Lectures on Quantum sine-gordon Models
|
|
- Ἀράχνη Καραμήτσος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Lectures on Quantum sine-gordon Models Juan Mateos Guilarte, Departamento de Física Fundamental (Universidad de Salamanca IUFFyM (Universidad de Salamanca Universidade Federal de Matto Grosso Cuiabá, Brazil, 00
2 Outline 3
3 The sine-gordon action Scalar field and R, Minkowski space-time conventions φ : R, R, x µ R,, µ = 0,, x 0 = t, x = x x µ x µ = g µνx µ x ν, g = = g, g = g = 0 µ = x µ, µ µ = = t x, dx = dx 0 dx S = { ( ( } dx µφ µ φ m4 λ cos λ m φ Re-scaling the fields and coordinates: S[φ] = = m λ = m λ dt {T[φ(t] V[φ(t]} { dt dx λ m φ φ, mxµ x µ [ φ φ t t φ φ x x } dx { µφ µ φ ( cos φ ]} ( cos φ (
4 The field equation Field energy φ(t, x = The sine-gordon equation ( t x φ(t, x + sin φ(t, x = 0 ( φ u + v (u, v = sin φ(u, v, x = u v E[φ] = T[φ(t] + V[φ(t] = m3 λ Configuration space Asymptotic conditions φ lim x ± x (t 0, x = 0, Topological current dx [ φ φ + t t, t = u v C = {φ(t 0, x Maps(R, R/V[φ(t 0 ] < + } lim φ(t 0, x = πn ±, n +, n Z, x ± ] φ φ + ( cos φ x x C = C n+ n j µ T = π εµν νφ(t, x, ε 0 = ε 0 =, ε 00 = ε = 0, µj µ T = 0
5 Topological charge Q T = Q T = t The stress tensor The sine-gordon invariants dx j 0 t (t, x = φ(t, + φ(t, π π φ φ (t, + + (t, t t = 0 L = µφ µ φ + cos φ, T µν = µφ νφ g µνl T 00 = ( φ φ + φ φ + cos φ, T 0 = φ φ t t x x t x T = ( φ φ + φ φ + cos φ, T 0 = φ φ t t x x x t Conserved quantities: Energy and momentum T µν = g µρ g νσ T ρσ, T 00 = T 00, T = T, T 0 = T 0 t T00 x T0 = 0 t P0 = t dx T 00 = 0 x µ Tµν = 0 dx T 0 = 0 t T0 x T = 0 t P = t
6 Painlevè property: φ(u, v = f (z, z = uv zf (z+f (z = sin f (z g (z (g Static homogeneous solutions The sine-gordon soliton g (z+ g (z g (z + z if (z = 0, g(z = e φ n = πn, T 00 [φ n] = cos φ n = 0, Q T [φ n] = P 0 [φ n] = P [φ n] = 0 φ n+ = (n + π, T 00 [φ n+ ] = cos φ n+ =, n Z Kink traveling waves T 00 [φ(x] = dφ dφ dφ + cos φ(x = 0 dx dx dx = ± ( cos φ(x dφ sin φ = ±(x x c φ Kn (x = 4 arctan[exp(±(x x c] + πn Lorentz transformations φ Kn ( x xc γt γ ±(x xc γt = 4 arctan[exp[ ]] + πn, γ R γ > γ > 0 = a a +, a = ± + γ γ, C = exp[ x c ], γ xc R
7 The sine-gordon soliton Kink topological charge, energy, and momentum Q T [φ Kn (t, x] =, P 0 8 [φ Kn (t, x] =, 8 γ P [φ Kn (t, x] = γ γ
8 Two-soliton solutions: two-kinks Two step Bäcklund : C = C = [ a + a φ 4 (t, x = 4arctan a a [ { }] [ exp (a + x + (a a t exp a [ + exp { (a + }] x + (a a t a }] { (a + a + a + a x + (a + a a a t Two sine-gordon kinks centered at the origin + γ + γ a =, a =, Q T [φ KK (t, x] = γ γ +γ +γ γ φ KK (t, x = 4 arctan γ +γ +γ + exp exp [ γ + x+γ t γ ] γ exp [ x γ t γ [ γ γ ( γ ( γ ( x + (γ γ t ] ]
