arxiv: v1 [hep-th] 19 Sep 2008

Σχετικά έγγραφα
2 Composition. Invertible Mappings

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

EE512: Error Control Coding

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Matrices and Determinants

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Concrete Mathematics Exercises from 30 September 2016

Section 8.3 Trigonometric Equations

Example Sheet 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Space-Time Symmetries

Symmetric Stress-Energy Tensor

Second Order Partial Differential Equations

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Higher Derivative Gravity Theories

Congruence Classes of Invertible Matrices of Order 3 over F 2

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Inverse trigonometric functions & General Solution of Trigonometric Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Reminders: linear functions

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

4.6 Autoregressive Moving Average Model ARMA(1,1)

A Note on Intuitionistic Fuzzy. Equivalence Relation

C.S. 430 Assignment 6, Sample Solutions

Finite Field Problems: Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ST5224: Advanced Statistical Theory II

Approximation of distance between locations on earth given by latitude and longitude

The Simply Typed Lambda Calculus

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Math221: HW# 1 solutions

Homework 3 Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Lecture 13 - Root Space Decomposition II

Homework 8 Model Solution Section

Relativistic particle dynamics and deformed symmetry

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

( y) Partial Differential Equations

Every set of first-order formulas is equivalent to an independent set

Second Order RLC Filters

Commutative Monoids in Intuitionistic Fuzzy Sets

Section 7.6 Double and Half Angle Formulas

Higher spin gauge theories and their CFT duals

D Alembert s Solution to the Wave Equation

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fractional Colorings and Zykov Products of graphs

Section 9.2 Polar Equations and Graphs

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

New bounds for spherical two-distance sets and equiangular lines

derivation of the Laplacian from rectangular to spherical coordinates

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Lecture 15 - Root System Axiomatics

Math 6 SL Probability Distributions Practice Test Mark Scheme

Areas and Lengths in Polar Coordinates

Statistical Inference I Locally most powerful tests

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

On a four-dimensional hyperbolic manifold with finite volume

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

PARTIAL NOTES for 6.1 Trigonometric Identities

Tutorial problem set 6,

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

6.3 Forecasting ARMA processes

Solution Series 9. i=1 x i and i=1 x i.

Homomorphism in Intuitionistic Fuzzy Automata

Numerical Analysis FMN011

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Areas and Lengths in Polar Coordinates

Tridiagonal matrices. Gérard MEURANT. October, 2008

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Srednicki Chapter 55

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Two generalisations of the binomial theorem

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Solutions to Exercise Sheet 5

( ) 2 and compare to M.

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Other Test Constructions: Likelihood Ratio & Bayes Tests

SOLVING CUBICS AND QUARTICS BY RADICALS

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

CRASH COURSE IN PRECALCULUS

Strain gauge and rosettes

Lecture 26: Circular domains

arxiv: v1 [math.ra] 19 Dec 2017

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Lecture 2. Soundness and completeness of propositional logic

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

SPECIAL FUNCTIONS and POLYNOMIALS

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

The k-α-exponential Function

Generating Set of the Complete Semigroups of Binary Relations

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Transcript:

BRST structure of non-linear superalgebras M. Asorey a, P.M. Lavrov a,b, O.V. Radchenko b and A. Sugamoto c arxiv:0809.3322v1 [hep-th] 19 Sep 2008 a Departamento de Física Teórica, Facultad de Ciencias Universidad de Zaragoza, 50009 Zaragoza, Spain b Department of Mathematical Analysis, Tomsk State Pedagogical University, 634041 Tomsk, Russia c Department of Physics, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan In this paper we analyse the structure of the BRST structure of nonlinear superalgebras. We consider quadratic non-linear superalgebras where a commutator in terms of super) Poisson brackets) of the generators is a quadratic polynomial of the generators. We find the explicit form of the BRST charge up to cubic order in Faddeev-Popov ghost fields for arbitrary quadratic nonlinear superalgebras. We point out the existence of constraints on structure constants of the superalgebra when the nilpotent BRST charge is quadratic in Faddeev-Popov ghost fields. The general results are illustrated by simple examples of superalgebras. 1 Introduction The nilpotent BRST charge as the Noether charge of the global Becchi-Rouet-Stora-Tyutin supersymmetry [1, 2] is a crucial element in both Lagrangian [3] and Hamiltonian [4] quantization methods of gauge theories see also the reviews [5]). For general gauge theories, the existence theorem for the nilpotent BRST charge has been proven [5]. It proceeds by the construction of the BRST charge by an infinite, in general, series expansion in the Faddeev-Popov ghost fields. Sometimes these series are truncated and reduce to finite polynomials. The most remarkable examples are given by the Yang-Mills theories when the nilpotent BRST charge is a quadratic function of Faddeev-Popov ghost fields. Another interesting examples are given by some quadratic nonlinear Lie algebras [6, 7]. The interest on nonlinear algebras was initiated by discovery of conformal field theories [8] which led to a new class of gauge theories with the nonlinear gauge algebras, the so-called W N algebras [9]. The BRST construction for such algebras was discussed in [10, 6]. This is closely related to the problem of the BRST construction for quantum groups with quadratic nonlinear algebras [11]. Recently, it was shown that a special class of nonlinear gauge algebras arises in the Lagrangian BRST approach to higher spin theories on anti de Sitter AdS) space [12]. E-mail: asorey@saturno.unizar.es E-mail: lavrov@tspu.edu.ru E-mail: radchenko@tspu.edu.ru E-mail: sugamoto@phys.ocha.ac.jp 1

