of problem (12). We assume that the initial condition y belongs to C [, 1] and there are c, b R such that y (m) C[,1] c b m, m N. (26) We assume that (v k ) k is a sequence of polynomials of degree p 1, p 1, uniformly bounded in C p 1 [, T ]. We assume in addition that, for any k N, for any m N, the functions v k and y satisfy the matching conditions. Let wm ε be the function defined by (16). Then, there is ε > such that, for any fixed < ε < ε, we have consequently y ε m w ε m in C([, T ], L2 (, 1)), as m +, lim w ε m + m (x, t) = Xε(x) X X «1 x ε k y k (x, t) + (1 X ε(x)) ε k Y k, t ε k= k= = y ε (x, t) a.e. in (, 1) (, T ), where y ε is the solution of problem (12) with y ε (, t) = P k= εk v k (t), t (, T ).

First approximate controllability result Proposition Let m N, T > 1 M and a ], T 1 M [. Assume regularity and matching conditions on the initial condition y and functions v k, k m. Assume moreover that T > L M t = L M v k (t) =, k m, t [a, T ]. Then, the solution y ε of problem (12) satisfies the following property y ε (, T ) L 2 (,1) cm ε (2m+1)γ 2, γ (, 1) for some constant c m > independent of ε. The function v ε C([, T ]) defined by v ε := P m k= εk v k is an approximate null control for (5). t = T L M x L

m? Remark For ε > small enough, we can not pass to the limit as m in order to get a null-controllability result. Let y (x) = 1. The functions v k, k defined as follows v (t) = X (t), v k (t) =, k > (27) with X = {f C [, T ], f () = 1, f (a) =, f (p) () = f (p) (a) =, p N }, a [, T ] satisfy the matching conditions. If a ], T 1/M[, then wm ε (, T ) L 2 (,T ) = m N. If lim m c mε (2m+1)γ 2 =, then the function v ε = P k= εk v k = v is a null control for y ε as time T. Contradiction.

Picture y (x) = 1, v (t) = X (t), v k (t) =, k > (2) X (t) = e kt2m+2, with k > so that X p ()) = for all p 2m + 1. M = 1, k = 1 2, T = 1 and m = 2. Y (z, t) = (1 e z ) independent of t while Y 1 and Y 2 are identically zero. 1 1..6 5.4.2 1.5 x.2.4 t.6. 1 5 1.5 x.2.4 t.6. 1 2 x 1 4 1 1 2 1.5 x.2.4 t.6. 1

The case T = 1/M 1 x w ε (x, T ) = Xε(x)y (x, T ) + (1 X ε(x)) Y ε = X ε(x)v (T (1 x)) + (1 X ε(x)) y () «, T, (x, t) Q T, 1 e M(1 x) ε «If supp(v ) [, T ε γ ], T = L M Lε γ w ε (, T ) L 2 (,1) y () ε γ/2 and y ε (, T ) L 2 (,1) w ε (, T ) L 2 (,1) + (y ε w ε )(, T ) L 2 (,1) y () ε γ/2 + ε v L 2 (,ε γ T ) y () (cε τ(γ) + ε γ/2 ), t = Tε γ x L

The case of initial condition y ε of the form y ε Mx (x) = e 2ε f (x) Let us consider the case of the C ([, 1]) initial data (with L = 1): y ε Mx (x) := Kε sin(πx)e 2ɛ, K ε = O(ε 3/2 ). (29) Taking m =, the function L ε(w ε) involves the term εy xx (x, t)x ε(x). For points in C := {(x, t) Q T, x > Mt}, we obtain y (x, t) = y ε (x Mt); this leads, to (writing that X ε = 1 on (, 1 2ε γ )) Z 1 2ε γz x/m «2 «1/2 ε yxx Xε L 2 (C ) εkε (sin(π(x Mt))e M(x Mt) 2ε ) xx dtdx = εk εo(1) = O(ε 1/2 ). (3)

The case of initial condition y ε of the form y ε Mx (x) = e 2ε >< >: ` y ε (x, t) = e Mα 2ε L εy ε (x, t) = e Mα 2ε x (2 α)mt 2 ` x (2 α)mt 2 z ε (x, t), zt ε εz ε xx + M(1 α)z ε x «(31) We then define the approximations >< m zm ε (x, t) = Xε(x) X mx ε k z k (x, t) + (1 X ε(x)) >: ` ym(x, ε t) = e Mα 2ε k= x (2 α)mt 2 z ε m(x, t) k= «1 x ε k Z k, t, ε (32) The main issue is now to find control functions v k satisfying the matching conditions such that L εym ε C([,T ],L 2 (,1)) goes to zero with ε.

