Lectures on Quantum sine-gordon Models

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Lectures on Quantum sine-gordon Models"

Transcript

1 Lectures on Quantum sine-gordon Models Juan Mateos Guilarte, Departamento de Física Fundamental (Universidad de Salamanca IUFFyM (Universidad de Salamanca Universidade Federal de Matto Grosso Cuiabá, Brazil, 00

2 Outline 3

3 The sine-gordon action Scalar field and R, Minkowski space-time conventions φ : R, R, x µ R,, µ = 0,, x 0 = t, x = x x µ x µ = g µνx µ x ν, g = = g, g = g = 0 µ = x µ, µ µ = = t x, dx = dx 0 dx S = { ( ( } dx µφ µ φ m4 λ cos λ m φ Re-scaling the fields and coordinates: S[φ] = = m λ = m λ dt {T[φ(t] V[φ(t]} { dt dx λ m φ φ, mxµ x µ [ φ φ t t φ φ x x } dx { µφ µ φ ( cos φ ]} ( cos φ (

4 The field equation Field energy φ(t, x = The sine-gordon equation ( t x φ(t, x + sin φ(t, x = 0 ( φ u + v (u, v = sin φ(u, v, x = u v E[φ] = T[φ(t] + V[φ(t] = m3 λ Configuration space Asymptotic conditions φ lim x ± x (t 0, x = 0, Topological current dx [ φ φ + t t, t = u v C = {φ(t 0, x Maps(R, R/V[φ(t 0 ] < + } lim φ(t 0, x = πn ±, n +, n Z, x ± ] φ φ + ( cos φ x x C = C n+ n j µ T = π εµν νφ(t, x, ε 0 = ε 0 =, ε 00 = ε = 0, µj µ T = 0

5 Topological charge Q T = Q T = t The stress tensor The sine-gordon invariants dx j 0 t (t, x = φ(t, + φ(t, π π φ φ (t, + + (t, t t = 0 L = µφ µ φ + cos φ, T µν = µφ νφ g µνl T 00 = ( φ φ + φ φ + cos φ, T 0 = φ φ t t x x t x T = ( φ φ + φ φ + cos φ, T 0 = φ φ t t x x x t Conserved quantities: Energy and momentum T µν = g µρ g νσ T ρσ, T 00 = T 00, T = T, T 0 = T 0 t T00 x T0 = 0 t P0 = t dx T 00 = 0 x µ Tµν = 0 dx T 0 = 0 t T0 x T = 0 t P = t

6 Painlevè property: φ(u, v = f (z, z = uv zf (z+f (z = sin f (z g (z (g Static homogeneous solutions The sine-gordon soliton g (z+ g (z g (z + z if (z = 0, g(z = e φ n = πn, T 00 [φ n] = cos φ n = 0, Q T [φ n] = P 0 [φ n] = P [φ n] = 0 φ n+ = (n + π, T 00 [φ n+ ] = cos φ n+ =, n Z Kink traveling waves T 00 [φ(x] = dφ dφ dφ + cos φ(x = 0 dx dx dx = ± ( cos φ(x dφ sin φ = ±(x x c φ Kn (x = 4 arctan[exp(±(x x c] + πn Lorentz transformations φ Kn ( x xc γt γ ±(x xc γt = 4 arctan[exp[ ]] + πn, γ R γ > γ > 0 = a a +, a = ± + γ γ, C = exp[ x c ], γ xc R

7 The sine-gordon soliton Kink topological charge, energy, and momentum Q T [φ Kn (t, x] =, P 0 8 [φ Kn (t, x] =, 8 γ P [φ Kn (t, x] = γ γ

8 Two-soliton solutions: two-kinks Two step Bäcklund : C = C = [ a + a φ 4 (t, x = 4arctan a a [ { }] [ exp (a + x + (a a t exp a [ + exp { (a + }] x + (a a t a }] { (a + a + a + a x + (a + a a a t Two sine-gordon kinks centered at the origin + γ + γ a =, a =, Q T [φ KK (t, x] = γ γ +γ +γ γ φ KK (t, x = 4 arctan γ +γ +γ + exp exp [ γ + x+γ t γ ] γ exp [ x γ t γ [ γ γ ( γ ( γ ( x + (γ γ t ] ]