9 Energy and momentum P 0 8 [φ KK ] = + γ 8 γ Two-soliton solutions: Kink-Antikink, P 8 [φ KK ] = γ γ 8 γ One sine-gordon kink and one anti-kink centered at the origin a = + γ + γ, a = γ γ, Q T [φ KA (t, x] = 0 φ KA (t, x = +γ + +γ γ 4 arctan γ +γ +γ γ γ [ ] [ ] x γ exp t exp x γ t γ γ [ ] γ + exp γ (x (γ γ t ( γ ( γ γ
10 Energy and momentum P 0 8 [φ KA ] = + γ Two-soliton solutions: Breathers 8 γ Soliton-antisoliton bound states [ φ B (t, x = 4 arctan tan θ sin(cos θ t ] L cosh(sin θ x L Center of mass γ = 0: a = sin θ i cos θ, Topological charge, energy, momentum, and period, P 8 [φ KA ] = γ γ 8 γ γ, t L = t γx γ, x L = x γt γ a = sin θ + i cos θ Q T [φ B (t, x] = 0, P 0 [φ B (t, x] = 6 γ sin θ P [φ B (t, x] = 6 γ sin θγ, T = π sin θ
11 The sine-gordon Hamiltonian Canonical momenta and Hamiltonian density π(t, x = δl φ = (t, x δ φ t H[π, φ] = π φ L = t π(t, xπ(t, x + φ φ + cos φ(t, x x x Poisson brackets {F[π, φ], G[π, φ]} = {π(t, x, φ(t, y} = ( λ δf m δπ The sine-gordon Hamiltonian H[π, φ] = dx H[π, φ] = dk ρ(k k + + l δg δφ δf δφ δg δπ λ δ(x y, Ḟ[φ, φ] = {H, F} m p l n p n + 6 sin θ n
12 Lax pair The sine-gordon Lax pair X = i x φ t T3 + k cos φ T + ω sin φ T, T a = σa, a =,, 3 Y = i t φ x T3 + ω cos φ T + k sin φ T, (ω, k R,, ω k = XY YX = [ ] φ i t φ x + sin φ T 3, [T, T b ] = iε abc T c Zero curvature and flat connections D t = t + iat(t, x = iy, Dx = + iax(t, x = ix x F tx = [D t, D x] = i [ ] φ t φ x sin φ T 3 = 0, g(t, x = exp[iθ a(t, xt a ] A t(t, x = g (t, x tg(t, x, A x(t, x = g (t, x xg(t, x Linear spectral problem Xψ = 0, Yψ = 0, X[φ(0, x, π(0, x, ω]ψ k (x = 0 ( i x k ( π(0, x cos φ (0, x ψ k (x k cos φ (0, x i x + π(0, x ψ k (x = ( ( 0 i ω = sin φ (0, x ψ k (x i ω φ (0, x ψ sin k (x
13 Scattering data Jost matrices XF = 0 df ( π dx = i T3 k cos φ T + ω sin φ T F(x, k { x } F(x, k = Pexp i dya x[π(0, y, φ(0, y, k], F ± (x, k x ± exp [i( n ± kxt ] Scattering amplitudes ( a(k b(k F(x, k = b (k a (k T(k = a(k, R(k = a(k b(k Reading the spectrum. Discrete spectrum: zeroes of a(k Bound states: k = iκ l, 0 < κ l R, ω = κ l ( ( ψ l x e κlx, ψ l x + F (x, k, a(k + b(k =, a (k = a(k, C l e κ lx, C l R Resonances: k = ξ m, ξ m C, ±Reξ m > 0, Imξ m > 0, ω = + ξm ( ( ψ m x e iξmx, ψ m x + d me iξmx, d m C
14 Discrete plus continuous spectrum Action-angle variables S (b(k, κ l, C l, ξ m, d m ( a(k b(k Evolution of scattering data: (lim x + Y b (k a (k F (x, k = 0 b(k, t = exp(iωtb(k, 0, a(k, t = a(k, 0 C l (t = exp(iω l tc l (0, κ l (t = κ l (0 d m(t = exp(iω mtd m(0, ξ m(t = ξ m(0 One-kink scattering: half-bound state ( d i dx (k tanh x + i ω cosh x ( ψ ω (k tanh x i cosh x d ψ i dx ω = 0 k = i, ψ(x exp[ dx tanh x] = ( ψ x exp[ ( x], ψ x + = 0, ψ = ψ = ψ cosh x exp[ x]