The case of initial condition y ε of the form y ε Mx (x) = e 2ε >< >: ` y ε (x, t) = e Mα 2ε L εy ε (x, t) = e Mα 2ε x (2 α)mt 2 ` x (2 α)mt 2 z ε (x, t), zt ε εz ε xx + M(1 α)z ε x «(31) We then define the approximations >< m zm ε (x, t) = Xε(x) X mx ε k z k (x, t) + (1 X ε(x)) >: ` ym(x, ε t) = e Mα 2ε k= x (2 α)mt 2 z ε m(x, t) k= «1 x ε k Z k, t, ε (32) The main issue is now to find control functions v k satisfying the matching conditions such that L εym ε C([,T ],L 2 (,1)) goes to zero with ε.

The case of initial condition y ε of the form y ε Mx (x) = e 2ε >< >: ` y ε (x, t) = e Mα 2ε L εy ε (x, t) = e Mα 2ε x (2 α)mt 2 ` x (2 α)mt 2 z ε (x, t), zt ε εz ε xx + M(1 α)z ε x «(31) We then define the approximations >< m zm ε (x, t) = Xε(x) X mx ε k z k (x, t) + (1 X ε(x)) >: ` ym(x, ε t) = e Mα 2ε k= x (2 α)mt 2 z ε m(x, t) k= «1 x ε k Z k, t, ε (32) The main issue is now to find control functions v k satisfying the matching conditions such that L εym ε C([,T ],L 2 (,1)) goes to zero with ε.

L ε y ε m C([,T ],L 2 (,1)) T 1 M L εy ε m ` Mα (x, t) = e 2ε x (2 α)mt 2 L ε,αzm ε (x, t) 2 M(2 α) In D β C+ α, L ε,αz ε m(x, t) = ε m+1 z m xx (x, t) ` e Mα 2ε (v ) (2) t t L εy ε (x, t) = ε x (2 α)mt x M 2 2 α M α «C 1 = ε M(1 α) M 2 e Mα2 α(2 α)m 2 x x 4ε Mα t 4ε(1 α) e (v ) (2) t x «α M α β >< (v ) (2) (t) = (C 1 + C 2 t)e η+α(2 α)m2 4ε t, t [, β], x 1 v () = z ε Figure: (, 1) (, T ) = >: (), v (β) =, (v ) (1) ()) = M α(z ε D + β (D β C α ) (D β C+ α ). ) (), (v ) (1) (β) =, (33) for some constants C 1 and C 2 and η >. «, L ε(y ε ) L 1 (L 2 (D β C+ α)) (v )()O(ε 1/2 )+(v ) (1) ()O(ε 3/2 ).

L ε y ε m C([,T ],L 2 (,1)) T 1 M L εy ε m ` Mα (x, t) = e 2ε x (2 α)mt 2 L ε,αzm ε (x, t) 2 M(2 α) In D β C+ α, L ε,αz ε m(x, t) = ε m+1 z m xx (x, t) ` e Mα 2ε (v ) (2) t t L εy ε (x, t) = ε x (2 α)mt x M 2 2 α M α «C 1 = ε M(1 α) M 2 e Mα2 α(2 α)m 2 x x 4ε Mα t 4ε(1 α) e (v ) (2) t x «α M α β >< (v ) (2) (t) = (C 1 + C 2 t)e η+α(2 α)m2 4ε t, t [, β], x 1 v () = z ε Figure: (, 1) (, T ) = >: (), v (β) =, (v ) (1) ()) = M α(z ε D + β (D β C α ) (D β C+ α ). ) (), (v ) (1) (β) =, (33) for some constants C 1 and C 2 and η >. «, L ε(y ε ) L 1 (L 2 (D β C+ α)) (v )()O(ε 1/2 )+(v ) (1) ()O(ε 3/2 ).

L ε y ε m C([,T ],L 2 (,1)) T 1 M L εy ε m ` Mα (x, t) = e 2ε x (2 α)mt 2 L ε,αzm ε (x, t) 2 M(2 α) In D β C+ α, L ε,αz ε m(x, t) = ε m+1 z m xx (x, t) ` e Mα 2ε (v ) (2) t t L εy ε (x, t) = ε x (2 α)mt x M 2 2 α M α «C 1 = ε M(1 α) M 2 e Mα2 α(2 α)m 2 x x 4ε Mα t 4ε(1 α) e (v ) (2) t x «α M α β >< (v ) (2) (t) = (C 1 + C 2 t)e η+α(2 α)m2 4ε t, t [, β], x 1 v () = z ε Figure: (, 1) (, T ) = >: (), v (β) =, (v ) (1) ()) = M α(z ε D + β (D β C α ) (D β C+ α ). ) (), (v ) (1) (β) =, (33) for some constants C 1 and C 2 and η >. «, L ε(y ε ) L 1 (L 2 (D β C+ α)) (v )()O(ε 1/2 )+(v ) (1) ()O(ε 3/2 ).

L ε y ε m C([,T ],L 2 (,1)) T 1 M L εy ε m ` Mα (x, t) = e 2ε x (2 α)mt 2 L ε,αzm ε (x, t) 2 M(2 α) In D β C+ α, L ε,αz ε m(x, t) = ε m+1 z m xx (x, t) ` e Mα 2ε (v ) (2) t t L εy ε (x, t) = ε x (2 α)mt x M 2 2 α M α «C 1 = ε M(1 α) M 2 e Mα2 α(2 α)m 2 x x 4ε Mα t 4ε(1 α) e (v ) (2) t x «α M α β >< (v ) (2) (t) = (C 1 + C 2 t)e η+α(2 α)m2 4ε t, t [, β], x 1 v () = z ε Figure: (, 1) (, T ) = >: (), v (β) =, (v ) (1) ()) = M α(z ε D + β (D β C α ) (D β C+ α ). ) (), (v ) (1) (β) =, (33) for some constants C 1 and C 2 and η >. «, L ε(y ε ) L 1 (L 2 (D β C+ α)) (v )()O(ε 1/2 )+(v ) (1) ()O(ε 3/2 ).

L ε y ε m C([,T ],L 2 (,1)) T 1 M L εy ε m ` Mα (x, t) = e 2ε x (2 α)mt 2 L ε,αzm ε (x, t) 2 M(2 α) In D β C+ α, L ε,αz ε m(x, t) = ε m+1 z m xx (x, t) ` e Mα 2ε (v ) (2) t t L εy ε (x, t) = ε x (2 α)mt x M 2 2 α M α «C 1 = ε M(1 α) M 2 e Mα2 α(2 α)m 2 x x 4ε Mα t 4ε(1 α) e (v ) (2) t x «α M α β >< (v ) (2) (t) = (C 1 + C 2 t)e η+α(2 α)m2 4ε t, t [, β], x 1 v () = z ε Figure: (, 1) (, T ) = >: (), v (β) =, (v ) (1) ()) = M α(z ε D + β (D β C α ) (D β C+ α ). ) (), (v ) (1) (β) =, (33) for some constants C 1 and C 2 and η >. «, L ε(y ε ) L 1 (L 2 (D β C+ α)) (v )()O(ε 1/2 )+(v ) (1) ()O(ε 3/2 ).

L ε y ε m C([,T ],L 2 (,1)) T 1 M t 2 M(2 α) Thus, the corresponding control is given >< v (t) = e γm2 t 4ε v (t) 1 [,β] (t), γ = α(2 α), >: v (t) = kc 1 2C 2 + kc 2 t k 3 e kt η + α(2 α)m + C 3 t + C 4, k := 4ε (34) C β 1 M(1 α) x 1 Figure: (, 1) (, T ) = D + β (D β C α ) (D β C+ α ). Figure: Control v (t) for ε = 1 2 and ε = 1 3 associated to y ε Mx (x) = e 2ε sin(πx).

