Lectures on Quantum sine-gordon Models

Σχετικά έγγραφα
6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Relativistic particle dynamics and deformed symmetry

Lectures on Quantum sine-gordon Models

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Symmetric Stress-Energy Tensor

Space-Time Symmetries

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Dirac Matrices and Lorentz Spinors

Example Sheet 3 Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Homework 8 Model Solution Section

Physics 513, Quantum Field Theory Examination 1

Dirac Matrices and Lorentz Spinors

Solutions - Chapter 4

SPECIAL FUNCTIONS and POLYNOMIALS

The Feynman-Vernon Influence Functional Approach in QED

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Second Order Partial Differential Equations

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Srednicki Chapter 55

8.324 Relativistic Quantum Field Theory II

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

The form factor program - a review and new results - the nested SU(N)-off-shell Bethe ansatz - 1/N expansion

derivation of the Laplacian from rectangular to spherical coordinates

Solutions to Exercise Sheet 5

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

MA4445: Quantum Field Theory 1

Math221: HW# 1 solutions

Thirring Model. Brian Williams. April 13, 2010

Approximation of distance between locations on earth given by latitude and longitude

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

1 Conformal transformations in 2d

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Tutorial problem set 6,

Congruence Classes of Invertible Matrices of Order 3 over F 2

2 Composition. Invertible Mappings

Homework 3 Solutions

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

MA 342N Assignment 1 Due 24 February 2016

UV fixed-point structure of the 3d Thirring model

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc

Higher Derivative Gravity Theories

Section 9.2 Polar Equations and Graphs

Lifting Entry (continued)

D Alembert s Solution to the Wave Equation

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Hartree-Fock Theory. Solving electronic structure problem on computers

Empirical best prediction under area-level Poisson mixed models

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

1 Classical Mechanics

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Physics 582, Problem Set 2 Solutions

Orbital angular momentum and the spherical harmonics

Variational Wavefunction for the Helium Atom

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Local Approximation with Kernels

Section 8.3 Trigonometric Equations

Constitutive Relations in Chiral Media

4.6 Autoregressive Moving Average Model ARMA(1,1)

The Lorentz anomaly via operator product expansion

Homework for 1/27 Due 2/5

Inverse trigonometric functions & General Solution of Trigonometric Equations

On the Galois Group of Linear Difference-Differential Equations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Areas and Lengths in Polar Coordinates

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Higher spin gauge theories and their CFT duals

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Lecture 2 The Wess-Zumino Model

The Pohozaev identity for the fractional Laplacian

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Dark matter from Dark Energy-Baryonic Matter Couplings

Errata 18/05/2018. Chapter 1. Chapter 2

Derivation of Optical-Bloch Equations

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Tridiagonal matrices. Gérard MEURANT. October, 2008

Chapter 3: Ordinal Numbers

Particle Physics: Introduction to the Standard Model

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Lecture 21: Scattering and FGR

Finite difference method for 2-D heat equation

Reminders: linear functions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Lecture 34 Bootstrap confidence intervals

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Areas and Lengths in Polar Coordinates

Every set of first-order formulas is equivalent to an independent set

Transcript:

Lectures on Quantum sine-gordon Models Juan Mateos Guilarte 1,2 1 Departamento de Física Fundamental (Universidad de Salamanca) 2 IUFFyM (Universidad de Salamanca) Universidade Federal de Matto Grosso Cuiabá, Brazil, 2010

Outline 1 The model 2 3

Lagrangian Massless L(x) = i ψ(x)γ µ µψ(x) 1 2 g ψ(x)γ µ ψ(x) ψ(x)γ µψ(x) ( ) [ψ] = L 1 2, [g] = 1, x (x 0, x 1 ), x 2 x µx µ ψ1 (x), ψ =, ψ(x) = ψ ψ 2 (x) (x)γ 0 γ 0 = σ 1, γ 1 = iσ 2, γ 5 = γ 0 γ 1 = σ 3, γ µ γ ν + γ ν γ µ = 2g µν γ µ γ 5 + γ 5 γ µ = 0, γ µ γ ν = g µν + ε µν γ 5, γ µ = g µνγ ν Invariance and canonical currents ψ(x) U V 1 e iα V ψ (x), j µ (x) = ψ(x)γ µ ψ(x) U A 1 ψ(x) e iα Aγ 5 ψ (x), j µ 5 (x) = ψ(x)γ µ γ 5 ψ(x) { ˆψ(x), ˆψ (y)} = x 0 =y 0 δ(x1 y 1 ), [ĵ 0 (x, t), ˆψ(y, t)] = δ(x y) ˆψ(y, t) Fierz transformation ψγ µ ψ ψγ µψ = ψ 1 ψ 1ψ 2 ψ 2 = ( ) ( ) 2 2 ψψ ψiγ 5 ψ

Renormalized chiral eigen-densities Massive ˆσ ± (x) = Z ˆ ψ(x)(1 ± γ 5 ) ˆψ(x), Ĥ Ĥ + m f 2 (ˆσ +(x) + ˆσ (x)) Space-like 2n-point Wightman functions 0 Π n i=1ˆσ +(x i )ˆσ (y i ) 0 = A 2n Π i>j[(x i x j ) 2 (y i y j ) 2 ] δ Π i,j [(x i y j ) 2 ] δ, δ = 1 1 + g π

2n-point functions in s-g 2-point Wightman function of a free massless scalar field ˆφ(x) ˆφ(y) = N µ( ˆφ(x) ˆφ(y)) + 0 ˆφ(x) ˆφ(y) 0, + (x, µ) t <<1 = dk 2π + (x, µ) = 0 ˆφ(0) ˆφ(x) 0 e ik(t x) k 2 + µ 2 = 1 2π K 0(µ t 2 + x 2 ) t 2 +x 2 <<1 = 1 4π log( cµ2 x µx µ ) + O( x µx µ ) Wick theorem and normal ordering F( ˆφ) = d 2 x 1 d 2 x n K(x 1,, x n) ˆφ(x 1 ) ˆφ(x n) [ ( )] } 1 = N µ {exp d 2 x d 2 δ δ y + (x y, µ) F( ˆφ) 2 δφ(x) δφ(y) Normal ordered free Hamiltonian and vertex Ĥ 0 = 1 [ 2 Nµ ˆπ 2 2 + ( 1 ˆφ) ] = N µh 0, Ŝ ± = N µe ±i m ( 2 ) t 2 2 x 2 + (x y, µ) = δ (2) (x y) ˆφ

Space-like sine-gordon 2n-point vertex functions MTM/sGM equivalence 0 Π n i=1ŝ+(x i )Ŝ (y i ) 0 = A 2n Π i>j[(x i x j ) 2 (y i y j ) 2 ] δ Π i,j [(x i y j ) 2 ] δ, δ = 4πm 2 MTM/sGM identifications m f 2 (ˆσ + + ˆσ ) = m4 Nµ(cos m 2 = 4π2 π + g ˆφ) m, g = 4π 2 m2 π Proof. Infrared cutoff and N ν-ordering of the vertex [ ] [ ] N µ Ĥ 0 N µ Ĥ 0 + ν2 ˆφ 2 = N ν Ĥ 0 + ν2 ˆφ 2 + constant 2 2 N µe i( 1)a m ˆφ = ( ν 2 µ 2 ) 8πm 2 N νe i( 1)a m ˆφ, a = 0, 1

N µ-ordered 2n-point vertex functions ( ν 2 µ 2 ( ν 2 = µ 2 ν<<1 = Strings of vertex vev ) 8πm 2 ( i ( 1)a i ) 2 0, ν Π i N νe i( 1)a i m ˆφ(xi ) 0, ν = ) 8πm 2 ( i ( 1)a i ) 2 Π i>j e ( 1)a i ( 1) aj + (x i x j,ν) ν<<1 = ( ν 2 µ 2 ) 8πm 2 ( i ( 1)a i ) 2 Π i>j [cν 2 (x i x j ) 2 ] ( 1)a i ( 1) a j Normal-ordering no contractions at the same point Survivors at the ν 0 limit ( ν 2 µ 2 ) 4πm 2 8πm 2 ( i ( 1)a i ) 2 Π i>j [cν 2 (x i x j ) 2 ] ( 1)a i ( 1) a j 4πm 2 f (µ) iif (a i = 0) = (a i = 1) (Ŝ + ) = (Ŝ )

Position operator eigen-states Field configuration states ˆx x = x x, 0 x = δ(x), ˆp p = p p, 0 p = δ(p) p x = 1 2π eipx, dp p p = 1 e iˆpa x = e iˆpa dp p p x = 1 dp e i(x a)p p = x a 2π Field operator eigen-states ˆφ(x) φ(y) = δ(x y)φ(y) φ(y), 0 φ(x) = δ[φ(x)] ˆπ(x) π(y) = δ(x y)π(y) π(y), 0 π(x) = δ[π(x)] π(x) φ(y) = 1 2π eiπ(x)φ(y), dx Π xdπ(x) π(x) π(x) = 1 : e i dyˆπ(y)f (x) : φ(x) = =: e i dyˆπ(y)f (x) : dx Π xdπ(x) π(x) π(x) φ(x) = φ(x) f (x)

Mandelstam Creation/annihilation soliton : e i dy ˆπ(y)φ K (x) : 0 = φk (x), ˆψ(x) m =: Â(x)exp{ 2πi dξ ˆπ(ξ)θ(x ξ)} : [ ˆφ(y), ˆψ(x)] = 2π m ˆψ(y), y < x ; [ ˆφ(y), ˆψ(x)] = 0, y > x Soliton annihilation ˆψ(x) φ K (y x) φ K (y x) 2π m θ(y x) = 0 Different points commutators ˆψ α(x) : eŝα(x) :, α = 1, 2 Ŝ α(x) = 2πi m x dξ ˆπ(ξ) + ( 1) α i ˆφ(x) 2m [Ŝ 1 (x), Ŝ 1 (y)] = iπ[θ(x y) θ(y x)] = { +iπ [Ŝ α(x), Ŝ β (y)] = iπ, α, β { +iπ, x > y iπ, x < y

Different points anti-commutator Baker-Haussdorf-Campbell formula eâeˆb = e [Â,ˆB] eˆb eâ if [Â, ˆB] = c number { ˆψα(x) ˆψ β (y) = ˆψ β (y) ˆψ α(x) ˆψ α(x) ˆψ β (y) = ˆψ β (y) ˆψ, x y, α, β α(x) Preparing the dangerous lim y x coalescence ˆψ 1 (x) = N( cm 2π ) 2 1 exp[ 2πi m x dξ ˆπ(ξ) i ˆφ(x)] 2m ˆψ 2 (x) = in( cm 2π ) 2 1 exp[ 2πi m x dξ ˆπ(ξ) + i ˆφ(x)] 2m N: infinite renormalization constant. Cutoff in the ξ integration Formal current algebra { ˆψ α(x), ˆψ β (y)} = Zδ αβδ(x y) ĵ µ 1 (x) = lim ˆ ψ(x)γ µ ˆψ(y) y x Z Does [ĵ µ (x), ˆψ(y)] = (g µ0 + ε µ0 γ 5 ) ˆψ(x)δ(x y) really hold?

Renormalized currents Short distance operator behavior { ĵ µ (x) = lim cm(x y) σ ˆ ψ(x)γ } µ ˆψ(y) + F(x y) y x Choose σ and F(x y) in such a way that ĵ µ (x) exists Normal ordered Baker-Haussdorf-Campbell formula : eâ :: eˆb :=: eâ+ˆb : e [Â+,ˆB ], if [Â +, ˆB ] = c number ˆψ α (x) ˆψ α(y) = ( 1) α {2π(x y) 1 } cm(x y) 4 1 8πm 2 : exp[ 2πi m y ( ) dξ ˆπ(ξ) + ( 1) α i ˆφ(y) ˆφ(x) + O((x y) 2 )] :, no sum in α(1) x REMARKS 1 The factor cm(x y) 1 4 8πm 2 comes from the ˆφ ˆφ terms. Note the different critical exponent with respect to the bosonic case. The 1 is due to the dimension of the 4 Fermi fields. 2 The factor 2π(x y) 1 is due to the ˆπ ˆφ terms: derivation of the short-time Wightman function with respect to the time and integration in ξ. The ( cµ 2π ) 1 2 factor cancels because the normalization. The result can be hinted directly at the lim y x. See Appendix 3 The ˆπˆπ terms give contributions of O((x y)) 2 order.

