Lecture 7: Overdispersion in Poisson regression

Σχετικά έγγραφα
6. MAXIMUM LIKELIHOOD ESTIMATION

Other Test Constructions: Likelihood Ratio & Bayes Tests

Solution Series 9. i=1 x i and i=1 x i.

Statistical Inference I Locally most powerful tests

ST5224: Advanced Statistical Theory II

Exercises to Statistics of Material Fatigue No. 5

Theorem 8 Let φ be the most powerful size α test of H

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

6.3 Forecasting ARMA processes

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Empirical best prediction under area-level Poisson mixed models

Introduction to the ML Estimation of ARMA processes

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Exercise 2: The form of the generalized likelihood ratio

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Second Order Partial Differential Equations

Lecture 21: Properties and robustness of LSE

C.S. 430 Assignment 6, Sample Solutions

Uniform Convergence of Fourier Series Michael Taylor

Example Sheet 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Solutions to Exercise Sheet 5

Section 8.3 Trigonometric Equations

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

FORMULAS FOR STATISTICS 1

Homework for 1/27 Due 2/5

Lecture 12: Pseudo likelihood approach

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Every set of first-order formulas is equivalent to an independent set

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Tridiagonal matrices. Gérard MEURANT. October, 2008

2 Composition. Invertible Mappings

4.6 Autoregressive Moving Average Model ARMA(1,1)

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Μηχανική Μάθηση Hypothesis Testing

Matrices and Determinants

( y) Partial Differential Equations

Summary of the model specified

More Notes on Testing. Large Sample Properties of the Likelihood Ratio Statistic. Let X i be iid with density f(x, θ). We are interested in testing

Probability and Random Processes (Part II)

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Homework 3 Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

5.4 The Poisson Distribution.

An Inventory of Continuous Distributions

Homework 8 Model Solution Section

D Alembert s Solution to the Wave Equation

Inverse trigonometric functions & General Solution of Trigonometric Equations

ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 26: Circular domains

Section 7.6 Double and Half Angle Formulas

5. Choice under Uncertainty

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Congruence Classes of Invertible Matrices of Order 3 over F 2

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Lecture 34 Bootstrap confidence intervals

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

EE512: Error Control Coding

Problem Set 3: Solutions

Numerical Analysis FMN011

Approximation of distance between locations on earth given by latitude and longitude

Finite Field Problems: Solutions

STAT200C: Hypothesis Testing

Math 6 SL Probability Distributions Practice Test Mark Scheme

The challenges of non-stable predicates

Notes on the Open Economy

Concrete Mathematics Exercises from 30 September 2016

Risk! " #$%&'() *!'+,'''## -. / # $

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Additional Results for the Pareto/NBD Model

Section 4: Conditional Likelihood: Sufficiency and Ancillarity in the Presence of Nuisance Parameters

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Supplementary Appendix

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Solutions: Homework 3

Asymptotic distribution of MLE

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Lecture 2. Soundness and completeness of propositional logic

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.


DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Biostatistics for Health Sciences Review Sheet

Transcript:

Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0

Overview Introduction Modeling overdispersion through mixing Score test for detecting overdispersion c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 1

Introduction McCullagh and Nelder (1989) p.198-200 Overdispersion is present if V ar(y i ) > E(Y i ) Overdispersion can be modeled using a mixing approach: Y i Z i P oisson(z i ) Z i 0 ind. rv s with E(Z i ) = µ i c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 2

Distributional assumption for Z i 1) Z i Gamma with mean µ i and index φµ i Recall X Gamma(µ, ν) f X (x) = 1 Γ(ν) µ mean ν index E(X) = µ V ar(x) = µ 2 /ν ( ) ν ( νx µ exp νx µ ) 1 x Here f Zi (z i ) = 1 Γ(φµ i ) ( ) φµi ( ) φµi z i µ i exp φµ iz i µ i 1 z i E(Z i ) = µ i V ar(z i ) = µ2 i φµ i = µ i /φ c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 3

P (Y i = y i ) = 0 e z i(z i ) y i y i! 1 Γ(φµ i ) ( φµi z i µ i ) φµi exp{ φzi } 1 z i dz i = φ φµ i Γ(φµ i )y i! 0 e zi(1+φ) z (y i+φµ i 1) i dz i s i =z i (1+φ) = φ φµ i Γ(φµ i )y i! 0 e s i 1 s (y i+φµ i 1) 1 (1+φ) (y i +φµ i 1) i φ+1 ds i = = φ φµ i Γ(φµ i )y i!(1+φ) (y i +φµ i ) 0 e s is (y i+φµ i 1) i ds i φ φµ iγ(y i +φµ i ) Γ(φµ i )y i!(1+φ) (y i +φµ i ) = Γ(y i+φµ i ) Γ(φµ i )Γ(y i +1) ( ) φµ φ i ( ) 1 1 + φ 1 + φ }{{}}{{} 1 1/φ 1/φ+1 1/φ+1 y i c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 4

Negative binomial distribution X negbin(a, b) P (X = k) = Γ(a+k) Γ(a)Γ(k+1) ( 1 1+b ) a ( b 1+b) k k = 0, 1,... a, b 0 E(X) = ab V ar(x) = ab(1 + b) c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 5

is given by Marginal distribution of Y i Y i negbin(a i, b i ) with a i = φµ i b i = 1/φ E(Y i ) = φµ i φ = µ i und V ar(y i ) = φµ i φ (1 + 1/φ) = µ i(1 + 1/φ) Remarks: - V ar(y i ) > E(Y i ) if 1/φ > 0, i.e. overdispersion - φ = no overdispersion - To estimate β and φ jointly one needs to maximize the negative binomial likelihood. No standard software available but one can use the Splus library negbin() from http : //lib.stat.cmu.edu/s/ - V ar(y i ) = µ i (1 + 1/φ) is linear in µ i c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 6

2) Z i Gamma with mean µ i and index ν (exercise) Y i negbin(ν, µ i /ν) such that E(Y i ) = ν µ i /ν = µ i V ar(y i ) = µ i + µ 2 i /ν quadratic variance function in µ i c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 7

Multiplicative heterogeneity in Poisson regression Another approach for modeling overdispersion is to use Y i Z i P oisson(µ i Z i ) with E(Z i ) = 1 and V ar(z i ) = σ 2 Z, i.e. Z i i.i.d., Z i is called multiplicative random effect (exercise) E(Y i ) = µ i V ar(y i ) = µ i + σ 2 Z µ2 i If Z i Gamma with expectation 1 and index ν Y i is negbin(a i, b i ) a i = ν, b i = µ i ν c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 8

Summary 1) Y i Z i P oisson(z i ) E(Z i ) = µ i a) b) Z i Gamma(µ i, φµ i ) Y i Negbin(φµ i, 1/φ) E(Y i ) = µ i V ar(y i ) = µ i (1 + 1/φ) linear Z i Gamma(µ i, ν) Y i Negbin(ν, µ i /ν) E(Y i ) = µ i V ar(y i ) = µ i + µ 2 i /ν quadratic 2) Y i Z i P oisson(µ i Z i ) E(Z i ) = 1 Z i Gamma(1, ν) Y i Negbin(ν, µ i /ν) E(Y i ) = µ i V ar(y i ) = µ i + µ 2 i /ν quadratic c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 9

Test for overdispersion Dean (1992) Assume Y i P oisson(µ i ) with µ i = e x i t β θ i = ln(µ i ) = x t i β To model overdispersion we assume that the canonical parameters θ i are not fixed but random quantities θ i with E(θ i ) = θ i V ar(θ i ) = τk i(θ i ) > 0 for τ 0 and k i (θ i ) differentiable c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 10

To test for overdispersion, want to test H 0 : τ = 0 versus H 1 : τ > 0 Example: θi = xt i β + Z i with Z i i.i.d. E(Z i ) = 0 V ar(z i ) = τ < E(θi ) = θ i V ar(θi ) = τ i.e. k i(θ i ) = 1 Compare to: Y i Z i P oisson(µ i Z i ) E(Z i ) = 1 θ i = ln(µ iz i ) = ln(µ i ) + ln(z i ) E(ln(Z i )) 0 A score test will now be developed for H 0 : τ = 0 versus H 1 : τ > 0. c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 11

General score test Let Y 1,..., Y n ind. r.v. with densities f i (y, θ) θ Ω and H 0 : θ Ω 0 H 1 : θ Ω 1 Ω 0 + Ω 1 = Ω R d Ω 0 Ω1 = Loglikelihood: I(θ) := E l(θ) = n i=1 ( [ l(θ) θ l i (θ) l i (θ) = ln f i (y i ; θ) ] [ ] ) t l(θ) θ R d d Fisher information = E ( ) l 2 (θ) θ θ t under regularity conditions c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 12

We are interested in the following composite hypothesis for θ = (β t, τ) t : H 0 : τ = τ 0 versus H 1 : τ τ 0 Consider the score statistic T s = [ ] t θ l(θ) θ=ˆθ0 I 1 (ˆθ 0 ) [ ] θ l(θ) θ=ˆθ0 where ˆθ 0 is the MLE of θ in model θ = (β t, τ 0 ) t, i.e. ˆθ 0 = (ˆβ t, ˆτ 0 ) t satisfies θ l(θ) = ( l(β, τ) t, β ) t l(β, τ) τ θ=ˆθ0 = 0 Under regularity conditions we have T S χ 2 dimω dimω 0 under H 0. c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 13

Remark: There are regularity condition under which the standard asymptotic remains valid if τ 0 is at the boundary of Ω, as for example at H 0 : τ = 0 versus H 1 : τ > 0. Here: θ = (β t, τ) t For τ = 0 we have a Poisson GLM and one can show that ˆθ 0 = (ˆβ 0t, 0) t where ˆβ 0 is the MLE of the Poisson GLM. c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 14

Score test for overdispersion in count regression Y i θ i P oisson(eθ i ) with E(θ i ) = xt i β and V ar(θ i ) = τk i(θ i ) Let f(y i, θi ) be the conditional density of Y i given θi, then with Taylor we have f(y i, θ i ) = f(y i, θ i ) + θ i f(y i, θ i ) θ i =θ i (θ i θ i) + 1 2 2 θi 2 R = remainder term f(y i, θ i ) θ i =θ i (θ i θ i) 2 + R c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 15

f M (Y i, θ i ) = marginal likelihood of Y i = f(y i, θ i )f(θ i )dθ i = E θ i (f(y i, θ i )) = f(y i, θ i ) + 0 + 1 2 2 θi 2 [ = f(y i, θ i ) 1 + 1 2 τk i(θ i )f 1 (Y i, θ i ) 2 f(y i, θi ) θi =θ i E[(θ i θ i ) 2 ] +R }{{} V ar(θi )=τk i(θ i ) θi 2 ] f(y i, θi ) θi =θ + Rf 1 (Y i i, θ i ) c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 16

Marginal log likelihood l(θ) = n i=1 l i (θ i ) = n i=1 = n [ln f(y i, θ i ) i=1 + ln l(θ) θ ln f M (Y i, θ i ) { 1 + 1 2 τk i(θ i ) f 1 (Y i, θ i ) 2 θ=( ˆβ0t,0) t = l(β,τ) β l(β,τ) τ θi 2 β= ˆβ0,τ=0 β= ˆβ0,τ=0 } f(y i, θi ) θi =θ + Rf 1 (Y i i, θ i ) ] = 0 l(β,τ) τ β= ˆβ0,τ=0 θ i = x t i β ˆθ 0 i := x i tˆβ0 c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 17

We assume E((θ i θ i) r ) =: d r with d r = o(τ) for r 3 l(β,τ) τ β= ˆβ0,τ=0 n i=1 1 2 k i(θ i ) f 1 (Y i,θ i ) 2 θ i 2 1 + 1 2 τ k i(θ i ) f 1 (Y i,θ i ) 2 f(y i,θ i ) θ i =θ i θ i 2 f(y i,θi ) θ i =θ i β= ˆβ0,τ=0 = n i=1 1 2 k i(ˆθ i 0 ) f 1 (Y i, ˆθ i 0 ) θi 2 f(y i, θi ) θ i =ˆθ i 0 }{{} 2 =:T i (ˆθ 0 i ) (denominator = 1, since τ=0) c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 18

Additionally I(ˆθ 0 ) = T s = ( ) Iββ I βτ I βτ I ττ [ ˆθ 0 = (ˆβ 0t, 0) t θ l(θ) θ=( ˆβ0,0)] t I 1 (ˆβ 0, 0) [ ] θ l(θ) θ=( ˆβ0,0) = ( l(β,τ) τ ) 2 ( ) β= ˆβ0,τ=0 I 1 (ˆβ 0, 0) ττ = [ n i=1 ] 2 ) T i (ˆθ i (I 0) 1 (ˆβ 0, 0) ττ since components corresponding to β are zero. Further I 1 (ˆβ 0, 0) = (I ττ I t βτ I 1 ββ I βτ) 1 (partioned matrixes) T S = [ n i=1 T i (ˆθ 0 i ) ] 2 / V 2, V 2 = (I ττ I t βτ I 1 ββ I βτ) c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 19

Overdispersion test Reject H 0 : τ = 0 versus H 1 : τ > 0 at level α T S > χ 2 1,1 α c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 20

Ex.: Poisson model with random effects θ i = xt i β + Z i E(Z i ) = 0 V ar(z i ) = τ Y i θ i P oisson(eθ i ) θi = ln µ i = x t i β E(Y i ) = E θ i (E(Y i θ i )) = E θ i (eθ i ) Eθ i (1 + θ i ) = 1 + θ i = 1 + ln µ i 1 + µ i 1 = µ i V ar(y i ) = E θ i (V ar(y i θi )) + V ar }{{} θ i (E(Y i θi )) }{{} E(Y i θi ) = E(Y i ) + (e θ i) 2 V ar(e Z i ) }{{} V ar(1+z i )=V ar(z i )=τ µ i + µ 2 i τ can model overdispersion e θ i c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 21

Overdispersion test in Poisson model with random effect Model: Y i θ i P oisson(eθ i ) θ i = x t i β + Z i E(Z i ) = 0 V ar(z i ) = σ 2 Score test: Reject H 0 : τ = 0 versus H 1 : τ > 0 n i=1 T i (ˆθ i 0 ) V = 1 2 n [(Y i ˆµ 0 i )2 ˆµ 0 i] n i=1 1 2 i=1 ˆµ 02 i > Z 1 α/2 c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 22

References Dean, C. (1992). Testing for overdispersion in Poisson and binomial regression models. JASA 87(418), 451 457. McCullagh, P. and J. Nelder (1989). Generalized linear models. Chapman & Hall. c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 23