9 Energy and momentum P 0 8 [φ KK ] = + γ 8 γ Two-soliton solutions: Kink-Antikink, P 8 [φ KK ] = γ γ 8 γ One sine-gordon kink and one anti-kink centered at the origin a = + γ + γ, a = γ γ, Q T [φ KA (t, x] = 0 φ KA (t, x = +γ + +γ γ 4 arctan γ +γ +γ γ γ [ ] [ ] x γ exp t exp x γ t γ γ [ ] γ + exp γ (x (γ γ t ( γ ( γ γ

10 Energy and momentum P 0 8 [φ KA ] = + γ Two-soliton solutions: Breathers 8 γ Soliton-antisoliton bound states [ φ B (t, x = 4 arctan tan θ sin(cos θ t ] L cosh(sin θ x L Center of mass γ = 0: a = sin θ i cos θ, Topological charge, energy, momentum, and period, P 8 [φ KA ] = γ γ 8 γ γ, t L = t γx γ, x L = x γt γ a = sin θ + i cos θ Q T [φ B (t, x] = 0, P 0 [φ B (t, x] = 6 γ sin θ P [φ B (t, x] = 6 γ sin θγ, T = π sin θ

11 The sine-gordon Hamiltonian Canonical momenta and Hamiltonian density π(t, x = δl φ = (t, x δ φ t H[π, φ] = π φ L = t π(t, xπ(t, x + φ φ + cos φ(t, x x x Poisson brackets {F[π, φ], G[π, φ]} = {π(t, x, φ(t, y} = ( λ δf m δπ The sine-gordon Hamiltonian H[π, φ] = dx H[π, φ] = dk ρ(k k + + l δg δφ δf δφ δg δπ λ δ(x y, Ḟ[φ, φ] = {H, F} m p l n p n + 6 sin θ n

12 Lax pair The sine-gordon Lax pair X = i x φ t T3 + k cos φ T + ω sin φ T, T a = σa, a =,, 3 Y = i t φ x T3 + ω cos φ T + k sin φ T, (ω, k R,, ω k = XY YX = [ ] φ i t φ x + sin φ T 3, [T, T b ] = iε abc T c Zero curvature and flat connections D t = t + iat(t, x = iy, Dx = + iax(t, x = ix x F tx = [D t, D x] = i [ ] φ t φ x sin φ T 3 = 0, g(t, x = exp[iθ a(t, xt a ] A t(t, x = g (t, x tg(t, x, A x(t, x = g (t, x xg(t, x Linear spectral problem Xψ = 0, Yψ = 0, X[φ(0, x, π(0, x, ω]ψ k (x = 0 ( i x k ( π(0, x cos φ (0, x ψ k (x k cos φ (0, x i x + π(0, x ψ k (x = ( ( 0 i ω = sin φ (0, x ψ k (x i ω φ (0, x ψ sin k (x

13 Scattering data Jost matrices XF = 0 df ( π dx = i T3 k cos φ T + ω sin φ T F(x, k { x } F(x, k = Pexp i dya x[π(0, y, φ(0, y, k], F ± (x, k x ± exp [i( n ± kxt ] Scattering amplitudes ( a(k b(k F(x, k = b (k a (k T(k = a(k, R(k = a(k b(k Reading the spectrum. Discrete spectrum: zeroes of a(k Bound states: k = iκ l, 0 < κ l R, ω = κ l ( ( ψ l x e κlx, ψ l x + F (x, k, a(k + b(k =, a (k = a(k, C l e κ lx, C l R Resonances: k = ξ m, ξ m C, ±Reξ m > 0, Imξ m > 0, ω = + ξm ( ( ψ m x e iξmx, ψ m x + d me iξmx, d m C

