GMRES(m) , GMRES, , GMRES(m), Look-Back GMRES(m). Ax = b, A C n n, x, b C n (1) Krylov.

Σχετικά έγγραφα
New Adaptive Projection Technique for Krylov Subspace Method

Επιστηµονικός Υπολογισµός ΙΙ

BiCG CGS BiCGStab BiCG CGS 5),6) BiCGStab M Minimum esidual part CGS BiCGStab BiCGStab 2 PBiCG PCGS α β 3 BiCGStab PBiCGStab PBiCG 4 PBiCGStab 5 2. Bi

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

Επιστηµονικός Υπολογισµός ΙΙ

A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System

New bounds for spherical two-distance sets and equiangular lines

Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k)

Επιστηµονικός Υπολογισµός Ι

CE 530 Molecular Simulation

Numerical Analysis FMN011

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

GPU DD Double-Double 3 4 BLAS Basic Linear Algebra Subprograms [3] 2

GCG-type Methods for Nonsymmetric Linear Systems

TMA4115 Matematikk 3

Areas and Lengths in Polar Coordinates

Wavelet based matrix compression for boundary integral equations on complex geometries

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Areas and Lengths in Polar Coordinates

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Επιστηµονικός Υπολογισµός Ι

Matrices and Determinants

Αριθµητικές Μέθοδοι Collocation. Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές

1.575 GHz GPS Ceramic Chip Antenna Ground cleared under antenna, clearance area 4.00 x 4.25 mm / 6.25 mm. Pulse Part Number: W3011 / W3011A

w o = R 1 p. (1) R = p =. = 1

Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

Odometry Calibration by Least Square Estimation

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

EE101: Resonance in RLC circuits

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

The ε-pseudospectrum of a Matrix

CROWN CORK SPECIFICATIONS ΠΡΟΔΙΑΓΡΑΦΕΣ ΤΕΛΙΚΩΝ ΠΡΟΪΟΝΤΩΝ

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Two-parameter preconditioned NSS method for non-hermitian and positive definite linear systems

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Thin Film Chip Inductor

ST5224: Advanced Statistical Theory II

Approximation of distance between locations on earth given by latitude and longitude

A Laplace Type Problem for a Lattice with Cell Composed by Three Triangles with Obstacles

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Data sheet Thin Film Chip Inductor AL Series

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Research on divergence correction method in 3D numerical modeling of 3D controlled source electromagnetic fields

Multilayer Chip Inductor

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Aluminum Electrolytic Capacitors

3+1 Splitting of the Generalized Harmonic Equations

Aluminum Electrolytic Capacitors (Large Can Type)


International Journal of Mathematical Archive-5(7), 2014, Available online through ISSN

2 Composition. Invertible Mappings

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Second Order RLC Filters

Εργαστήριο 2 - Απαντήσεις. Επίλυση Γραμμικών Συστημάτων

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

EE512: Error Control Coding

«ΔΙΑΧΩΡΙΣΜΟΣ ΜΕΓΑΛΟΥ ΚΑΙ ΑΡΑΙΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΣΕ ΑΝΕΞΑΡΤΗΤΑ ΥΠΟΣΥΣΤΗΜΑΤΑ ΚΑΙ ΕΠΙΛΥΣΗ ΤΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ SCHUR COMPLEMENT-GMRES»

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Differentiation exercise show differential equation

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Other Test Constructions: Likelihood Ratio & Bayes Tests

Lecture 13 - Root Space Decomposition II

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Tridiagonal matrices. Gérard MEURANT. October, 2008

Μονοδιάστατοι πίνακες

Thin Film Chip Inductor

Section 9.2 Polar Equations and Graphs

Concrete Mathematics Exercises from 30 September 2016

Extended Convergence Analysis of the Newton Hermitian and Skew Hermitian Splitting Method

ISM 868 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3013

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Thin Film Chip Resistors

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Section 7.6 Double and Half Angle Formulas

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Επιστηµονικός Υπολογισµός ΙΙ

Finite difference method for 2-D heat equation

Implementation and performance evaluation of iterative solver for multiple linear systems that have a common coefficient matrix

d 2 u(t) dt 2 = u 16.4 ε(u) = 0 u(x,y) =?

