Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Σχετικά έγγραφα
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Rectangular Polar Parametric

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Spherical Coordinates

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Homework 8 Model Solution Section

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

D Alembert s Solution to the Wave Equation

Solutions_3. 1 Exercise Exercise January 26, 2017

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Parametrized Surfaces

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Areas and Lengths in Polar Coordinates

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Math221: HW# 1 solutions

Oscillatory integrals

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Areas and Lengths in Polar Coordinates

Concrete Mathematics Exercises from 30 September 2016

Notes on Tobin s. Liquidity Preference as Behavior toward Risk

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

EE512: Error Control Coding

Chapter 7 Transformations of Stress and Strain

Second Order RLC Filters

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Uniform Convergence of Fourier Series Michael Taylor

Section 8.3 Trigonometric Equations

Other Test Constructions: Likelihood Ratio & Bayes Tests

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Lecture 5: Numerical Integration

Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Lecture 26: Circular domains

( ) 2 and compare to M.

ECE 222b Applied Electromagnetics Notes Set 4c

Answer sheet: Third Midterm for Math 2339

1 String with massive end-points

Double Integrals, Iterated Integrals, Cross-sections

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Tutorial Note - Week 09 - Solution

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Solutions to Exercise Sheet 5

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Geodesic Equations for the Wormhole Metric

SPECIAL FUNCTIONS and POLYNOMIALS

6.3 Forecasting ARMA processes

University of Kentucky Department of Physics and Astronomy PHY 525: Solid State Physics II Fall 2000 Final Examination Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

w o = R 1 p. (1) R = p =. = 1

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Some definite integrals connected with Gauss s sums

Module 5. February 14, h 0min

3.5 - Boundary Conditions for Potential Flow

Numerical Analysis FMN011

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

f (x) g (x) f (x) g (x) + f (x) g (x) f (x) g (x) Solved Examples Example 2: Prove that the determinant sinθ x 1

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ECE 468: Digital Image Processing. Lecture 8

Section 9.2 Polar Equations and Graphs

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Problem Set 3: Solutions

Strain gauge and rosettes

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

ADVANCED STRUCTURAL MECHANICS

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Differential equations

Space-Time Symmetries

Solution Series 9. i=1 x i and i=1 x i.

Example Sheet 3 Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Section 7.6 Double and Half Angle Formulas

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Kul Finite element method I, Exercise 04/2016. Demo problems

12. Radon-Nikodym Theorem

6.642 Continuum Electromechanics

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Transcript:

Chpter 7b, orsion τ τ τ ' D' B' C' '' B'' B'' D'' C'' 18 -rottion round xis C'' B'' '' D'' C'' '' 18 -rottion upside-down D'' stright lines in the cross section (cross sectionl projection) remin stright the whole cross section (cross sectionl projection) rottes b the sme mount θ ( x,, ) θ ( x) β x

Wrping Function Sint-Vennt theor,w,v x,u τ x d τ x θ β dθ dx,w '(+v,+w) θ O -v w (,),v O + r, r w rθ, v r rθ u βψ (, ), v θ β x, w θ β x Ψ Ψ (, ) is the so-clled wrping function u ε x x v w w v, ε, ε, γ + v u γ x + β( ) x w u γ x + β ( + ) x τ x Gβ( ), τ x Gβ ( + )

comptibilit reltionship utomtic (strted from continuous, differentible displcements) equilibrium equtions σ τ x x τ + + x x τx σ τ + + x τ τ x σ + + x τ x τ + + x + + + + τ x τx G + β ( ) + ( + ) Ψ Ψ + Ψ boundr conditions O,w d τ x -d ds s τ x n d,v d d boundr norml unit vector n n j + n j ds ds d d boundr tngent unit vector s s j + s j + ds ds

sher trction d d j + d d( τ x j + τx ) d d d d dn, i.e., ( τ x j + τx ) ( j ) τx τ x ds ds ds ds d d d d d s, i.e., ( τ x j + τ x ) ( j + ) i( τx τ x ) ds ds ds ds τ d d x x ds τ ds τ x Gβ( ) τ x Gβ ( + ) d d d d + ds ds ds ds d d 1 d ( + ) ds ds ds torque ( τ τ ) d x x G ( β + + ) d G ( β ) d + G β J J ( + ) d I + I

Summr Sint-Vennt wrping function, Ψ sher stress τ x Gβ( ), τ x Gβ ( + ) comptibilit reltionship utomtic equilibrium equtions Ψ boundr conditions τ d d x x ds τ ds d d 1 d ( + ) ds ds ds torque ( τ τ ) d x x G ( β ) d + G β J Prndtl stress function, φ sher stress comptibilit reltionship equilibrium equtions φ τ x, τ x φ Gβ utomtic φ boundr conditions dφ torque φd