14 Discrete plus continuous spectrum Action-angle variables S (b(k, κ l, C l, ξ m, d m ( a(k b(k Evolution of scattering data: (lim x + Y b (k a (k F (x, k = 0 b(k, t = exp(iωtb(k, 0, a(k, t = a(k, 0 C l (t = exp(iω l tc l (0, κ l (t = κ l (0 d m(t = exp(iω mtd m(0, ξ m(t = ξ m(0 One-kink scattering: half-bound state ( d i dx (k tanh x + i ω cosh x ( ψ ω (k tanh x i cosh x d ψ i dx ω = 0 k = i, ψ(x exp[ dx tanh x] = ( ψ x exp[ ( x], ψ x + = 0, ψ = ψ = ψ cosh x exp[ x]

15 Kink phase shifts One-kink scattering: half-bound state ( d i dx (k tanh x + i ω cosh x ( ψ ω (k tanh x i cosh x d ψ i dx ω = k = 0, ψ(x exp[ ( ψ 0 x ( + i i + e x i ( i + i + e x i ( ψ 0 x + ( + i i + e x i ( i + i + e x i One-kink scattering: continuous spectrum ( d i dx k ( ψ k d ψ i dx =x 0 = 0, ψ = ψ = ψ dx cosh x ] = exp[ arctan[tanh[ x ]]] ψ (x =x e ikx + R(ke ikx, R(k = b(k a(k ψ (x =x (e ikx R(ke ikx ψ = dψ i dx d ψ dx + k ψ = 0

16 One-kink scattering: continuous spectrum ( d i dx k ( ψ k d ψ i dx Transparent scattering Kink phase shifts =x 0 ψ (x =x T(ke ikx, T(k = a(k ψ (x =x T(ke ikx ψ = dψ i dx d ψ dx + k ψ = 0 a(k = ik + ik b(k = 0, δ(k = arctan k ( ( F(k, x e iδ 0 e iδ 0 =x 0 e iδ F (k, x = 0 e iδ exp[ikxt ] Evolution of the kink scattering data ( Y(t, x = i t sechx (ω tanh x + i k cosh x k (ω tanh x i cosh x i t + sechx ( Y ± = Y(t, x ± = i t ω ω i t

17 Y ( Y + ( T(ke ikx f (t = 0 df dt e ikx f (t + R(ke ikx g(t (e ikx f (t R(ke ikx g(t Small deformations = iωf (t f (t = eiωt = 0 { df = iωf (t dt dg = iωg(t dt ψ k (t, x =x e ikx+iωt + R(k, te ikx+iωt, R(k, t = e iωt R(k, 0 ψ k (t, x =x T(k, te ikx+iωt, T(k, t = T(k, 0 f (t = e iωt g(t = e iωt Close solutions [ ( X φ(t, x, φ t = ( φ i ( (t, x, Y φ(t, x, φ (t, x t t (t, x φ (t, x + sin φ(t, x x ] ψ = T 3 ψ φ(t, x φ S (t, x + δφ(t, x + O[(δφ φ (t, x], t φ x + sin φ = 0 ( [φ s(t, x]δφ(t, x = t x + cos φ S(t, x δφ(t, x = 0

18 Two-soliton well at t = 0 Two-soliton ground states Zero-modes at t = 0 The ground states for any time x φ KK = t φ KK = 3(5 cosh[x] + 4 cosh[ (3t + 5x] cosh[/4(3t + x] + cosh[3/4(t + 3x] 9 cosh[x] cosh[/4(3t + x] + cosh[3/4(t + 3x]

19 Two-soliton well at t = 0 Two-soliton ground state Zero modes at t = 0

20 Bibliography L. D. Faddeev and V. E. Korepin, Quantum theory of solitons", Physics Reports C4 ( R. Rajaraman, Solitons and instantons", North Holland, Amsterdam, 98 P. Drazin and R. Jhonson, Solitons: an introduction", Cambridge University Press, Cambridge U. K., 996

Lectures on Quantum sine-gordon Models

Lectures on Quantum sine-gordon Models Lectures on Quantum sine-gordon Models Juan Mateos Guilarte 1,2 1 Departamento de Física Fundamental (Universidad de Salamanca) 2 IUFFyM (Universidad de Salamanca) Universidade Federal de Matto Grosso

Διαβάστε περισσότερα

1 Classical Mechanics

1 Classical Mechanics From Classical to Quantum Field Theory 1 D. E. Soper 2 University of Oregon Physics 665, Quantum Field Theory 13 October 2010 1 Classical Mechanics Let φ J (t), J = 1, 2, 3, be the position of a particle

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

Dark matter from Dark Energy-Baryonic Matter Couplings

Dark matter from Dark Energy-Baryonic Matter Couplings Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

Fourier Analysis of Waves

Fourier Analysis of Waves Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259- 5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.