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

Επιστηµονικός Υπολογισµός Ι

Transcript:

211 9 12, GMRES,.,., Look-Back.,, Ax = b, A C n n, x, b C n (1),., Krylov., GMRES [5],.,., Look-Back [3]., 2 Krylov,. 3, Look-Back, 4. 5. 1

Algorith 1 The GMRES ethod 1: Choose the initial guess x and copute r = b Ax 2: Set β = r 2, v 1 = r /β 3: For j = 1, 2,..., k, Do: 4: Copute w j = Av j 5: For i = 1, 2,..., j, Do: 6: h i,j = (w j, v i ) 7: w j = w j h i,j v i 8: End For 9: h j+1,j = w j 2. If h j+1,j = then Set k := j and go to 12 1: v j+1 = w j /h j+1,j 11: End For 12: Define the (k + 1) k Hessenberg atrix H k = {h i,j } 1 i k+1,1 j k 13: x k = x + V k s k, where s k = arg in s C k βe 1 H k s 2 (1) Krylov, A x C n r := b Ax Krylov.,, Krylov. [4, 6]. GMRES Arnoldi Krylov, Algorith 1. GMRES, Arnoldi, 1.,,, GMRES., 3. Part 1. 1 x (1). Part 2. l, Ax = b x (l) GMRES ( ), x (l). Part 3. x (l), (l + 1) x (l+1), x (l+1) := x (l). Part 1 3 Algorith 2. 2

Algorith 2 The ethod 1: Choose the restart frequency and the initial guess x (1) 2: For l = 1, 2,..., until convergence Do: 3: Solve (approxiately) Ax = b by iterations of GMRES with the initial guess x (l), and get the approxiate solution x (l) 4: Update the initial guess x (l+1) := x (l) 5: End For Look-Back, 1 GMRES,., Part 1 Part 2., Part 2, Part 1., Part 3 [2]., x (l+1) x (l+1) := x (l) x (l), y (l+1) C n, x (l+1) := x (l) + y (l+1). [2].,, Look-Back, Look-Back [3]., Look-Back y (l+1) y (l+1) := µ (l) x (l), x (l) := { x (l) x (l k 2 ) x (l) k 1 (l 2 ) (k : ) x (k : )., k (k 2, k N), µ (l) C µ (l) = arg in µ C r(l) µa x (l) 2 = (r(l), A x (l) ) (A x (l), A x (l) )., Look-Back. Look-Back Algorith 3., Look-Back 1 Table 1., Mat-Vec, AXPY Inner-Product, 3

Algorith 3 A Look-Back ethod 1: Choose the restart frequency, the paraeter k 2 and the initial guess x (1) 2: For l = 1, 2,..., until convergence Do: 3: Solve (approxiately) Ax = b by iterations of GMRES with the initial guess x (l), and get the approxiate solution x (l) 4: Copute the vector y (l+1) as follows: If l = 1 then y (l+1) = If l 2 then If (l = k = 2) or (k : even, l k k 1 2 ) or (k : odd, l 2 ) then x (l) := x (l) x (1) Else x (l) := End If x (l) x (l k 2 ) x (l) k 1 (l 2 ) (k : even) x (k : odd) y (l+1) = µ (l) x (l), µ (l) = arg in µ C r (l) µa x (l) 2 End If 5: Update the initial guess x (l+1) := x (l) + y (l+1) 6: End For Table 1 The nuber of operations per restart cycle and storage requireents of and Look-Back. Method Look-Back k : even Mat-Vec + 1 ( + 1) + 1 k : odd AXPY ( 2 + 5 + 4)/2 ( 2 + 5 + 4)/2 + 3 Inner-Product ( 2 + 3 + 2)/2 ( 2 + 3 + 2)/2 + 2 Storage ( + 2)n ( + 2)n + k k+1 2 n ( + 2)n + 2 n 1,., Strage.,. + 1 [5], Look-Back + 2.,. 4

, The University of Florida Sparse Matrix Collection [1] 6, Look-Back (Algorith 3),. AMD Pheno II X4 94 (3.GHz) FORTRAN 77. Table 2 Characteristics of the coefficient atrices of the test probles for and Look- Back. Matrix (Type) n Nnz Ave.Nnz Application area CAVITY1 (R) 2597 76367 29.41 Coputational fluid dynaics KIM1 (C) 38415 933195 24.29 2D/3D proble LIGHT IN TISSUE (C) 29282 4684 13.87 Electroagnetics proble RAJAT3 (R) 762 32653 4.3 Circuit siulation WAVEGUIDE3D (C) 2136 33468 14.43 Electroagnetics proble XENON2 (R) 157464 3866688 24.56 Materials proble Table 2., (R) (C),,., n, Nnz, Ave.Nnz,, 1 (1 ). = 3, Look-Back k = 3., b = [1, 1,..., 1] T x (1) = [,,..., ] T, r k 2 / b 2 1 1. [ ] Table 3, Fig. 1., Table (1 ).,, 1 ( ) 3.,. (Iter), Look-Back,,., CAVITY1 RAJAT3,, Look-Back (Table 3 TRR )., Look-Back., Fig. 1 Look-Back. KIM1 WAVEGUIDE3D Look-Back, CAVITY1, LIGHT IN TISSUE, RAJAT3 5

Table 3 Convergence results (Iter : nuber of iterations, t Total : total coputation tie, t Restart : coputation tie per restart cycle, TRR : log 1 of explicitly coputed relative residual 2-nor) of and Look-Back for = 3. Matrix Method Iter Tie[sec.] TRR t Total t Restart CAVITY1 8.48 1 3-7.3 LB- 24811 7.28 1 8.8 1 3-1. KIM1 2824 3.72 1 1 3.96 1 1-1. LB- 3971 5.35 1 1 4.5 1 1-1. LIGHT IN TISSUE 2964 2.6 1 1 2.62 1 1-1. LB- 938 8.29 1 2.66 1 1-1. RAJAT3 1.43 1 2 -.55 LB- 14881 8.24 1 1.65 1 2-1.1 WAVEGUIDE3D 35268 2.36 1 2 2.3 1 1-1. LB- 29745 2.2 1 2 2.3 1 1-1. XENON2 15677 3.92 1 2 7.5 1 1-1. LB- 2371 6.5 1 1 7.65 1 1-1. XENON2, Look-Back, Look-Back., 1 ( ) (t Restart ). Look-Back, 1 1%., Look-Back 1 1 AXPY (Table 1 ). (t Total ). Look-Back,, (Iter),, 1 (t Restart ),, KIM1., Look-Back,., Look-Back 1, 6

log 1 of relative residual 2-nor (d) CAVITY1 Look-Back -1 2 4 6 8 1 Nuber of Iterations log 1 of relative residual 2-nor (a) KIM1 Look-Back -1 1 2 3 4 Nuber of Iterations log 1 of relative residual 2-nor (b) LIGHT IN TISSUE Look-Back -1 5 1 15 2 25 3 Nuber of Iterations log 1 of relative residual 2-nor (d) RAJAT3-1 Look-Back 2 4 6 8 1 Nuber of Iterations log 1 of relative residual 2-nor (d) WAVEGUIDE3D Look-Back -1 2 4 Nuber of Iterations log 1 of relative residual 2-nor (f) XENON2 Look-Back -1 5 1 15 2 Nuber of Iterations Fig.1 The relative residual 2-nor history of and Look-Back of = 3 without preconditioners for KIM1, LIGHT IN TISSUE, NS3DA, RAJAT3, RDB5 and XENON2.., Look-Back,,.,., AXPY,.. 7

[1] Davis, T. A., The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/atrices/. [2],,,,, 19(29), 551 564. [3],,, Look-Back, 21, (21), 25 26. [4] Saad, Y., Iterative ethods for sparse linear systes. 2nd edition, SIAM, Philadelphia, PA, 23. [5] Saad, Y. and Schultz, M. H., GMRES: A generalized inial residual algorith for solving nonsyetric linear systes, SIAM J. Sci. Stat. Coput., 7(1986), 856 869. [6],,,,, 29. 8