Sint-Vennt Wrping Function for n Ellipticl Cross Section,w -τ x O τ x b,v equilibrium eqution wrping function Ψ Ψ sher stresses τ x Gβ( ) Gβ( 1) τ x Gβ ( + ) Gβ ( + 1) boundr condition τx τx d d + f(, ) 1 b τx τ + x 1 1 f f df d + d d + d b d d b

b + 1 1 b + b b Ψ + b sher stress components Gβ τ x Gβ( ) + b Gβb τ x Gβ ( + ) + b sher stress Gβ Gβb Gβ x x ( ) ( b ) τ τ + τ + + + b + b + b τ τ ( + ) ' b' τ / / Gβ b + b, ', b b' b mximum sher stress ' b' b τ mx{ τ } mx x Gβ b + b

torque ( τx τx ) d Gβb Gβ Gβb Gβ ( + ) d I + I + b + b + b + b I πb, b I π b π b Gβ GβJ + b t J π b t + b Gβ + b π b τ x, π b τ x, π / / b τ, nd τ mx π b πb circulr cross section ( b) Jt π J + ττ + ' b' π r τ, where J r +

Prndtl Stress Function φ φ (, ) sher stress equilibrium equtions φ τ x, τ x φ σ τ x x τ + + x x τx σ τ + + x τ τ x σ + + x τ x τ + + x + + + + τ x + τ x φ φ utomtic! comptibilit reltionship three displcements! indirect solution using the Sint-Vennt wrping function τ x Gβ( ) nd τ x Gβ ( + ) τ x τx Ψ Ψ Gβ( 1 1) Gβ φ τ x, τ x φ φ Gβ

boundr conditions τ d d x x ds τ ds φ φ d + d dφ φ constnt for solid cross section with closed loop boundr line one cn choose φ torque ( x x ) d φ d φ τ τ d D d O d τ x τ x B d C For solid cross section with closed loop boundr line nd φ on the boundr: φ d D B φ d d D B D B B [ ] d φ φ d φ d d φ d C C C φ d B D φ d d B D B D D [ ] C d φ φ d φ d d φ d C C C φd

If φ φ on s : ( φ φ ) d When the cross section is bordered b multiple discontinuous boundr lines, φd cnnot be used directl. s 1 s ssume tht the he ctul cross section 1 is divided into solid cross sections 1 nd bordered b s 1 nd s, respectivel, nd both s 1 nd s re constnt contour lines of the sme stress function φ: s 1 s 1 s 1 s φ on s nd φφ on 1 s φd, 1 1 ( φ φ ) d φd ( φ φ ) d 1 1 φ d + φ

Prndtl Stress Function for n Ellipticl Cross Section boundr eqution boundr condition + b 1 φ φ C (1 ) b comptibilit reltionship 1 1 φ C( + ) Gβ b C Gβ b + b Gβ b φ (1 ) + b b φ Gβ τ x + b nd φ Gβb τ x + b torque Gβ b φ d (1 ) d b b + Gβ b 1 1 Gβ b 1 π b 1 πb ( I ) ( ) I πb + b b + b b b πgβ b + b Gβ + b π b τ x nd π b τ x π b

Prndtl Stress Function for n Equilterl ringle Cross Section boundr equtions 6 1 1 + boundr condition φ φ ( + )( + )( + ), where is n unnown constnt to be determined from φ ( + )[9 ( ) ] φ (18 6 + 9 + 9 ) φ G β. φ ( 6 + 18 + 6 + 18 ) φ 6 G β Gβ 18

torque / / / φd φdd / Gβ 8 Gβ 18 9 5 φ ( + )[9 ( ) ] 5 9 stress φ [9 ( ) ] ( )( ) 5 τ x + 9 8 τ x 9 ( ) ( + )( ) 5 9 8 ( ) 5 τ x + φ φ τ x ( + ) [9 ( ) ] 5 9 8 τ x ( + ) 5

orsionl Stiffness β GJ t prismtic br of ellipticl cross section: πg b + b Sint-Vennt's pproximte formul for prismtic brs of rbitrr cross section SV G π J prismtic br of ellipticl cross section: π b 1 J I + I π b( + b ) SV Gπ b πg b 1 π π b( + b ) + b prismtic br of equilterl tringle cross section: J 5 19 SV G 9 G π J 8π.197G

G.17G β 8 prismtic br of squre cross section: J I + I 6 SV G π.15g.11g thin prismtic br of rectngulr cross section ( >> b): b J I + I b 1 SV Gb π.gb.gb