Διαβάστε περισσότερα

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Relativistic particle dynamics and deformed symmetry

Relativistic particle dynamics and deformed symmetry Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed

Διαβάστε περισσότερα

Geodesic paths for quantum many-body systems

Geodesic paths for quantum many-body systems Geodesic paths for quantum many-body systems Michael Tomka, Tiago Souza, Steve Rosenberg, and Anatoli Polkovnikov Department of Physics Boston University Group: Condensed Matter Theory June 6, 2016 Workshop:

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability A. Cisterna 1 M. Cruz 2 T. Delsate 3 J. Saavedra 4 1 Universidad Austral de Chile 2 Facultad de

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Κβαντομηχανική Ι Λύσεις προόδου. Άσκηση 1

Κβαντομηχανική Ι Λύσεις προόδου. Άσκηση 1 Κβαντομηχανική Ι Λύσεις προόδου Άσκηση 1 ψ(x) = A Sin (k x), < x < α) Sin (k x) = eikx e ikx i Mε πιθανές τιμές ορμής p = ± ħk, από τον τύπο του De Broglie. Kαθεμιά έχει πιθανότητα 50%. b) p = ψ p ψ =

Διαβάστε περισσότερα

Analytical Mechanics ( AM )

Analytical Mechanics ( AM ) Analytical Mechanics ( AM ) lecture notes part 10, Summary Olaf Scholten KVI, kamer v3.008 tel. nr. 363-355 email: scholten@kvi.nl Web page: http://www.kvi.nl/~scholten Book Classical Dynamics of Particles

Διαβάστε περισσότερα

Aspects of the BMS/CFT correspondence

Aspects of the BMS/CFT correspondence DAMTP, Cambridge. February 17, 2010 Aspects of the BMS/CFT correspondence Glenn Barnich Physique théorique et mathématique Université Libre de Bruxelles & International Solvay Institutes Overview Classical

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Physics 582, Problem Set 2 Solutions

Physics 582, Problem Set 2 Solutions Physics 582, Problem Set 2 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 Symmetries and Conservation Laws In this problem set we return to a study of scalar electrodynamics which has the Lagrangian

Διαβάστε περισσότερα

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x) Τύπος TAYLOR f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) f(x) = ξ μεταξύ x και x 0 n 1 (x x 0 ) k f (k) (x 0 ) + R n (x) R n (x) = (x ξ)n p (x x 0 ) p p(n 1)! f (n) (ξ) υπόλοιπο Sclömlich-Roche

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Lecture 27. Relativity of transverse waves and 4-vectors

Lecture 27. Relativity of transverse waves and 4-vectors Lecture 27. Relativity of transverse waves and 4-vectors (Ch. 2-5 of Unit 2 4.5.12) Introducing per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation Reviewing the stellar aberration angle

Διαβάστε περισσότερα

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ] συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)

Διαβάστε περισσότερα

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ (ΜΕΤΑΠΤΥΧΙΑΚΟ) 6 Νοεμβρίου 07 Αναλυτικές συναρτήσεις Άσκηση (i) Δείξτε ότι η συνάρτηση f(z) είναι αναλυτική σε χωρίο D του μιγαδικού επιπέδου εάν και μόνο εάν η if(z) είναι αναλυτική

Διαβάστε περισσότερα

y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V

Διαβάστε περισσότερα

L 2 -σύγκλιση σειρών Fourier

L 2 -σύγκλιση σειρών Fourier Κεφάλαιο 7 L -σύγκλιση σειρών Fourier 7.1 Χώροι Hilbert 7.1.1 Χώροι µε εσωτερικό γινόµενο και χώροι Hilbert Ορισµός 7.1.1. Εστω X γραµµικός χώρος πάνω από το K. Μια συνάρτηση, : X X K λέγεται εσωτερικό