Canonical anti-commutation relations Expand the exponential in (1) and select σ = 1 4 8πm 2 (killing the divergent term) ĵ 0 (x) = ˆψ 1 (x) ˆψ 1 (x) + ˆψ 2 (x) ˆψ 2 (x) = 1 ˆφ 2π m x ĵ 1 (x) = ˆψ 1 (x) ˆψ 1 (x) ˆψ 2 (x) ˆψ 2 (x) = 2 ˆφ m t fulfilling the right anti-commutation relations even in coinciding points. ĵ 0 (x) and ĵ 1 (x) are not the two components of a vector. Lorentz covariant current densities ĵ µ (x) = lim {[δ µ y x 0 + 1 4π m 2 δµ 1 ] cm(x y) σ ˆ ψ(x)γ µ ˆψ(y) + F(x y)} Anti-commutation relations [ĵµ (x), ˆψ(y)] { = g µ0 + 1 } 4π m 2 εµ0 γ 5 ˆψ(x)δ(x y) ĵ µ (x) = 1 2π εµν ν ˆφ(x)

Renormalized MTM field equations The MTM field equations I ( iγ µ µ m f0 ) ˆψ(x) g = lim δx 0 2 γµ {ĵ µ(x + δx) + ĵ µ(x δx)} ˆψ(x), m 0 ˆψ = [ ˆM, ˆψ] ˆM = Zm f0 dx ˆ ψ(x) ˆψ(x) = dx lim cm(x y) δ m f ˆ ψ(x) ˆψ(y) From the sine-gordon to the model {[ ˆψ 1 (x) = 2πi m x ] } dξ ˆφ(ξ) i ˆφ(x), ˆψ 1 (x) 2m {[ = N 2πi m ˆφ x (x) i ˆφ(x) + 2πi m4 x ] } dξ sin ˆφ(ξ) i ˆφ(x), ˆψ 1 (x) 2m 2m N : normal ordering, always with respect to sine-gordon, but not with respect to the ˆψ s Use of [ ˆφ(y), ˆψ(x)] = 2π m θ(x y) ˆψ(y) to show that, see Appendix i m4 [ dξ : cos ˆφ(ξ) :, ˆψ 1 (x)] = 2πi m4 x m N { dξ sin ˆφ(ξ), ˆψ 1 (x)} m

Fermi mass term from soliton The MTM field equations II ˆψ 2 (x) ˆψ 1 (y) cm = ( 2π ) cm(x y) δ : e i m ˆφ(x) : ˆψ 1 (x) ˆψ 2 (y) = ( cm 2π ) cm(x y) δ : e i m ˆφ(x) :, δ = 1 4 8πm 2 Bosonization of the MTM: sine-gordon potential m f = π m 3, ˆM = c c π mm f dξ : cos ˆφ(ξ) : m { N 2πi m4 x } dξ sin ˆφ(ξ), ˆψ 1 (y) = i[ ˆM, γ 0 ˆψ2 (y)] m PDE equations of the normal ordered Mandelstam ˆψ { 1 x =: ( 2πi ˆφ i ˆφ } m t 2m x ), ˆψ 1 (x) ˆψ 1 (x) + ˆψ { 1 (x) + i[ ˆM, γ 0 ˆψ2 (x)] = i 2πm g : ( ˆφ (x) ˆφ(x)), } ˆψ1 (x) : (ĵ0 ( lim (x + δx) + ĵ 0 (x δx) + ĵ 1 (x + δx) + ĵ 1 (x δx)) = i ˆφ (x) ˆφ(x) ) δx 0 πm

Appendix and References ( x x ) exp{ π [ ˆφ(y), dξ ˆπ(ξ)] [ dξ ˆπ(ξ), ˆφ(x)] } = x y = exp[ πi( dξ δ(y ξ) dξ δ(x ξ))] = = e y x dξ d ln(2πi(z ξ))) dξ = e ln(2πi(y x)) {Â 3, ˆB} = Â[Â 2, ˆB] + [ˆB, Â]Â 2 ( 1) n (2n)! ( m )2n [ ˆφ 2n (ξ), ˆψ 1 (x)] = n=0 ( 1) k 2π (2k + 1)! ( m )2k+1 { ˆφ 2k+1 (ξ), ˆψ 1 (x)}θ(x ξ) k=0 Sidney F. Coleman, Classical lumps and their quantum descendants, in Aspects of Symmetry, Cambridge University Press, 1985 Stanley Mandelstam, Soliton for the quantized sine-gordon equation, in Extended Systems in Field Theory, Physics Reports 23C, (1976) 307-313