The general analysis of the BRST structure given in [6, 7, 13] was restricted to quadratic nonlinear algebras. In this paper, we extend this analysis to the case of quadratic nonlinear superalgebras. We make use of the standard definition of the Poisson superbracket in a phase space with coordinates Γ = Q A,P A ), ǫq A ) = ǫp A ) = ǫ A ǫx) denotes the Grassmann parity of a quantity X) for any two functions F,G {F,G} = F Q A G P A G Q A F P A 1) ǫf)ǫg) 1) where the derivatives with respect to momenta P A stand for left derivatives, and those with respect to corresponding coordinates Q A stand for right derivatives. The Poisson superbracket 1) obeys the following properties: 1) Generalized antisymmetry 2) Generalized Jacobi identity 3) Grassmann parity 4) By-linearity 5) Leibniz rule {F,G} = 1) ǫf)ǫg) {G,F }, 2) {F, {G,H} 1) ǫf)ǫh) + cyclic perms.f,g,h) 0, 3) ǫ{f,g}) = ǫf) + ǫg), 4) {F + H,G} = {F,G} + {H,G}, ǫf) = ǫh)), 5) {FH,G} = F {H,G} + {F,G}H 1) ǫh)ǫg), 6) {F,GH} = {F,G}H + G{F,H}H 1) ǫf)ǫg). In the present paper, we study the nilpotent BRST charge for quadratic nonlinear superalgebras and find some special restrictions on structure constants when the nilpotent BRST charge is given in the simplest form. The paper is organized as follows. In Section 2 the Jacobi identities for quadratic nonlinear superalgebras are derived and some simple examples of such a kind of superalgebras are constructed. In Section 3 the classical nilpotent BRST charge for quadratic nonlinear superalgebras with some special restrictions on structure constants is constructed. In Section 4 we consider some simple examples of superalgebras for which general approach can be applied. In Section 5 we present some concluding remarks. 2 Nonlinear superalgebras Let us consider a phase space M with local coordinates {q i,p i ),i = 1,2,..,n;ǫq i ) = ǫp i ) = ǫ i )} and let {T α = T α q,p), ǫt α ) = ǫ α } be a set of independent functions on M. We suppose that T α satisfy the involution relations in terms of the Poisson superbracket {T α,t β } = T γ F γ αβ + T δt γ V γδ αβ, 7) where the Grassmann parities ǫf γ αβ ) = ǫ α +ǫ β +ǫ γ, ǫv γδ αβ ) = ǫ α +ǫ β +ǫ γ +ǫ δ and structure constants γδ and Vαβ possess the symmetry properties F γ αβ F γ αβ = 1)ǫαǫ β F γ βα, V γδ αβ = 1)ǫαǫ β V γδ βα = 1)ǫ δǫ γ V δγ αβ. 8) 2

The Jacobi identities for 7) read F ασf µ βγ 1) σ ǫαǫγ + cyclic perms.α,β,γ) = 0, 9) V ασ µν Fβγ σ + F ασv µ βγ σν 1) ǫαǫν + FασV ν σµ βγ 1)ǫµǫα+ǫν)) 1) ǫαǫγ + cyclic perms.α,β,γ) = 0,10) ) V ασ µν V βγ σλ 1)ǫ λǫ α+ǫ µ) + cyclic perms.µ,ν,λ) 1) ǫαǫγ + cyclic perms.α,β,γ) = 0. 11) The simplest case of superalgebras really involving fermionic functions is a superalgebra with three generators T,G 1,G 2 where T is bosonic ǫt) = 0) and G 1,G 2 are fermionic ǫg 1 ) = ǫg 2 ) = 1). In particular, we have that G 2 1 = G2 2 = 0. The most general relations for the Poisson superbrackets of generators preserving the Grassmann parities have the form {T,G 1 } = a 1 T)G 1 + a 2 T)G 2, {T,G 2 } = b 1 T)G 1 + b 2 T)G 2, {G 1,G 1 } = α 1 T) + α 2 T)G 1 G 2, {G 2,G 2 } = β 1 T) + β 2 T)G 1 G 2, {G 1,G 2 } = γ 1 T) + γ 2 T)G 1 G 2. Here a i,b i,α i,β i,γ i,i = 1,2 are polynomial functions of T. Jacobi identities for this algebra require the fulfilment of equations α 1a 1 + α 2 γ 1 = 0, β 1b 1 + β 1 β 2 = 0, α 1a 2 = 0, β 1b 2 + β 2 γ 1 = 0, a 1 γ 1 + a 2 β 1 + b 1 α 1 + b 2 γ 1 = 0, b 2a 1 a 1 + a 2b 1 + a 2 b 1 b 1 α 2 + a 2 β 2 = 0, 2γ 1 a 1 + α 1 b 1 + 2γ 1 γ 2 + α 2 β 1 = 0, 2γ 1 a 2 + α 1 b 2 2γ 2 α 1 α 2 γ 1 = 0, β 1a 1 + 2γ 1b 1 + β 2 γ 1 + 2γ 2 β 1 = 0, β 1a 2 2γ 1b 2 α 1 β 2 2γ 1 γ 2 = 0, where f denotes the derivative of f = ft) with respect to T. We have nine first order differential equations and one algebraic nonlinear equation with ten unknowns a i,b i,α i,β i,γ i,i = 1,2. We will not study the general solution to this system and will just list below some special cases. We have the following examples: 1. {T,G 1 } = 0, {T,G 2 } = 0, {G 1,G 1 } = αt), 12) {G 2,G 2 } = βt), {G 1,G 2 } = γt). 2. {T,G 1 } = at)g 1, {T,G 2 } = at)g 2, {G 1,G 1 } = 0, 13) {G 2,G 2 } = βt)g 1 G 2, {G 1,G 2 } = γt)g 1 G 2. 3. {T,G 1 } = at)g 2, {T,G 2 } = bt)g 1, {G 1,G 1 } = αt)g 1 G 2, 14) {G 2,G 2 } = 0, {G 1,G 2 } = γt)g 1 G 2. 4. {T,G 1 } = at)g 1, {T,G 2 } = 0, {G 1,G 1 } = αt)g 1 G 2, 15) {G 2,G 2 } = βt)g 1 G 2, {G 1,G 2 } = γt)g 1 G 2. 5. {T,G 1 } = 0, {T,G 2 } = b 1 T)G 1 + b 2 T)G 2, {G 1,G 1 } = 0, 16) {G 2,G 2 } = βt)g 1 G 2, {G 1,G 2 } = γt)g 1 G 2. If we restrict ourselves to the case of quadratic nonlinear superalgebras the examples 12)-16) of superalgebras 7) reduce to 1. αt) = A 1 T + A 2 T 2, βt) = B 1 T + B 2 T 2, γt) = D 1 T + D 2 T 2, 17) 3