Διαβάστε περισσότερα

Kinetic Space Plasma Turbulence

Kinetic Space Plasma Turbulence Kinetic Space Plasma Turbulence PETER H. YOON 8the East-Asia School and Workshop on Laboratory, Space, and Astrophysical Plasmas July 30 (Mon) 2018 - August 3 (Fri) 2018, Chungnam National University,

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Επίλυση Δ.Ε. με Laplace

Επίλυση Δ.Ε. με Laplace Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ). Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10] 3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]

Διαβάστε περισσότερα

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1 207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

Higher spin gauge theories and their CFT duals

Higher spin gauge theories and their CFT duals Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)

Διαβάστε περισσότερα

Oscillatory Gap Damping

Oscillatory Gap Damping Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution

Διαβάστε περισσότερα

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION X-Y COUPLING GENERATION WITH AC/PULSED SEW QUADRUPOLE AND ITS APPLICATION # Takeshi Nakamura # Japan Synchrotron Radiation Research Institute / SPring-8 Abstract The new method of x-y coupling generation

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Λογισμός Ι Ενότητα 4: Παράγωγοι Κ. Δασκαλογιάννης Τμήμα Μαθηματικών Α.Π.Θ. (Α.Π.Θ.) Λογισμός Ι 1 / 68 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Φυσική Σημασία του Μετασχηματισμού Fourier Ο μετασχηματισμός Fourier

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................

Διαβάστε περισσότερα

The Feynman-Vernon Influence Functional Approach in QED

The Feynman-Vernon Influence Functional Approach in QED The Feynman-Vernon Influence Functional Approach in QED Mark Shleenkov, Alexander Biryukov Samara State University General and Theoretical Physics Department The XXII International Workshop High Energy

Διαβάστε περισσότερα

Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1

Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1 Χειμερινό εξάμηνο 16-17 Κβαντομηχανική Ι 1o Σετ Ασκήσεων ) ψ(x) dx Άσκηση 1 ψ ο (x) = Α (α x ), < x < = A (α x ) dx = 1 (α x ) dx = (α 4 x + x 4 )dx = α 4 dx x dx = 5 45 3 A ( 5 45 + 5 3 5 + x 4 dx + 5

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Monday 6 June, 2005 9 to 12 PAPER 60 GENERAL RELATIVITY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. The signature is ( + ),

Διαβάστε περισσότερα

AdS black disk model for small-x DIS

AdS black disk model for small-x DIS AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March

Διαβάστε περισσότερα

Physics 513, Quantum Field Theory Examination 1

Physics 513, Quantum Field Theory Examination 1 Physics 513, Quantum Field Theory Examination 1 Due Tuesday, 28 th October 2003 Jacob Lewis Bourjaily University of Michigan, Department of Physics, Ann Arbor, MI 48109-1120 1 2 JACOB LEWIS BOURJAILY 1.

Διαβάστε περισσότερα

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

σ (9) = i + j + 3 k, σ (9) = 1 6 k. Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις

Διαβάστε περισσότερα

Quantum Electrodynamics

Quantum Electrodynamics Quantum Electrodynamics Ling-Fong Li Institute Slide_06 QED / 35 Quantum Electrodynamics Lagrangian density for QED, Equations of motion are Quantization Write L= L 0 + L int L = ψ x γ µ i µ ea µ ψ x mψ

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε.

ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Ι 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δρ ΒΑΣΙΛΕΙΟΣ ΜΠΟΖΑΝΤΖΗΣ Διαμόρφωση Γωνίας Τα είδη διαμόρφωσης γωνίας τα

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμορφώσεις γωνίας Διαμόρφωση Συχνότητας Στενής Ζώνης + Περιεχόμενα n Διαμορφώσεις γωνίας n Διαμόρφωση φάσης PM n Διαμόρφωση

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

[Note] Geodesic equation for scalar, vector and tensor perturbations

[Note] Geodesic equation for scalar, vector and tensor perturbations [Note] Geodesic equation for scalar, vector and tensor perturbations Toshiya Namikawa 212 1 Curl mode induced by vector and tensor perturbation 1.1 Metric Perturbation and Affine Connection The line element

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1

Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1 International Mathematical Forum, Vol. 9, 2014, no. 3, 137-144 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.312238 Exact Two Waves Solutions with Variable Amplitude to the KdV Equation

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Christian J. Bordé SYRTE & LPL.

