Satellite materials are extremely durable, but cannot maintain the same properties achieved on earth when exposed to space environments. Without su$cient knowledge of the degradation e#ects, satellite design phases cannot accurately predict or prevent component anomaly or failure. In this paper, space environments and durability test of space-use materials in the simulated space environments are summarized. Finally, the recent activities of material development are introduced. Key words: space environment, degradation, spaceuse materials 1. 1 (CFRP) 1) 2 a S 0.25 (1 R(l)) I(l)dl 2.50 (1) 0.25 I(l)dl 2.50 Assessment of Material Durability against Space Environments and Development of New Space-Use Materials Minoru IL6I6 (Laboratory of Spacecraft Environment Interaction Engineering, Kyushu Institute of Technology) 804 8550 1 1 TEL: 093 884 3597, FAX: 093 884 3229 iwata@ele.kyutech.ac.jp Rikio YD@DI6 (Japan Aerospace Exploration Agency) 229 8505 3 1 1 TEL: 042 759 8056, FAX: 042 759 4251 E-mail: yokota.rikio@jaxa.jp 1 36
2 l I(l) R(l) 96 0.25 2.50 mm 2 2. 2.1 1 2), 3) 4) 5) 3 3 40 kev 7.0 MeV 100 kev 400 MeV 3 1 4 7), 8) 10) 2.2 8 5 200 400 nm 86 (2008) 37
(a) (b) 3 6) 4 5 14) 9) 200 nm 38 11) 13)
6 15) 2.3 200 700 km 8km/s 1 (Reaction E$ciency) 6 15) 6 1E 1I 3.0 10 24 cm 3 /atom 5eV 1 16) 10 24 cm 3 /atom (Kapton ) 3.0 Mylar 3.4 Tedlar 3.2 3.7 2.4 1.7 1.7 Heavily attached RTV-560 0.02 DC6-1104 0.02 T-650 0.02 DC1-2577 0.02 Teflon TFE 0.05 Teflon FEP 0.05 Heavily attached 1 16) 86 (2008) 39
ASTM E595 18) 19) 3. 7 17) 2.4 100 km 7 17) 40 3.1 m 1
8 Kapton Ultem 20) 10 24) 9 8 Kapton Ultem 8 20) 9(a) 9(b) 21 24) 10 350 2 350 4 2010 3.2 SiO 2 86 (2008) 41
28),29) 11 25) Si 26) P 28) 3.3 42 X 27) 11
28), 29) 12 28, 29) 12 Kapton -H (PMDA ODA) Kapton -H S 3.1 ODPA/ODA 4. X 30) 86 (2008) 43
1) D. G. Gilmore, W. K. Stuckey, and M. Fong, Thermal Surface Finishes, in Spacecraft Thermal Control Handbook, Vol. I: Fundamental Technologies, ed. by D. G. Gilmore, pp. 139 159, 2002. 2) J. I. Vette, The AE-8 Trapped Electron Model Environment, NASA TM-107820 (1991). 3) D. M. Sawyer and J. I. Vette, AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum, NASA TM-X-72605. 4) M. A. Xapsos, J. L. Barth, E. G. Stassinopoulos, E. A. Burke, and G. B. Gee, Space Environmet E#ects: Model for Emission of Solar Protons (ESP) Cumulative and Worst-Case Event Fluences, NASA TP-1999-209763 (1999). 5) J. H. King and E. G. Stassinopoulos, J. Spacecraft and Rockets, 12(2), 122 (1975). 6) E. G. Stassinopoulos, J. Spacecraft and Rockets, 17, 145 (1980). 7) J. Marco, A. Paillous, and G. Gourmelon, Proc. of 6th International Symposium on Materials in a Space Environment, Noordwijk, 1994, pp. 77 83. 8) B. B. Briskman, V. I. Toupikov, and E. N. Lesnovsky, Proc. of 7th International Symposium on Materials in a Space Environment, Toulouse, 1997, pp. 537 542. 9) Space Station Ionizing Radiation Design Environment, NASA SSP-30512 Revision C (1994). 10) R. L. Clough, K. T. Gillen, G. M. Malone, and J. S. Wallace, Radiat. Phys. Chem., 48, 583 (1996). 11) V. E. Skurat, E. A. Barbashev, I. A. Budashov, Yu. I. Dorofeev, A. P. A. Nikiforov, I. Ternovoy, M. Van Eesbeek, and F. Levadou, Proc. of the 7th International Symposium on Materials in Space Environment, Toulouse, 1997, pp. 267 279. 12) V. E. Skurat and P. V. Samsonov, High Performance Polymer, 13, 529 (2001). 13) J. A. Dever and C. A. McCracken, Proc. of the 9th International Symposium on Materials in a Space Environment, Noordwijk, 2003, pp. 367 373. 14) Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, ASTM E490-00a (2000). 15) L. J. Leger and J. T. Visentine, J. Spacecraft and Rockets, 23, 505 (1986). 16) L. Leger, B. S-. Mason, J. Visentine, and J. Kuminecz, Review of LEO Experiments, Proc. the NASA Workshop on Atomic Oxygen E#ects, NASA CR-181163, pp.. 17) C. K. Purvis, NASA CP-3035, 5 24 (1988). 18) Standard Test Method for Total Mass Loss and Collected Volatile Condensable Materials from Outgassing in a Vacuum Environment, ASTM E595-93 (1993). 19) http://matdb1n.tksc.nasda.go.jp/main j.html 20) T. Sasuga, N. Hayakawa, K. Yoshida, and M. Hagiwara, Polymer, 26, 1039 (1985). 21) 55, 1599 (2006). 22) 55, 4086 (2006). 23) 56, 1896 (2007). 24) 56, 4934 (2007). 25) F. Imai, M. Iwata, Y. Nakayama, K. Imagawa, M. Sugimoto, N. Morishita, and S. Tanaka, Proc. of 23rd Int. Symp. on Space Technology and Science, 2002, pp. 646 651. 26) K. Yokota, M. Tagawa, E. Miyazaki, M. Suzuki, M. Iwata, and R. Yokota, 5th Int. Symp. on Polyimides and Other High Temperature Polymers, 2007. 27) D. F. Hall and A. A. Fote, 10 Year Performance of Thermal Control Coatings at Geosynchronous Altitude, AIAA 91 1325, 1991. 28) A. K. S. Clair and W. S. Slemp, Evaluation of Colorless Polyimide Film for Thermal Control Coating Applications, NASA-TM-86341, 1985. 29) A. K. S. Clair, T. L. S. Clair, W. S. Slemp, and K. S. Ezzell, Optically Transparent/Colorless Polyimides, NASA-TM-87650, 1985. 30) 57, 747 (2008). 44