15 Kink phase shifts One-kink scattering: half-bound state ( d i dx (k tanh x + i ω cosh x ( ψ ω (k tanh x i cosh x d ψ i dx ω = k = 0, ψ(x exp[ ( ψ 0 x ( + i i + e x i ( i + i + e x i ( ψ 0 x + ( + i i + e x i ( i + i + e x i One-kink scattering: continuous spectrum ( d i dx k ( ψ k d ψ i dx =x 0 = 0, ψ = ψ = ψ dx cosh x ] = exp[ arctan[tanh[ x ]]] ψ (x =x e ikx + R(ke ikx, R(k = b(k a(k ψ (x =x (e ikx R(ke ikx ψ = dψ i dx d ψ dx + k ψ = 0
16 One-kink scattering: continuous spectrum ( d i dx k ( ψ k d ψ i dx Transparent scattering Kink phase shifts =x 0 ψ (x =x T(ke ikx, T(k = a(k ψ (x =x T(ke ikx ψ = dψ i dx d ψ dx + k ψ = 0 a(k = ik + ik b(k = 0, δ(k = arctan k ( ( F(k, x e iδ 0 e iδ 0 =x 0 e iδ F (k, x = 0 e iδ exp[ikxt ] Evolution of the kink scattering data ( Y(t, x = i t sechx (ω tanh x + i k cosh x k (ω tanh x i cosh x i t + sechx ( Y ± = Y(t, x ± = i t ω ω i t
17 Y ( Y + ( T(ke ikx f (t = 0 df dt e ikx f (t + R(ke ikx g(t (e ikx f (t R(ke ikx g(t Small deformations = iωf (t f (t = eiωt = 0 { df = iωf (t dt dg = iωg(t dt ψ k (t, x =x e ikx+iωt + R(k, te ikx+iωt, R(k, t = e iωt R(k, 0 ψ k (t, x =x T(k, te ikx+iωt, T(k, t = T(k, 0 f (t = e iωt g(t = e iωt Close solutions [ ( X φ(t, x, φ t = ( φ i ( (t, x, Y φ(t, x, φ (t, x t t (t, x φ (t, x + sin φ(t, x x ] ψ = T 3 ψ φ(t, x φ S (t, x + δφ(t, x + O[(δφ φ (t, x], t φ x + sin φ = 0 ( [φ s(t, x]δφ(t, x = t x + cos φ S(t, x δφ(t, x = 0
18 Two-soliton well at t = 0 Two-soliton ground states Zero-modes at t = 0 The ground states for any time x φ KK = t φ KK = 3(5 cosh[x] + 4 cosh[ (3t + 5x] cosh[/4(3t + x] + cosh[3/4(t + 3x] 9 cosh[x] cosh[/4(3t + x] + cosh[3/4(t + 3x]
19 Two-soliton well at t = 0 Two-soliton ground state Zero modes at t = 0
20 Bibliography L. D. Faddeev and V. E. Korepin, Quantum theory of solitons", Physics Reports C4 ( R. Rajaraman, Solitons and instantons", North Holland, Amsterdam, 98 P. Drazin and R. Jhonson, Solitons: an introduction", Cambridge University Press, Cambridge U. K., 996
Lectures on Quantum sine-gordon Models
Lectures on Quantum sine-gordon Models Juan Mateos Guilarte 1,2 1 Departamento de Física Fundamental (Universidad de Salamanca) 2 IUFFyM (Universidad de Salamanca) Universidade Federal de Matto Grosso
1 Classical Mechanics
From Classical to Quantum Field Theory 1 D. E. Soper 2 University of Oregon Physics 665, Quantum Field Theory 13 October 2010 1 Classical Mechanics Let φ J (t), J = 1, 2, 3, be the position of a particle
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Dark matter from Dark Energy-Baryonic Matter Couplings
Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Fourier Analysis of Waves
Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog
Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
= df. f (n) (x) = dn f dx n
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.