Christian J. Bordé SYRTE & LPL. Relativisti atom optis and interferometry : a trip in the fifth dimension Christian J. Bordé SYRTE & LPL http://hristian..borde.free.fr/st1633.pdf 1 t Δ ENERGY E( p) M + p 4 hν db E(p) Ω atom slopev M

Διαβάστε περισσότερα

1 Conformal transformations in 2d

1 Conformal transformations in 2d Conformal transformations in d A. Conformal transformations of the coordinates leave the metric tensor invariant up to a scale: g µνx ) Λx)g µν x) In two dimensions: Concerning the change of metric tensor

Διαβάστε περισσότερα

Chapter 2. Stress, Principal Stresses, Strain Energy

Chapter 2. Stress, Principal Stresses, Strain Energy Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the

Διαβάστε περισσότερα

Spectrum Representation (5A) Young Won Lim 11/3/16

Spectrum Representation (5A) Young Won Lim 11/3/16 Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

Διαβάστε περισσότερα

Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20

Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20 Φαινόμενο Unruh Δημήτρης Μάγγος Εθνικό Μετσόβιο Πολυτεχνείο September 26, 2012 1 / 20 Δημήτρης Μάγγος Φαινόμενο Unruh 1/20 Outline Σχετικότητα Ειδική & Γενική Θεωρία Κβαντική Θεωρία Πεδίου Πεδία Στον Χωρόχρονο

Διαβάστε περισσότερα

( ˆ Š ƒ ˆ ).. Ì Ó,. Œ. µ

( ˆ Š ƒ ˆ ).. Ì Ó,. Œ. µ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2002.. 33.. 2 Š 530.145.61 Š Š ˆŸ, ˆ œ œ, ( ˆ Š ƒ ˆ ).. Ì Ó,. Œ. µ Ñ e Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ 348 Š ˆ ˆ ˆŸ ƒˆˆ 350 Š ˆ Œ ˆ 355 Œ Ì ³ µ µ µ Î µ É 356 ³ Ò ÊÌ, É Ì, Î ÉÒ Ì δ- Ó µ Ö³ ² µ Ò³

Διαβάστε περισσότερα

Markov chains model reduction

Markov chains model reduction Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /

Διαβάστε περισσότερα

From Fierz-Pauli to Einstein-Hilbert

From Fierz-Pauli to Einstein-Hilbert From Fierz-Pauli to Einstein-Hilbert Gravity as a special relativistic field theory Bert Janssen Universidad de Granada & CAFPE A pedagogical review References: R. Feynman et al, The Feynman Lectures on

Διαβάστε περισσότερα

Cosmological Space-Times

Cosmological Space-Times Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics Dmitry Bagrets Nucl. Phys. B 9, 9 (06) arxiv: 607.00694 Alexander Altland Univ. zu Köln Alex Kamenev Univ. of Minnesota PCS IBS Workshop, Daejeon,

Διαβάστε περισσότερα

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R 2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current

General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current Matteo Buzzegoli Dipartimento di Fisica e Astronomia & INFN, Firenze March 29 217 Based on a work in

Διαβάστε περισσότερα

LTI Systems (1A) Young Won Lim 3/21/15

LTI Systems (1A) Young Won Lim 3/21/15 LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

L A TEX 2ε. mathematica 5.2

L A TEX 2ε. mathematica 5.2 Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica

Διαβάστε περισσότερα

Aspects of the BMS/CFT correspondence

Aspects of the BMS/CFT correspondence International Conference on Strings, M-Theory and Quantum Gravity Centro Stefano Franscini, Monte Verita, Ascona, 27 July 2010 Aspects of the BMS/CFT correspondence Glenn Barnich Physique théorique et

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Name: Math Homework Set # VI. April 2, 2010

Name: Math Homework Set # VI. April 2, 2010 Name: Math 4567. Homework Set # VI April 2, 21 Chapter 5, page 113, problem 1), (page 122, problem 1), (page 128, problem 2), (page 133, problem 4), (page 136, problem 1). (page 146, problem 1), Chapter

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα