n b n Mn3C = n Mn /3 = 0,043 mol free Fe n Fe = n Fe 3n Fe3C = 16,13 mol, no free C b Mn3C = -Δ f G for Mn 3 C +3 b Mn + b C = 1907,9 kj/mol

Σχετικά έγγραφα
2 nd Law: m.s in + Q in /T in + S gen = ds/dt + m.s out + Q out /T out. S gen /ṁ = -(Q in /m)/t + Δs,

Class 03 Systems modelling

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

STEAM TABLES. Mollier Diagram

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

2. Chemical Thermodynamics and Energetics - I

Calculation of ODH classification for Nevis LHe e-bubble Chamber Cryostat

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Dielectric Wave Guide

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V

STAMP FERRITE CORES STAMP

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

FERRITE CORES. Inductive components Designer and Manufacturer EUROPE OFFICIAL AGENT. Providing SOLUTION is our APTITUDE

Higher Derivative Gravity Theories

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Section 8.3 Trigonometric Equations

By R.L. Snyder (Revised March 24, 2005)

Answers to practice exercises

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Phasor Diagram of an RC Circuit V R

ΚΕΦΑΛΑΙΟ 4 ΘΕΡΜΟΦΥΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΤΡΟΦΙΜΩΝ

TURBO CODES IN UMTS/ WIMAX/ LTE SYSTEMS: SOLUTIONS FOR AN EFFICIENT FPGA IMPLEMENTATION. Ph. D. Cristian ANGHEL

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Ασκήσεις Προβλήματα. Μετρήσεις Μονάδες Γνωρίσματα της Ύλης

Είδη ΙΦΥΥ δυαδικών μιγμάτων

Areas and Lengths in Polar Coordinates

Other Test Constructions: Likelihood Ratio & Bayes Tests

SMD Transient Voltage Suppressors

APPENDIX I PITTSBURGH NO. 8 WASHABILITY DATA AND RECOVERY- CURVES

ΘΕΡΜΟΔΥΝΑΜΙΚΗ II Χειμερινό Εξάμηνο Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ

Monochromatic Radiation is Always 100% Polarized

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Forced Pendulum Numerical approach

Ισορροπία Υγρού-Υγρού ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

Part III - Pricing A Down-And-Out Call Option

Areas and Lengths in Polar Coordinates

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

10.7 Performance of Second-Order System (Unit Step Response)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

1 String with massive end-points

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

α & β spatial orbitals in

Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16

Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.

The following are appendices A, B1 and B2 of our paper, Integrated Process Modeling

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Example Sheet 3 Solutions

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Review Exercises for Chapter 7

Notes on the Open Economy

Derivation of Tranformation Parameter Computation for a 2D/3D Coordinates System from Laser Scanner Coordinates to Camera Coordinates

Exam Statistics 6 th September 2017 Solution

RECIPROCATING COMPRESSOR CALCULATION SHEET

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics



ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014

ϕ α βi(k) ξ β αi(k ) ω β0 + ε β iα E β V αn (k α ), ϕ σ ββ(k σ ) = m β dk Kαβ (k, k )U β (k ) r β (ω βk ω β0 )

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Θωμάς ΣΑΛΟΝΙΚΙΟΣ 1, Χρήστος ΚΑΡΑΚΩΣΤΑΣ 2, Βασίλειος ΛΕΚΙΔΗΣ 2, Μίλτων ΔΗΜΟΣΘΕΝΟΥΣ 1, Τριαντάφυλλος ΜΑΚΑΡΙΟΣ 3,

Derivation for Input of Factor Graph Representation

A Class of Orthohomological Triangles

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

APPENDIX A. Summary of the English Engineering (EE) System of Units

derivation of the Laplacian from rectangular to spherical coordinates

8.324 Relativistic Quantum Field Theory II

; +302 ; +313; +320,.

α - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

X g 1990 g PSRB

Estimators when the Correlation Coefficient. is Negative

Transcript:

PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 1. deal gas: Δs = s - s 1 = c p ln(t /T 1 ) - R ln(p /p 1 ) (T << T crt; p << p crt ) ΔĖx = ṅ T Δs T T 1 (0 1 bar, h h 1 ) ṅ = 1 kg/s / 0,03 kg/ml = 31,5 ml/s Δs = - R ln(1/0) = 4,9 /(mlk) ΔĖx = ṅ T Δs = 31,5 93 4,9 = 8,1 kw. 1 kg l = 1000 g / 7 g/ml = 37,0 ml 37 ml l + 1½ 37 ml O ½ 37 ml l O 3. Tables curse materal sectn 1.8: b chem, l = 795,7 k/ml b chem, lo3 = Δ f G lo3 + 1½ b chem, + b chem b chem, lo3 = 15,1 k/ml Δex = b chem, l - ½ b chem, lo3 = 795,7 ½ 15,1 = 788, k/ml l = 9, M/kg l (= 8,1 kwh/kg l) Ths s als the mnmum exergy nput need fr l prductn frm pure l O 3. PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 3. Per kg steel: n Fe = 17,55 ml, b Fe = 374,3 k/ml n C = 0,50 ml, b C = 410,3 k/ml n Mn = 0,13 ml, b Mn = 487,7 k/ml n S = 0,09 ml, b S = 609,6 k/ml n P = 0,03 ml, b P = 861,4 k/ml n S = 0,11 ml, b S = 854,9 k/ml n Mn3C = n Mn /3 = 0,043 ml n Fe3C = n C n Mn3C = 0,457 ml free Fe n Fe = n Fe 3n Fe3C = 16,13 ml, n free C b Mn3C = -Δ f G fr Mn 3 C +3 b Mn + b C = 1907,9 k/ml b Fe3C = -Δ f G fr Fe 3 C +3 b Fe + b C = 1539,3 k/ml b n b chem, n 700k / ml (RZ calculates 6997,7 k/kml wth Σn = 16,86 ml) Exergy decrease as a result f mxng: n R T Σx lnx = -0,56 k/ml ths purty!) (can be neglected fr

PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 4. Fr the feed, wth enthalpy = 0 fr lqud at T = 0 C: cndenser F = (x c p + x B c pb )(T - 0 C) = heater = (0,45 189 + 0,55 75,5) 178 C = 40,4 k/ml Flash e-balance (lever rule): L G L1 53,0 40,4 40,4 4,8 1 G1 F 1 F 1, & L 1 + G 1 = 1 ml/s L 1 = 0,45 ml/s, G 1 = 0,55 ml/s Cndenser: 50/50 splt G = L = 0,55/ = 0,75 ml/s G + L = 34,3 k/ml Q c = (50,3 34,3) k/ml 0,55 ml/s = 10,3 kw PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 5. (Earler curse Transprt prcesser (TRP), G. Öhman, exam questn) p x, y T 101,3kPa, p 90,18K fr N. Rault' s Law : p x x p p tt tt x p p p 8 T 101,3kPa, 77,35K (1 x) p and y y, x p p tt 8 L, ( T 73K) 65 k / mlk L, L (77K 73K) 65 k / mlk 01k / kg 8 kg / kml ( T 77K) 30,5 k / mlk (90K 73K) 65 k / mlk 3 k / kg 3 kg / kml ( T 90K) 30,5 k / mlk G y (1 y) Prcedure: pck a Tbl,N < T < Tb,l x, y, and crrespndng L and G. Nte: n mxng heat s cnsdered here.

PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 6. Curse materal: sectn 3.6; nt equlbrum z = D/F ½, B/F = 1/z; x F = z Per mle feed, f q = 1 (blng lqud) : L/F = r D/F = z r abve the feed L/F = r D/F = z r +1 at/belw the feed V/F = = z (r + 1) n the whle clumn Mnmum heat nput needed: Q mn = V Δ vap = z (r mn + 1) Δ vap Fr ths mxture then W sep = W mn = -R T (zlnz + (1-z)ln(1-z)) = Q Rmn T (1/T tp 1/T bttm ) = (Q n, mn T R/ Δ vap ) (- ln α) (zlnz + (1-z)ln(1-z)) = (Q n, mn / Δ vap ) (- ln α) = z (r mn + 1) (- ln α) r mn = -1 + [ (zlnz + (1-z)ln(1-z))/( (- ln α) ) ] If x F becmes lwer, then mre lqud flw dwnwards needed fr strppng the lght cmpnent frm (mre) heavy cmpnent. r mn Nt necessarly symmetrc wth peak at z = ½ W mn Check ths als fr q=0 (saturated gas feed), t see the effect f preheat! z= x F D/F PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 7. a L11 X L1 X m D11 D1 and L X L X D D m. m L X L X m D D L X L X D D m m 1 μ d d (Bnary dffusn, -dc / + dc B / = 0, T T where X, X m, L L1 (Onsager) c B + c = cnstant, m = - mb, c wth chemcal ptental μ μ RTlny μ RTln gves n extra nfrmatn) c (μ chemcal ptental fr pure ).Ths gves : dt/ = 0 m = -D dc /, Fck s L11 μ dt L1 R dc Law, D = D, L11 X L1 X m and T c m = 0 -D dt/ = D dc / L μ dt L R dc m L X L X m dc / = -D /D dt/ T c Q Q = -(D 11 - D 1 D /D ) dt/ λ = -(D 11 - D 1 D /D ) b. m = 0 dc / = -D /D dt/ dc /dt = -D /D r dc / = -D /D dt/ dt/ 0 means that dc / 0, whch can be used t measure D r D 1. bulk

PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 8. Exam 9 March 009: Questn 301. a. h D = 4, k/ml Q c /D = 57,8 M/mn / 0,5 kml/mn = 115,6 k/ml ple pnt N at x = x D = 0,95; h N = 4, + 115,6 = 119,8 k/ml Q B /B = 45,4 M/mn / 0,77 kml/mn = 6,5 k/ml ple pnt M at x = x B = 0,05; at h = 6,5 k/ml belw saturated lqud lne fr x = x B, h M = 31 6,5 = -31,5 k/ml PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 (8. Exam 9 March 009: Questn 301.) b. F = B + D, mass balance, F = 17 ml/mn methd 1: energy balance: F h F + Q B = Q C + B h B + D h D h F = (Q C + B h B + D h D - Q B ) / F = (57,8-45,4 + 0,004 500 + 0,031 77)/17 M/mn/ml/mn = 30, k/ml dagram: x F ~ 0,415 methd : lever rule fr fndng pnt F n lne MN length rat FM/MN = 500/17 x F ~ 0,415

PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 (8. Exam 9 March 009: Questn 301.) (b. cntnues) pnt F s almst n te-lne fr T = 100 C: T ~ 99 C. lever rule fr te-lne at 99 C: lqud /ttal = length frm F t saturated gas /ttal = 71% gas/ttal = 9%,.e. q = 0,71 c. Draw lnes as n Fgure: V = gas frm tp tray L = lqud frm tp tray etc. 5 stages (4 + rebler) T C x - L k/ml y - G k/ml 68.7 1 1.98 1 41.87 69.35 0.977 13. 0.9963 4.03 70 0.9546 13.45 0.993 4.18 75 0.8017 15.19 0.9609 43.39 80 0.6684 16.94 0.937 44.7 85 0.5566 18.65 0.8788 46.14 90 0.4566 0.36 0.835 47.74 95 0.3705.05 0.757 49.53 100 0.917 3.75 0.6756 51.57 105 0. 5.44 0.584 53.8 110 0.1591 7.13 0.4754 56.33 115 0.1035 8.8 0.355 59.14 10 0.0538 30.46 0.088 6.33 1.9 0.06 31.43 0.1096 64.46 15.8 0 3.39 0 66.78 9. Exam 9 March 009: Questn 30. PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 a. α = 1.5 = p C5 / p C8 at 70 C, 1 bar (see als nmgram curse materal #3 sldes 14,15 Clausus Clapeyrn: ln α -Δ vap /R (1/T bttm 1/T tp ) Δ vap - R ln(1,5) / (1/T 398 1/T 309 ) = 9,0 k/ml 30 k/ml b. deal, per mle feed: Q n, mn = ½ (r mn + 1) Δ vap = 15,96 k/ml real, per mle feed: Q n, real = ½ (r real + 1) Δ vap = 16,68 k/ml deal, per mle feed: W n, mn = Q n, mn T (1/T tp 1/T bttm ) = 15,96 93 (1/309-1/398) = 3,38 k/ml

PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 (9. Exam 9 March 009: Questn 30.) c. real, per mle feed: W n,real = Q n, real T (1/T tp 1/T bttm ) = 16,68 93 (1/303-1/408) = 4,15 k/ml lsses clumn: (Q n, real - Q n, mn ) T (1/T tp 1/T bttm ) = 0,153 k/ml lsses rebler: Q n, real T (1/T bttm 1/T rebler ) = 0,301 k/ml lsses cndenser: Q n, real T (1/T cndenser,ut 1/T tp ) = 0,313 k/ml 15,96 16,68 1 138 1 1178 n,mn clumn Effcency = 0, 816. Q n, real T Q ( (1/ Nt bad, reflux rat s lw. T rebler (1/ (1/ clumn (1/ cndenser d. pparently r = unchanged (may nt be s!); but nw Q n, mn = 1/3 (r mn + 1) Δ vap, etc. Ths gves new values Q n, mn = 10,6 k/ml feed Q n, real = 11,1 k/ml feed W n, mn =,7 k/ml feed W n,real =,77 k/ml feed Ex lss, cl = 0,10 k/ml feed Ex lss, cnd = 0,01 k/ml feed Ex lss, reb = 0,08 k/ml feed Effcency 0,815 unchanged ) PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 10. Exam 9 March 009: Questn 401. a. dt/ = 0 m = 10-6 kg/(m /s) = - D dc / D = Ð = 10-5 m /s and dc / = 0,1 (kg/m 3 )/m. dt/ = -100 K/m gves m = 0, L11 X L1 Xm D 11 D1 and m L 1 μ d d T T where X, Xm,L L1 (Onsager) c wth chem cal ptent al μ μ RTlny μ RTln cbulk (μ chemcal ptental fr pure ). Ths gves : L11 μ dt L1 R dc L11 X L1 Xm and T c L μ dt L R dc m L X L Xm T c -D dt/ = D dc / D = -D (dc /)/(dt/) = 10-5 m /s 0,1 / 100 = 10-8 kg/(m s K) Q = (-D 11 +D 1 D /D ) dt/ = -λ dt/ λ = D 11 - D 1 D /D, where D 1 D BT L 1 = L D 1 = -L 1 R/c avg, and - D L /T avg = L 1 /T avg L 1 = - D T avg D 1 = D T avg R/c avg, = 10-8 (330) 5/0,01 = 7, W m /kg λ = 0,03 W/(m K) = D 11 - D 1 D /D D 11 = λ - D 1 D /D = 0,03 0,07 = 0,003 W/(m K) b. Q = -(D 11 - D 1 D /D ) dt/ = -(0,003-7, 10-8 /10-5 ) 100 = 0,04 100 =,4 W/m Furer law Q = -λ dt/ gves Q = 0,03 100 = 3 W/m X L X m dt D D dc

PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 11/ Exam 18 May 011 questn 109 a. Δh = c p (100-5)K =,68 k/ml Δs = c p ln(383/98) - R ln(100/1) = 8,0-38,3 k/(mlk) 100 bar, 5ºC: ex phys = RT 0 ln(p/p 0 ) = 11,4 k/ml 100 bar, 100ºC: ex phys = Δh - T 0 Δs =,68 + T 0 (38,3 8,0) = 11,7 k/ml ex chem (5 bar, 100ºC) = 843,0 k/ml ex chem (100 bar, 100ºC) = 843,4 k/ml b. exº chem MeO = -166,7 + 410,6 (fr C) + ½ 3,97 (fr O) + 36,09 (fr ) = 718, k/ml exº chem C 4 = 831,6 k/ml (data gven under a.) a reductn f 13,6 % MeO: C 4 : 718, k/ml / 3 kg/kml =,44 M/kg 831,6 k/ml / 16 kg/kml = 51,98 M/kg