Optimality condition For any ε > and β >, the optimality system associated to the extremal problem min v ε 2 v ε L 2 L (,T ) 2 (,T ) + β 1 y ε (, T ) 2 L 2 (,1) (35) where the pair (v ε, y ε ) solves (5) is given by L εy ε =, L εϕ ε =, (x, t) Q T, >< y ε (, ) = y ε, x (, 1), v ε (t) = y ε (, t) = εϕ ε x (, t), t (, T ), y ε (1, t) =, ϕ ε (, t) = ϕ ε (1, t) =, t (, T ), >: βϕ ε xx (, T ) + y ε (, T ) =, x (, 1). (36)

Optimality condition v (t) + εv 1 (t) + = Φ z(, t) + εφ 1 z(, t) +, t (, T ). At the zero order, we get therefore v (t) = Φ z (, t) leading simultaneously, to v (t) = Mϕ (, t) = ( Mϕ T (M(T t)), t ]T 1/M, T ],, t [, T 1/M] The last equality contradicts the matching conditions (17). Jε (ϕ ε T ) = 1 Z T (εϕ ε x 2 (, ))2 dt + (y, ϕ ε (, )) L 2 (,1), = 1 Z T (Φ 2 z(, t)) 2 dt + (y, ϕ (, )) + ε..., Z = M2 T «2 ϕ T 2 (M(T t)) dt + ε... T 1/M

Optimality condition v (t) + εv 1 (t) + = Φ z(, t) + εφ 1 z(, t) +, t (, T ). At the zero order, we get therefore v (t) = Φ z (, t) leading simultaneously, to v (t) = Mϕ (, t) = ( Mϕ T (M(T t)), t ]T 1/M, T ],, t [, T 1/M] The last equality contradicts the matching conditions (17). Jε (ϕ ε T ) = 1 Z T (εϕ ε x (, )) 2 dt + (y, ϕ ε (, )) 2 L 2 (,1), = 1 Z T (Φ 2 z(, t)) 2 dt + (y, ϕ (, )) + ε..., Z = M2 T «2 ϕ T 2 (M(T t)) dt + ε... T 1/M

Final remarks Instead of imposing regularity assumptions and matching conditions, we may introduce an additional C 2 cut-off X function to take into account the discontinuity of the solutions y k on the characteristic line. This allows to deal with the initial optimality system. The negative case is very similar except that the control v ε lives in the boundary layer. (still in progress! )

Final remarks Instead of imposing regularity assumptions and matching conditions, we may introduce an additional C 2 cut-off X function to take into account the discontinuity of the solutions y k on the characteristic line. This allows to deal with the initial optimality system. The negative case is very similar except that the control v ε lives in the boundary layer. (still in progress! )

Easier case >< ytt ε + ε 2 y ε y ε =, in Q T, y ε =, νy ε = v ε 1 ΓT, on Σ T, >: (y ε (, ), yt ε (, )) = (y, y 1 ), on Ω. Theorem (Lions) Assume (y, y 1 ) L 2 (Ω) H 1 (Ω). Assume that (Ω, Γ T, T ) satisfies a geometric control condition. For any ε >, let v ε be the control of minimal L 2 (Γ T ) for y ε. Then, ( εv ε, y ε ) (v, y) in L 2 (Γ T ) L (, T ; L 2 (Ω)), as ε where v is the control of minimal L 2 (Γ T )-norm for y, solution in C ([, T ]; L 2 (Ω)) C 1 ([, T ]; H 1 (Ω)) of : >< y tt y =, in Q T, y = v1 ΓT, on Σ T, >: (y(, ), y t (, )) = (y, y 1 ), in Ω.

Fin A. Münch : Numerical estimations of the cost of boundary controls for the equation y t εy xx + My x = with respect to ε. Y. Amirat, A. Münch : Asymptotic analysis of the equation y t εy xx + My x = and controllability results. MERCI DE VOTRE ATTENTION