X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F
Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Relativistic particle dynamics and deformed symmetry
Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed
Geodesic paths for quantum many-body systems
Geodesic paths for quantum many-body systems Michael Tomka, Tiago Souza, Steve Rosenberg, and Anatoli Polkovnikov Department of Physics Boston University Group: Condensed Matter Theory June 6, 2016 Workshop:
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability
Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability A. Cisterna 1 M. Cruz 2 T. Delsate 3 J. Saavedra 4 1 Universidad Austral de Chile 2 Facultad de
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Κβαντομηχανική Ι Λύσεις προόδου. Άσκηση 1
Κβαντομηχανική Ι Λύσεις προόδου Άσκηση 1 ψ(x) = A Sin (k x), < x < α) Sin (k x) = eikx e ikx i Mε πιθανές τιμές ορμής p = ± ħk, από τον τύπο του De Broglie. Kαθεμιά έχει πιθανότητα 50%. b) p = ψ p ψ =
Analytical Mechanics ( AM )
Analytical Mechanics ( AM ) lecture notes part 10, Summary Olaf Scholten KVI, kamer v3.008 tel. nr. 363-355 email: scholten@kvi.nl Web page: http://www.kvi.nl/~scholten Book Classical Dynamics of Particles
Aspects of the BMS/CFT correspondence
DAMTP, Cambridge. February 17, 2010 Aspects of the BMS/CFT correspondence Glenn Barnich Physique théorique et mathématique Université Libre de Bruxelles & International Solvay Institutes Overview Classical
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Physics 582, Problem Set 2 Solutions
Physics 582, Problem Set 2 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 Symmetries and Conservation Laws In this problem set we return to a study of scalar electrodynamics which has the Lagrangian
Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)
Τύπος TAYLOR f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) f(x) = ξ μεταξύ x και x 0 n 1 (x x 0 ) k f (k) (x 0 ) + R n (x) R n (x) = (x ξ)n p (x x 0 ) p p(n 1)! f (n) (ξ) υπόλοιπο Sclömlich-Roche
Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Lecture 27. Relativity of transverse waves and 4-vectors
Lecture 27. Relativity of transverse waves and 4-vectors (Ch. 2-5 of Unit 2 4.5.12) Introducing per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation Reviewing the stellar aberration angle
x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]
συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)
(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ
ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ (ΜΕΤΑΠΤΥΧΙΑΚΟ) 6 Νοεμβρίου 07 Αναλυτικές συναρτήσεις Άσκηση (i) Δείξτε ότι η συνάρτηση f(z) είναι αναλυτική σε χωρίο D του μιγαδικού επιπέδου εάν και μόνο εάν η if(z) είναι αναλυτική
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
L 2 -σύγκλιση σειρών Fourier
Κεφάλαιο 7 L -σύγκλιση σειρών Fourier 7.1 Χώροι Hilbert 7.1.1 Χώροι µε εσωτερικό γινόµενο και χώροι Hilbert Ορισµός 7.1.1. Εστω X γραµµικός χώρος πάνω από το K. Μια συνάρτηση, : X X K λέγεται εσωτερικό
Kinetic Space Plasma Turbulence
Kinetic Space Plasma Turbulence PETER H. YOON 8the East-Asia School and Workshop on Laboratory, Space, and Astrophysical Plasmas July 30 (Mon) 2018 - August 3 (Fri) 2018, Chungnam National University,
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Επίλυση Δ.Ε. με Laplace
Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή
4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1
207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba
Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar
Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written
Higher spin gauge theories and their CFT duals
Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION
X-Y COUPLING GENERATION WITH AC/PULSED SEW QUADRUPOLE AND ITS APPLICATION # Takeshi Nakamura # Japan Synchrotron Radiation Research Institute / SPring-8 Abstract The new method of x-y coupling generation
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Λογισμός Ι Ενότητα 4: Παράγωγοι Κ. Δασκαλογιάννης Τμήμα Μαθηματικών Α.Π.Θ. (Α.Π.Θ.) Λογισμός Ι 1 / 68 Άδειες Χρήσης Το παρόν εκπαιδευτικό
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier
ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής
Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................
The Feynman-Vernon Influence Functional Approach in QED
The Feynman-Vernon Influence Functional Approach in QED Mark Shleenkov, Alexander Biryukov Samara State University General and Theoretical Physics Department The XXII International Workshop High Energy
Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1
Χειμερινό εξάμηνο 16-17 Κβαντομηχανική Ι 1o Σετ Ασκήσεων ) ψ(x) dx Άσκηση 1 ψ ο (x) = Α (α x ), < x < = A (α x ) dx = 1 (α x ) dx = (α 4 x + x 4 )dx = α 4 dx x dx = 5 45 3 A ( 5 45 + 5 3 5 + x 4 dx + 5
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.
MATHEMATICAL TRIPOS Part III Monday 6 June, 2005 9 to 12 PAPER 60 GENERAL RELATIVITY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. The signature is ( + ),
AdS black disk model for small-x DIS
AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March
Physics 513, Quantum Field Theory Examination 1
Physics 513, Quantum Field Theory Examination 1 Due Tuesday, 28 th October 2003 Jacob Lewis Bourjaily University of Michigan, Department of Physics, Ann Arbor, MI 48109-1120 1 2 JACOB LEWIS BOURJAILY 1.
σ (9) = i + j + 3 k, σ (9) = 1 6 k.
Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις
Quantum Electrodynamics
Quantum Electrodynamics Ling-Fong Li Institute Slide_06 QED / 35 Quantum Electrodynamics Lagrangian density for QED, Equations of motion are Quantization Write L= L 0 + L int L = ψ x γ µ i µ ea µ ψ x mψ
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.
ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δρ ΒΑΣΙΛΕΙΟΣ ΜΠΟΖΑΝΤΖΗΣ Διαμόρφωση Γωνίας Τα είδη διαμόρφωσης γωνίας τα
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμορφώσεις γωνίας Διαμόρφωση Συχνότητας Στενής Ζώνης + Περιεχόμενα n Διαμορφώσεις γωνίας n Διαμόρφωση φάσης PM n Διαμόρφωση
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
[Note] Geodesic equation for scalar, vector and tensor perturbations
[Note] Geodesic equation for scalar, vector and tensor perturbations Toshiya Namikawa 212 1 Curl mode induced by vector and tensor perturbation 1.1 Metric Perturbation and Affine Connection The line element
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1
International Mathematical Forum, Vol. 9, 2014, no. 3, 137-144 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.312238 Exact Two Waves Solutions with Variable Amplitude to the KdV Equation
Symmetric Stress-Energy Tensor
Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor
Christian J. Bordé SYRTE & LPL.
Relativisti atom optis and interferometry : a trip in the fifth dimension Christian J. Bordé SYRTE & LPL http://hristian..borde.free.fr/st1633.pdf 1 t Δ ENERGY E( p) M + p 4 hν db E(p) Ω atom slopev M
1 Conformal transformations in 2d
Conformal transformations in d A. Conformal transformations of the coordinates leave the metric tensor invariant up to a scale: g µνx ) Λx)g µν x) In two dimensions: Concerning the change of metric tensor
Chapter 2. Stress, Principal Stresses, Strain Energy
Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the
Spectrum Representation (5A) Young Won Lim 11/3/16
Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20
Φαινόμενο Unruh Δημήτρης Μάγγος Εθνικό Μετσόβιο Πολυτεχνείο September 26, 2012 1 / 20 Δημήτρης Μάγγος Φαινόμενο Unruh 1/20 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία Στον Χωρόχρονο
( ˆ Š ƒ ˆ ).. Ì Ó,. Œ. µ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2002.. 33.. 2 Š 530.145.61 Š Š ˆŸ, ˆ œ œ, ( ˆ Š ƒ ˆ ).. Ì Ó,. Œ. µ Ñ e Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ 348 Š ˆ ˆ ˆŸ ƒˆˆ 350 Š ˆ Œ ˆ 355 Œ Ì ³ µ µ µ Î µ É 356 ³ Ò ÊÌ, É Ì, Î ÉÒ Ì δ- Ó µ Ö³ ² µ Ò³
Markov chains model reduction
Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /
From Fierz-Pauli to Einstein-Hilbert
From Fierz-Pauli to Einstein-Hilbert Gravity as a special relativistic field theory Bert Janssen Universidad de Granada & CAFPE A pedagogical review References: R. Feynman et al, The Feynman Lectures on
Cosmological Space-Times
Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =
Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.
Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases
Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics
Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics Dmitry Bagrets Nucl. Phys. B 9, 9 (06) arxiv: 607.00694 Alexander Altland Univ. zu Köln Alex Kamenev Univ. of Minnesota PCS IBS Workshop, Daejeon,
u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R
2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε
General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current
General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current Matteo Buzzegoli Dipartimento di Fisica e Astronomia & INFN, Firenze March 29 217 Based on a work in
LTI Systems (1A) Young Won Lim 3/21/15
LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
L A TEX 2ε. mathematica 5.2
Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica
Aspects of the BMS/CFT correspondence
International Conference on Strings, M-Theory and Quantum Gravity Centro Stefano Franscini, Monte Verita, Ascona, 27 July 2010 Aspects of the BMS/CFT correspondence Glenn Barnich Physique théorique et
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Name: Math Homework Set # VI. April 2, 2010
Name: Math 4567. Homework Set # VI April 2, 21 Chapter 5, page 113, problem 1), (page 122, problem 1), (page 128, problem 2), (page 133, problem 4), (page 136, problem 1). (page 146, problem 1), Chapter
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y