F 1 22 = A 1, F 1 33 = B 1, F 1 23 = D 1, V 11 22 = A 2, V 11 33 = B 2, V 11 23 = 1 2 D 2. 2. at) = A 0 + A 1 T, βt) = B 0, γt) = D 0, 18) F 2 12 = A 0, F 3 13 = A 0, V 12 12 = 1 2 A 1, V 13 13 = 1 2 A 1, V 23 33 = 1 2 B 0, V 23 23 = 1 2 D 0. 3. at) = A 0 + A 1 T, bt) = B 0 + B 1 T, αt) = C 0, γt) = D 0, 19) F 3 12 = A 0, F 2 13 = B 0, V 13 12 = 1 2 A 1, V 12 13 = 1 2 B 1, V 23 22 = 1 2 C 0, V 23 23 = 1 2 D 0. 4. at) = A 0 + A 1 T, αt) = C 0, βt) = B 0, γt) = D 0, 20) F 2 12 = A 0, V 12 12 = 1 2 A 1, V 23 22 = 1 2 C 0, V 23 33 = 1 2 B 0, V 23 23 = 1 2 D 0. 5. b 1 T) = B 0 + B 1 T, b 2 T) = B 2 + B 3 T, βt) = B 4, γt) = D 0, 21) F 2 13 = B 0, F 3 13 = B 2, V 23 33 = 1 2 B 4, V 12 13 = 1 2 B 1, V 13 13 = 1 2 B 3, V 23 23 = 1 2 D 0. where we introduce the notation T = T 1,G 1 = T 2,G 2 = T 3,ǫ 1 = 0,ǫ 2 = ǫ 3 = 1. Note that in the example 12), 17) there is the superalgebra appearing for dynamical systems with Hamiltonian H = T which is invariant under BRST Q = G 1 and anti-brst Q = G 2 symmetry see for example [14]) if we put in A 1 = 1,A 2 = B 1 = B 2 = D 1 = G 2 = 0 : {Q,Q} = 0, { Q, Q} = 0, {H,Q} = 0, {H, Q} = 0, {Q, Q} = H. In the example 13), 18) there exists the so-called self-reproducing superalgebras for self-reproducing algebras within BRST formalism see [7]). Indeed, in the example 13) it is enough to choose at) = A 0 T,βT) = 0,γT) = D 0 to get the self-reproducing superalgebra. 3 BRST construction The main quantity in the generalized canonical formalism [3, 4] for dynamical systems with the first class constraints T α = T α q,p),ǫt α ) = ǫ α fulfilling the property {T α,t β } 0, where denotes equality on the surface T α q,p) = 0, is the BRST charge Q. Nonlinear superalgebras 7) belong to this class. The BRST charge require to introduce for each constraint T α an anti-commuting ghost c α and an anticommuting momenta P α having the following Grassmann parities ǫc α ) = ǫp α ) = ǫ α + 1 and ghost numbers ghc α ) = ghp α ) = 1. They have to obey the relations {c α, P β } = δ α β, {c α,c β } = 0, {P α, P β } = 0, {c α,t β } = 0, {P α,t β } = 0. 22) The BRST charge Q is defined as a solution to the equation {Q, Q} = 0 23) which is an odd function of the variables p,q,c, P), has ghost number ghq) = 1 and satisfies the boundary condition Q c α c=0 = T α. 24) A solution to the problem can be obtained in terms of power-series expansions in the ghost variables Q = T α c α + k 1 P βk P β2 P β1 U k)β 1β 2..β k..α k+1 c α k+1 = Q 1 + k 1 Q k+1, 25) 4

where the symmetry properties of U k) in lower indices coincide with the symmetries of monomials c α k+1c α k while in upper indices they are defined by the symmetries of P βk P βk 1 P β1. In particular U k)β 1β 2..β k..α k+1 = 1) ǫα 1 +1)ǫα 2 +1) U k)β 1β 2..β k α 2 α 1..α k+1 = 1) ǫ β 1 +1) +1) U k)β 2β 1..β k..α k+1. Let us now apply the BRST construction to nonlinear superalgebras 7). In lower order, the nilpotency of Q implies that P β1 1) ǫα 1 [F β 1 + T β2 V β 2β 1 ] 2U 1)β 1 ) = 0. Thus, the structure function has to be of the form U 1) U 1)γ αβ = 1 2 F γ αβ + T δv δγ αβ ) 1) ǫα, U 1)γ αβ = U1)γ βα 1)ǫα+1)ǫ β+1) 26) and the contribution Q 2 of second order in ghosts c α to Q is Q 2 = 1 2 P γ ) F γ αβ + T δv δγ αβ c β c α 1) ǫα. 27) Using Jacobi identities 9), 10), 11), the condition of nilpotency for Q in the third order can be rewritten as 1) ǫ β 1 P β2 T β1 T β3 V β 3β 2 α 1 σ V σβ 1 α 2 α 3 1) ǫα 2 +ǫα 1 ǫ β 1 + 4U 2)β 2β 1 1) ǫ β 2 ) = 0. 28) Let us introduce the following quantities X β 3β 2 β 1 = V β 3β 2 α 1 σ V σβ 1 α 2 α 3 1) ǫα 2 +ǫ β 1 ǫ α1, 29) X β 3β 2 β 1 = X β 2β 3 β 1 1) ǫ β 2 ǫ β3 = X β 3β 2 β 1 α 1 α 3 α 2 1) ǫα 2 +1)ǫα 3 +1) which define the nilpotency equation in the third order 28). Symmetrization of this quantity with respect to lower indices can be done using the rule obtained in Appendix A see A.3)) X β 3β 2 β 1 [ ] = Xβ 3β 2 β 1 + X β 3β 2 β 1 α 3 1) ǫα 3 +1)ǫα 1 +ǫα 2 ) + X β 3β 2 β 1 α 2 α 3 α 1 1) ǫα 1 +1)ǫα 2 +ǫα 3 ). 30) Then the nilpotency condition 28) can be written in the form 1) ǫ β 1 P β2 T β1 T β3 X β 3β 2 β 1 [ ] + 12U2)β 2β 1 1) ǫ β 2 ) = 0. 31) From the Jacobi identities 11) it follows that X β 3β 2 β 1 [ ] + Xβ 1β 3 β 2 [ ] 1)ǫ β 1 +ǫ β3 ) + X β 2β 1 β 3 [ ] 1)ǫ β 3 ǫ β1 + ) = 0. 32) Consider now the quantities N α Due to 32) they satisfy the relations Therefore, N α can be rewritten in the form N α = T β1 T β3 X β 3αβ 1 [ ] 1)ǫαǫ β 1. 33) T α N α = 0. 34) N α = T β N {αβ}, N {αβ} = N {βα} 1) ǫαǫ β. 35) 5

Taking into account 33), 35) we can show that N {αβ} has a linear dependence on T α In terms of these quantities the structure functions U 2) are given by N {αβ} = T σ N {αβ}σ. 36) U 2)β 2β 1 = 1 12 T σn {β 2β 1 }σ 1) ǫ β 2 +ǫ β1, U 2)β 2β 1 = U 2)β 1β 2 1) ǫ β 1 +1) +1). 37) Using 33), 35) and the Jacobi identities 32) we obtain the following equations N {β 2β 1 }β 3 + N {β 2β 3 }β 1 1) ε β 1 ε β3 = X β 3β 2 β 1 [ ] + Xβ 1β 2 β 3 [ ] 1)ǫ β 1 ǫ β3 38) which define an explicit form of N {αβ}σ. In particular the structure of 38) allows us to suggest the form of N {β 2β 1 }β 3 N {β 2β 1 }β 3 = C {β 2β 1 }β 3 µ 1 µ 2 µ 3 ) Xµ 3µ 2 µ 1 [ ] 39) where C {β 2β 1 }β 3 µ 1 µ 2 µ 3 ) is a matrix constructed from the unit matrices δα µ obeying the following symmetry properties C {β 2β 1 }β 3 µ 1 µ 2 µ 3 ) = C{β 1β 2 }β 3 µ 1 µ 2 µ 3 ) 1)β 1β 2 = C {β 2β 1 }β 3 µ 1 µ 3 µ 2 ) 1)ǫµ 2 ǫµ 3. 40) It is not difficult to find a general structure of C {β 2β 1 }β 3 µ 1 µ 2 µ 3 ) with the required symmetry properties C [β 2β 1 ]β 3 µ 1 µ 2 µ 3 ) = C δ β 2 µ 1 δ β 1 µ 2 δ β 3 µ 3 δ β 2 µ 1 δ β 1 µ 1 δ β 3 µ 3 1) ǫ β 1 + 41) where C is a constant. From 39) and 41) it follows that N {β 2β 1 }β 3 Inserting this result into 38) one obtains +δ β 2 µ 1 δ β 1 µ 3 δ β 3 µ 2 1) ǫµ 2 ǫµ 3 δ β 2 µ 3 δ β 1 µ 1 δ β 3 µ 2 1) ǫ β 1 +ǫ µ2 ǫ µ3 ), = 2C X β 3β 1 β 2 [ ] Xβ 3β 2 β 1 [ ] 1)ǫ β 1 ). 42) 4CX β 3β 1 β 2 [ ] = 2C + 1)Xβ 3β 2 β 1 [ ] 1)ǫ β 1 + 2C + 1)X β 1β 2 β 3 [ ] 1)ǫ β 1 ǫ β3 + ǫ β3. 43) Taking into account the relations 32) and the symmetry of X β 1β 2 β 3 [ ] we have X β 1β 2 β 3 [ ] 1)ǫ β 1 ǫ β3 + ǫ β3 = X β 3β 1 β 2 [ ] Xβ 3β 2 β 1 [ ] 1)ǫ β 1 and therefore one can rewrite 43) in the form ) 6C + 1 X β 3β 1 β 2 [ ] = 0 44) in full agreement with bosonic case [13]. Then we have two solutions to the nilpotency equation at cubic order in ghost variables c α. In the first case there is no restriction on the structure constants of a quadratic nonlinear algebra V αβ γδ C = 1/6. 45) 6

It leads to Therefore N {β 2β 1 }β 3 = 1 X β 3β 1 β 2 3 [ ] Xβ 3β 2 β 1 [ ] 1)ǫ β 1 ). 46) U 2)β 2β 1 = 1 36 T β 3 X β 3β 2 β 1 [ ] Xβ 3β 1 β 2 [ ] 1)ǫ β 1 ) 1) ǫ β 2 47) and Q 3 = 1 6 P 1P 2 T β3 V β 3β 2 α 1 σ V σβ 1 α 2 α 3 1) ǫα 2 +ǫ β 2 +ǫ α1 ǫ β1. 48) The second possibility corresponds to restriction on structure constants of nonlinear superalgebras or X β 3β 2 β 1 [ ] = 0 49) V β 3β 2 α 1 σ V σβ 1 α 2 α 3 1) ǫα 1 ǫα 3 +ǫ β 1 ) + cyclic perms.α 1,α 2,α 3 ) = 0. 50) It means that N {β 2β 1 }β 3 = 0 and U 2)β 1β 2 = 0, Q 3 = 0. 51) In what follows we restrict ourselves to the case of superalgebras where the restrictions 50) are fulfilled. In that case the Jacobi identities 11) are satisfied. Now let us analyse the constraints generated for the condition of nilpotency at forth order of ghost fields c α. It has the form 1) ǫ β 3 P β3 P β2 T β1 [F β 1 γσ + T β4 V β 4β 1 γσ ) V σβ 2 +ǫ α1 +ǫ α2 )ǫ β3 +ǫ γǫ α1 +ǫ α2 + ) +24U 3)β 1β 2 β 3 ]c α 4 = 0. 52) Let us introduce the following quantities = F β 1 γσ V σβ 2 +ǫ α1 +ǫ α2 )ǫ β3 +ǫ γǫ α1 +ǫ α2 + ), 53) = V β 4β 1 γσ V σβ 2 +ǫ α1 +ǫ α2 )ǫ β3 +ǫ γǫ α1 +ǫ α2 + ) which have the symmetry properties = α 2 α 1 1) ǫα 1 +1)ǫα 2 +1) = α 4 α 3 1) ǫα 3 +1)ǫα 4 +1) 55) = α 2 α 1 1) ǫα 1 +1)ǫα 2 +1) = α 4 α 3 1) ǫα 3 +1)ǫα 4 +1). 56) In order to define the structure function U 3) correctly we have to symmetrize quantities which appear in 53) and 54) in the indices α 1,α 2,α 3,α 4. Using the symmetrization A.4), A.6) A.7) and of symmetry properties 55) and 56) we get 1) ǫ β 3 P β3 P β2 T β1 [ ] + T β 4 [ ] + 144U3)β 1β 2 β 3 )c α 4 = 0. 57) From 53) and 54) and symmetry properties of structure constants Fβγ α αβ,vγδ it follows 54) [ ] = Y β 1β 3 β 2 [ ] 1)ǫ β 2 +1)ǫ β3 +1), [ ] = Xβ 4β 1 β 3 β 2 [ ] 1)ǫ β 2 +1)ǫ β3 +1) 58) 7

It is possible to show that [ ] = 0 59) as consequence of restrictions 49) or 50). Indeed, using definitions 54) and restrictions 50) we obtain the equations V β 4β 1 α 2 σ V σβ 2 α 1 γ +ǫ α2 ǫ α1 + )+ǫ β3 ǫ α1 +ǫ α2 ) + + V β 4β 1 α 1 σ V σβ 2 α 2 γ +ǫ α1 +ǫ β3 ǫ α1 +ǫ α2 ) = 0. 60) Symmetrization of 60) in indices α 1,α 2,α 3,α 4 gives rise to [ ] V β 4β 1 α 1 σ X σβ 2β 3 [α 2 ] 1)ǫα 1 +1)ǫ β 2 +1)+ǫ α1 ǫ β3 V β 4β 1 α 2 σ V σβ 2 α 1 γ ǫ α2 ǫ α1 + )+ǫ β3 ǫ α1 +ǫ α2 ) 61) V β 4β 1 α 2 σ V σβ 2 α 1 γ 1) ǫα 1 +ǫα 2 +ǫ β 2 ǫ α4 ǫ α1 + )+ǫ β3 ǫ α1 +ǫ α2 )+ǫ α4 +1)ǫ α2 +ǫ α3 ) V β 4β 1 α 2 σ V σβ 2 α 1 γ 1) ǫα 1 +ǫα 4 +ǫ β 2 ǫ α3 ǫ α1 + )+ǫ β3 ǫ α1 +ǫ α3 )+ǫ α2 +1)ǫ α3 +ǫ α4 ) = 0. Multiplying these equations by c α 4 we have [ ] 2V β 4β 1 α 1 σ Xσβ 2β 3 [α 2 ] 1)ǫα 1 +1)ǫ β 2 +1)+ǫ α1 ǫ β3 )c α 4 = 0 62) or due to 49) [ ] cα 4 = 0 63) which proves 59). Solutions of the nilpotency equation 57) are given by the quantities [ ] with symmetry properties 58). We shall prove that these quantities satisfy the following symmetries In that case we will have for U 3) [ ] = Y β 2β 1 β 3 [ ] 1)ǫ β 1 +1) +1). 64) and for contribution to BRST charge in the forth order U 3)β 1β 2 β 3 = 1 144 [ ] 65) Q 4 = 1 24 P β 3 P β2 P β1 F β 1 γσv σβ 2 +ǫ α1 +ǫ α2 )ǫ β3 +ǫ γǫ α1 +ǫ α2 + ) c α 4. 66) This result can be considered as a supersymmetric generalization of BRST charge in the forth order for quadratic nonlinear Lie algebras [6]. To prove 64) we start with Jacobi identities 10) γσ F σ + F β 1 γσ V σβ 2 1) ǫγǫ β 2 + F β 2 γσ V σβ 1 1) ǫ β 1 ǫ γ+ ) ) 1) ǫγǫα 2 + cyclic perms.γ,α1,α 2 ) = 0.67) Multiplying these equations from right by +ǫ β3 ǫ α1 +ǫ α2 )+ǫ α1 ǫ γ, 8

and taking into account the definitions 29), 53), we obtain Y β 2β 1 β 3 1) ǫ β 1 +1) +1) F β 1 α 2 σ Xσβ 2β 3 α 1 1) ǫα 1 +ǫ β 2 +ǫ α2 +ǫ β3 )+ǫ α1 ǫ α2 F β 2 α 2 σ Xσβ 1β 3 α 1 1) ǫα 1 +ǫ β 2 +ǫ α2 ǫ β1 +ǫ β3 )+ǫ α1 ǫ α2 +ǫ β1 + +F β 1 α 1 σx σβ 2β 3 α 2 1) ǫα 1 +ǫ β 2 +ǫ α1 +ǫ β3 ) + 68) +F β 2 α 1 σx σβ 1β 3 α 2 1) ǫα 1 +ǫ β 2 +ǫ α1 ǫ β1 +ǫ β3 )+ǫ β1 + + γσ F σ +ǫ β3 +ǫ γ)ǫ α1 +ǫ α2 ) + + α 2 σ F σ γα 1 +ǫ β3 ǫ α1 +ǫ α2 )+ǫ α1 ǫ α2 +ǫ γ) + + α 1 σ F σ α 2 γ +ǫ β3 ǫ α1 +ǫ α2 ) = 0. Multiplying these equation form the right by c α 4 and taking into account the symmetrization in indices, we get [ 1 Y 6 ) β 1β 2 β 3 [ ] Y β 2β 1 β 3 [ ] 1)ǫ β 1 +1) +1) + 69) + 2 F β 1 α 3 1 σ Xσβ 2β 3 [α 2 ] 1)ǫ β 1 +ǫ α1 + F β 2 α 1 σ Xσβ 1β 3 [α 2 ] 1)ǫ β 2 +ǫ α1 ǫ β1 +ǫ β1 ) 1) ǫα 1 1+ǫ β ) 3 + + γσ F σ +ǫ α1 +ǫ α2 )ǫ β3 +ǫ γ) + +2 α 1 σ F σ α 2 γ +ǫ α1 +ǫ α2 )ǫ β3 ]c α 4 = 0. or due to 49) [ 1 6 [ ] Y β 2β 1 β 3 [ ] 1)ǫ β 1 +1) +1) ) + 70) + γσ F σ +ǫ α1 +ǫ α2 )ǫ β3 +ǫ γ) + +2 α 1 σ F σ α 2 γ +ǫ α1 +ǫ α2 )ǫ β3 ]c α 4 = 0. Consider now the Jacobi identities 10) V σβ 3 α 2 γ F γ + F σ α 2 γ 1) ǫα 2 ǫ β 3 + F β 3 α 2 γv γσ 1) ǫσǫα 2 +ǫ β 3 ) ) 1) ǫα 2 ǫα 4 + cyclic perms.α2,α 3,α 4 ) = 0. Multiplying these equation form the right by c α 4 and from left by α 1 σ 1)ǫα 1 +ǫα 3 +ǫ β 2 +ǫ β3 ǫ α1 +ǫ α2 ǫ α4, we obtain α 1 σ V σβ 3 α 2 γ F γ +ǫ β3 ǫ α1 + + α 1 σ F σ α 2 γ +ǫ β3 ǫ α1 +ǫ α2 ) + 71) + α 1 σ F β 3 α 2 γv γσ +ǫ β3 ǫ α1 +ǫ σǫ α2 +ǫ β3 ) ) c α 4 = 0. Notice that α 1 σ F β 3 α 2 γ V γσ +ǫ β3 ǫ α1 +ǫ σǫ α2 +ǫ β3 ) c α 4 = 72) = 1 3 Xβ 1β 2 γ [α 1 ] F β 3 γα 2 1) ǫγ+1)ǫα 1 +ǫα 3 +ǫα 4 )+ǫ β 2 +ǫ α1 ǫ β3 c α 4 = 0 9

due to 49). Then from 71) it follows α 1 σ V σβ 3 α 2 γ Fα γ 3 α 4 +ǫ β3 ǫ α1 + + α 1 σ F σ α 2 γ +ǫ β3 ǫ α1 +ǫ α2 ) ) c α 4 = 0. 73) Let us now consider some additional relations which can be derived from 50) α 1 σ V σβ 3 α 2 γ 1) ǫα 1 ǫγ+ǫ β 3 ) + γσ V σβ 3 1) ǫγǫα 2 +ǫ β 3 ) + α 2 σ V σβ 3 γα 1 1) ǫα 2 ǫα 1 +ǫ β 3 ) = 0 Multiplying these equation form the right by F γ +ǫ γǫ α1c α 4 we obtain 2 α 1 σ V σβ 3 α 2 γ F γ +ǫ β3 ǫ α1 + 74) + γσ V σβ 3 F γ +ǫ γǫ α1 +ǫ α2 +ǫ β3 ) ) c α 4 = 0. Now, we can take into account the following relations and γσ V σβ 3 F γ +ǫ γǫ α1 +ǫ α2 +ǫ β3 ) c α 4 = 75) = σγ F γ V σβ 3 +ǫ σ+ǫ β3 )ǫ α1 +ǫ α2 ) c α 4 α 1 σ V σβ 3 α 2 γ F γ +ǫ β3 ǫ α1c α 4 = 76) = α 1 σ F σ α 2 γ +ǫ β3 ǫ α1 +ǫ α2 ) c α 4. which can be derived with the help of 73). From 74), 75) and 76) it follows that γσ Fα σ 1 α 2 +ǫ α1 +ǫ α2 )ǫ β3 +ǫ γ) + 77) +2 α 1 σ F σ α 2 γ +ǫ α1 +ǫ α2 )ǫ β3 )c α 4 = 0. Therefore we derive from 70) [ ] Y β 2β 1 β 3 [ ] 1)ǫ β 1 +1) +1) ) c α 4 = 0, 78) that proves the symmetry properties of [ ] 64). If we additionally require the fulfilment of restrictions on structure constants of superalgebra 7) or F β 1 γσv σβ 2 +ǫ α1 +ǫ α2 )ǫ β3 +ǫ γǫ α1 +ǫ α2 + ) + [ ] = 0 79) +F β 1 γσv σβ 2 α 2 α 3 α 1 α 4 1) ǫα 1 +ǫα 2 +ǫ β 2 +ǫ α2 +ǫ α3 )ǫ β3 +ǫ α1 +1)ǫ α2 +ǫ α3 )+ǫ γǫ α2 +ǫ α3 + ) + +F β 1 γσv σβ 2 α 3 α 1 α 2 α 4 1) ǫα 2 +ǫα 3 +ǫ β 2 +ǫ α1 +ǫ α3 )ǫ β3 +ǫ α3 +1)ǫ α1 +ǫ α2 )+ǫ γǫ α1 +ǫ α3 + ) + 80) +F β 1 γσv σβ 2 α 2 α 4 α 3 α 1 1) ǫα 2 +ǫα 3 +ǫ β 2 +ǫ α4 +ǫ α2 )ǫ β3 +ǫ α1 +1)ǫ α2 +ǫ α3 )ǫ α4 +1)ǫ α1 +ǫ α3 )+ǫ γǫ α2 +ǫ α4 + ) + +F β 1 γσv σβ 2 +ǫ α3 +ǫ α4 )ǫ β3 +ǫ α1 +ǫ α2 )ǫ α3 +ǫ α4 )+ǫ γǫ α3 +ǫ α4 + ) + +F β 1 γσv σβ 2 α 1 α 4 α 2 α 3 1) ǫα 1 +ǫα 2 +ǫ β 2 +ǫ α1 +ǫ α2 )ǫ β3 +ǫ α4 +1)ǫ α2 +ǫ α3 )+ǫ γǫ α1 +ǫ α4 + ) = 0, 10

then we can state that there exists a nilpotent BRST charge in a canonical quadratic form Q = T α c α + 1 2 P γ ) F γ αβ + T δv δγ αβ c β c α 1) ǫα. 81) for any superalgebras 7) satisfying the additional restrictions 50), 80) on its structure constants Fβγ α αβ and Vγδ. 4 Simple examples In this Section we approach the construction of the nilpotent BRST charge of the form 81) for the simple examples listed in Section 2. In what follows we will use the following notation for the ghost variables c 1,c 2,c 3 ) = c,η 1,η 2 ),P 1, P 2, P 3 ) = P,P 1,P 2 ). 1. The explicit form of structure constants 17) implies that the indices β 1,β 2,β 3,σ of the nontrivial relations in restrictions 50) must have the following values β 1 = β 2 = β 3 = σ = 1. Thus, the only relation that has to be verified is the vanishing of V 11 α 1 1V 11 α 2 α 3 1) ǫα 1 ǫα 3 + cyclic perms.α1,α 2,α 3 ) = 0 82) and this relation is satisfied because Vα1 11 = 0. In order to verify 80) non-trivial relations must be satisfied when γ = σ = 1 and all terms in these relations contain a factor F β 11 = 0 which has to vanish. Therefore the nilpotent BRST charge for this example has to be of the form Q = Tc + G 1 η 1 + G 2 η 2 + 1 2 A 1Pη 2 1 + 1 2 B 1Pη 2 2 + D 1 Pη 1 η 2 + 83) + 1 2 A 2PTη 2 1 + 1 2 B 2PTη 2 2 + 1 2 D 2PTη 1 η 2. In this example there are no restrictions on the parameters A 1,B 1,D 1,A 2,B 2,D 2 ) which ultimately define superalgebras 17). 2. The analysis of the relations 50) require the following restrictions on structure constants of superalgebras 18) V 12 12 = V 13 13 = V 23 23 = 0, A 1 = D 0 = 0). 84) Due to the vanishing of Vβγ 1α = 0 and F αβ 1 = 0 for all values of α,β,γ, the relations 80) are satisfied. The nilpotent BRST charge can in this case be written as Q = Tc + G 1 η 1 + G 2 η 2 + A 0 P 1 η 1 + P 2 η 2 )c + 1 2 B 0P 2 G 1 P 1 G 2 )η 2 2. 85) 3. Analyzing the relations 50) we obtain the following restrictions for the superalgebra 19) V 12 13 = V 13 12 = V 23 22 = V 23 23 = 0, A 1 = B 1 = C 0 = D 0 = 0), 86) which reduces to a linear superalgebra with the usual nilpotent BRST charge for linear superalgebras Q = Tc + G 1 η 1 + G 2 η 2 + A 0 P 2 η 1 c + B 0 P 1 η 2 c. 87) 11

4. As in the previous case, the analysis of the relations 50) imposes severe restrictions on the superalgebra 20) V 12 12 = V 23 22 = V 23 33 = V 23 23 = 0, A 1 = B 0 = C 0 = D 0 = 0) 88) which also reduces to a linear superalgebra. The nilpotent BRST charge has the form Q = Tc + G 1 η 1 + G 2 η 2 + A 0 P 1 η 1 c. 89) 5. The analysis of the relations 50) imposes the following restrictions on structure constants of the superalgebras 21) V 13 13 = V 23 23 = V 23 33 = 0, B 3 = D 0 = B 4 = 0). 90) Imposing the vanishing of Vβγ 3α = 0 for all values of α,β,γ and F 13 2 0,F 13 3 0, the relations 80) are satisfied. The nilpotent BRST charge can then be written in the form 5 Discussion Q = Tc + G 1 η 1 + G 2 η 2 + B 0 P 1 + B 2 P 2 + 1 ) 2 B 1PG 1 + P 1 T) η 2 c. 91) In this paper we have investigated the BRST structure of quadratic nonlinear superalgebras of form 7) which are characterized by the structure constant Fβγ α αβ and Vγδ. The explicit form of the BRST charge both in the second and third orders was found without any additional restrictions on the structure constants. In the case when the structure constants verify the constraints 50), the construction of the BRST charge can be achieved up to the fourth order in the ghost fields c α. We have found additional restrictions see 80)) on structure constants of any non-linear quadratic superalgebras when nilpotent BRST charge can be written in a canonical form 81) which is quadratic in ghost fields c α. We have constructed simple quadratic nonlinear superalgebras with one bosonic and two fermionic generators and have verified all the constraints of the structure constants in order to explicitly construct the BRST charge in the canonical form. Acknowledgements The work of M.A. is partially supported by CICYT grant FPA2006-2315) and DGIID-DGA grant2007- E24/2). P.M.L. acknowledges the MEC for the grant SAB2006-0153). O.V.P. thanks Ochanomizu University for the financial support where the part of this work was done. The work of P.M.L. and O.V.R. was supported by the grant for LRSS, project No. 2553.2008.2. The work of P.M.L. was also supported by the RFBR-Ukraine grant No. 08-02-90490. Appendix A Symmetrization Let us now consider the procedure of symmetrization used for the correct definition of structure functions U k),k = 2,3. Let X α1 α 2 α 3 be some quantities appearing in expression X = X α1 α 2 α 3. 12

Due to known symmetry properties of monomials, X can be expressed in terms of X [α1 α 2 α 3 ] having required symmetry. We have and 3 X X [α1 α 2 α 3 ] = c α 2 = = X α1 α 2 α 3 + X α3 1) ǫα 1 +ǫα 2 )ǫα 3 +1) + X α2 α 3 α 1 1) ǫα 1 +1)ǫα 3 +ǫα 2 ) + = +X α1 α 3 α 2 1) ǫα 2 +1)ǫα 3 +1) + X α2 α 1 α 3 1) ǫα 1 +1)ǫα 2 +1) + +X α3 α 2 α 1 1) ǫα 1 +ǫα 2 )ǫα 3 +1)+ǫα 1 +1)ǫα 2 +1) = ) X α1 α 2 α 3 1) ǫα 2 +ǫα 1 ǫα 3 + cyclic perms.α1,α 2,α 3 ) 1) ǫα 2 +ǫα 1 ǫα 3 ) X α1 α 3 α 2 1) ǫα 3 +ǫα 1 ǫα 2 + cyclic perms.α1,α 2,α 3 ) 1) ǫα 2 +ǫα 2 ǫα 1 +ǫα 3 ) X = 1 3! X [ ]. A.1) If X α1 α 2 α 3 has additional symmetry properties then X α1 α 2 α 3 = X α1 α 3 α 2 1) ǫα 2 +1)ǫα 3 +1) X [α1 α 2 α 3 ] = 2 X α1 α 2 α 3 + X α3 1) ǫα 1 +ǫα 2 )ǫα 3 +1) + X α2 α 3 α 1 1) ǫα 1 +1)ǫα 2 +ǫα )) 3 ) = 2 X α1 α 2 α 3 1) ǫα 2 +ǫα 1 ǫα 3 + cyclic perms.α1,α 2,α 3 ) 1) ǫα 2 +ǫα 1 ǫα 3. A.2) A.3) Let us now consider quartic quantities in the ghost fields, Y = Y α1 α 2 c α 4. One can introduce the symmetric structure Y [α1 α 2 ] 4 Y Y [α1 α 2 ] = c α 4 which can be expressed in terms of three indices symmetric quantities Y [α1 α 2 ] = Y α1 [α 2 ] + Y α4 [ ] 1) ǫα 4 +1)ǫα 1 +ǫα 2 +ǫα 3 +1) + Then we have +Y α3 [α 4 ] 1) ǫα 1 +ǫα 2 )ǫα 3 +ǫα 4 ) + Y α2 [ α 1 ] 1) ǫα 1 +1)ǫα 2 +ǫα 3 +ǫα 4 +1). A.4) Y = 1 4! Y [ ]c α 4, A.5) and if Y α1 α 2 has additional symmetry properties Y α1 α 2 = Y α2 α 1 1) ǫα 1 +1)ǫα 2 +1) = Y α1 α 2 α 4 α 3 1) ǫα 3 +1)ǫα 4 +1), one can finally show that Y [α1 α 2 ] = 4 Y α1 α 2 + Y α2 α 3 α 1 α 4 1) ǫα 1 +1)ǫα 2 +ǫα 3 ) + +Y α3 α 4 1) ǫα 3 +1)ǫα 1 +ǫα 2 ) + Y α2 α 4 α 3 α 1 1) ǫα 1 +1)ǫα 2 +ǫα 3 )+ǫα 4 +1)ǫα 1 +ǫα 3 ) + +Y α3 α 4 1) ǫα 1 +ǫα 2 )ǫα 3 +ǫα 4 ) + Y α1 α 4 α 2 α 3 1) ǫα 4 +1)ǫα 2 +ǫα )) 3. A.6) A.7) 13

References [1] C. Becchi, A. Rouet and R. Stora, Renormalization of the Abelian Higgs-Kibble model, Commun. Math. Phys. 42 1975) 127. [2] I.V. Tyutin, Gauge invariance in field theory and statistical physics in operatorial formulation, Prenrint of Lebedev Physics Institute, No. 39 1975). [3] I.A. Batalin and G.A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. 102B 1981) 27; I.A. Batalin and G.A. Vilkovisky G.A. Quantization of gauge theories with linearly dependent generators, Phys. Rev. D28 1983) 2567. [4] E.S. Fradkin and G.A. Vilkovisky, Quantization of relativistic systems with constraints, Phys. Lett. B55 1975) 224; I.A. Batalin and G.A. Vilkovisky, Relativistic S-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. 69B 1977) 309; I.A. Batalin and E.S. Fradkin, A generalized canonical formalism and quantization of reducible gauge theories, Phys. Lett. 122B 1983) 157. [5] M. Henneaux, Hamiltonian form of the path integral for the theories with gauge degrees of freedom, Phys. Repts 126 1985) 1; I.A. Batalin and E.S. Fradkin, Operator quantization method and abelization of dynamical systems subject to first class constraints, Riv. Nuovo Cimento 9, No 10 1986) 1; I.A. Batalin and E.S. Fradkin, Operatorial quantization of dynamical systems subject to constraints. A further study of the construction, Ann. Inst. H. Poincare, A49 1988) 145. [6] K. Schoutens, A. Servin and P. van Nieuwenhuizen, Quantum BRST charge for quadratic nonlinear Lie algebras, Commun. Math. Phys. 124 1989) 87. [7] A. Dresse and M. Henneaux, BRST structure of polynomial Poisson algebras, J. Math. Phys. 35 1994) 1334. [8] A.B. Zamolodchikov, Infinite additional symmetries in two dimensional conformal quantum field theory, Theor. Math. Phys. 65 1986) 1205. [9] V.G. Knizhnik, Superconformal algebras in two dimensions, Theor. Math. Phys. 66 1986) 68; M. Bershadsky, Superconformal algebras in two dimensions with arbitrary N, Phys. Lett. B174 91986) 285; K. Schoutens, Representation theory for a class of son)-extended superconformal operator algebras, Nucl. Phys. B314 1989) 519; C.M. Hull, Higher-spin extended conformal algebras and W-algebras, Nucl. Phys. B353 1991) 707; C. Hull, Classical and quantum W- gravity, Proceedings of the Seminar Strings and Gravity, Stony Brook, 1991, World Scientific, 1992, p. 495; K. Schoutens, A. Sevrin and P. van Nieuwenhuizen, properties of covariant W gravity, Int. J. Mod. Phys. A6 1991) 2891; K. Schoutens, A. Sevrin and P. van Nieuwenhuizen, Nonlinear Yang-Mills theories, Phys. Lett B255 1991) 549. [10] J. Thierry-Meg, BRS-analysis of Zamolodchikov s spin 2 and 3 current algebra, Phys. Lett. B197 1986) 368; H. Lu, C.N. Pope and X.J. Wang, On higher-spin generalization of string theory, Int. J. Mod. Phys. A9 1994) 1527. [11] A.P. Isaev and O.V. Ogievetsky, BRST operator for quantum Lie algebras and differential calculus on quantum groups, Teor. Mat. Phys., 129, No. 2 2001) 289; V.G. Gorbounov, A.P. Isaev and O.V. Ogievetsky, BRST Operator for Quantum Lie Algebras: Relation to Bar Complex, Theor. Math. Phys., 139, No. 1 2004) 473; A.P. Isaev, S.O. Krivonos and O.V. Ogievetsky, BRST operators for W algebras, arxiv:0802.3781 [math-ph]. [12] I.L. Buchbinder, A. Pashnev and M Tsulaia, Lagrangian formulation of the massless higher integer spin fields in the AdS background, Phys. Lett. B523 2001) 338, ArXiv: hep-th/0109067; I.L. 14

Buchbinder, A. Pashnev and M. Tsulaia, Massless Higher Spin Fields in the AdS Background and BRST Constructions for Nonlinear Algebras, ArXiv: hep-th/0206026; I.L. Buchbinder, V.A. Krykhtin and P.M. Lavrov, Gauge invariant Lagrangian formulation of higher massive bosonic field theory in AdS space, Nucl. Phys. B762 2007) 334. [13] I. L. Buchbinder and P. M. Lavrov, Classical BRST charge for nonlinear algebras, J. Math. Phys. 48 No. 8 2007) 082306-1-15. [14] I. A. Batalin, P. M. Lavrov and I. V. Tyutin, Extended BRST quantization of gauge theories in the generalized canonical formalism, J. Math. Phys. 31 No. 1990) 6. 15