Electronic Supporting Information

Σχετικά έγγραφα
Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Supporting information

Electronic Supplementary Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supporting Information

Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supporting Information

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Sulfonated graphene as highly efficient and reusable acid carbocatalyst for the synthesis of ester plasticizers

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Electronic Supplementary Information

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Table of Contents 1 Supplementary Data MCD

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

and Trimethylene Carbonate

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Butadiene as a Ligand in Open Sandwich Compounds

Electronic Supplementary Information

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Supplementary material

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Electronic Supplementary Information

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Selective mono reduction of bisphosphine

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI)

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting Information

Supporting Information

Supplementary information

Supporting Information. Experimental section

Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Electronic supplementary information for

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information

SUPPORTING INFORMATION

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Electronic Supplementary Information

Supporting Information

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Available online at

Supplementary Material for Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

phase: synthesis of biaryls, terphenyls and polyaryls

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Supporting Information

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

National d Histoire Naturelle, 57 rue Cuvier (C.P. 54), Paris, France. Contents:

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

SUPPORTING INFORMATION

Supplementary Information

Supporting Information for: electron ligands: Complex formation, oxidation and

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

Supporting Information: Design principles for α-tocopherol analogues

Supporting information

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

The Role of Imidoselenium(II) Chlorides in the Formation of Cyclic Selenium

Supporting Information. Experimental section

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Electronic Supplementary Information

Supporting information

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

H-NMR (300 MHz, DMSO-d6): δ 5.23 (s, 1H), (m, 2H), (m, 2H), 3.04 (s, 9H).

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Electronic Supplementary Information

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supplementary Information

Transcript:

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information robing steric influences on electrophilic phosphonium cations: A comparison of [(3,5-( ) 2 C 6 H 3 ) 3 ] + and [(C 6 5 ) 3 ] + James H. W. Laortune, Kevin M. Szkop, arah E. arinha, Timothy C. Johnstone, Shawn ostle, and Douglas W. Stephan * 1

This D file includes: 1. Synthesis...3 2.1 (3,5-( ) 2 C 6 H 3 ) 3 2 (1)...3 2.2 [(3,5-( ) 2 C 6 H 3 ) 3 ][B(C 6 5 ) 4 ] (2)...5 2. Air Stability Test...8 3. Gutmann-Beckett Method...9 4. Silane Stability Test...9 5. Lewis Acid Catalysis...10 5.1 Dimerization of 1,1-diphenylethylene...10 5.2 Hydroarylation of diphenylamine with 1,1 -diphenylethylene...11 5.3 Double hydroarylation of di-para-tolylamine with para-tolylacetylene...12 6. hosphorane/hosphonium Exchange Experiments...13 5.1 Competition between 2 and (C 6 5 ) 3 2...13 5.1 Competition between 1 and [(C 6 5 ) 3 ][B(C 6 5 ) 4 ]...14 7. hosphorane/hosphonium Self-Exchange Experiments...15 6.1 Self-Exchange of (C 6 5 ) 3 2 and [(C 6 5 ) 3 ][B(C 6 5 ) 4 ]...15 6.2 Self-Exchange of 1 and 2...18 8. Computational Details...20 9. References...26 2

1. Synthesis 2.1 (3,5-( ) 2 C 6 H 3 ) 3 2 (1) 1.16 1.15 1.00 8.51 8.48 8.13 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 igure S1. 1 H (CDCl 3 ) NMR spectrum of 1. 3

-42.4-44.3-63.3-30 -40-50 -60-70 -80-90 -100-110 -120-130 -140-150 -160-170 -180-190 -200-210 -220 igure S2. 19 { 1 H} (CDCl 3 ) NMR spectrum of 1. -59.2-63.6-68.1 180 160 140 120 100 80 60 40 20 0-20 -40-60 -80-100 -120-140 -160-180 igure S3. 31 { 1 H} (CDCl 3 ) NMR spectrum of 1. 137.5 137.2 137.0 136.0 135.7 135.5 135.3 135.2 133.3 133.1 133.0 132.9 132.7 132.6 132.5 132.3 127.0 127.0 126.0 126.0 123.8 123.8 121.6 121.6 119.5 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 igure S4. 13 C{ 1 H} (CDCl 3 ) NMR spectrum of 1. 4

137.5 137.2 137.0 136.0 135.7 135.5 135.3 135.2 133.3 133.1 133.0 132.9 132.7 132.6 132.5 132.3 127.0 127.0 126.0 126.0 123.8 123.8 121.6 121.6 119.5 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 igure S5. 13 C{ 1 H} (CDCl 3 ) NMR spectrum of 1, expanded region. 2.2 [(3,5-( ) 2 C 6 H 3 ) 3 ][B(C 6 5 ) 4 ] (2) [B(C 6 5 ) 4 ] 1.00 1.06 1.09 8.75 8.33 8.30 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 igure S6. 1 H (CD 2 Cl 2 ) NMR spectrum of 2. 5

-17.0 130 120 110 100 90 80 70 60 50 40 30 20 10 0-10 -20-30 -40-50 igure S7. 11 B{ 1 H} (CD 2 Cl 2 ) NMR spectrum of 2. 18.57 1.00 8.10 4.01 8.06-63.7-127.0-129.8-133.2-163.8-163.9-163.9-167.8-167.8-167.9-30 -40-50 -60-70 -80-90 -100-110 -120-130 -140-150 -160-170 -180-190 -200-210 -220 igure S8. 19 { 1 H} (CD 2 Cl 2 ) NMR spectrum of 2. 94.9 88.6 180 160 140 120 100 80 60 40 20 0-20 -40-60 -80-100 -120-140 -160-180 igure S9. 31 { 1 H} (CD 2 Cl 2 ) NMR spectrum of 2. 6

149.4 147.5 139.5 137.6 137.1 136.9 136.8 136.6 136.5 136.4 136.2 136.1 135.7 135.0 134.4 134.3 124.9 122.8 120.6 118.4 117.2 117.1 116.3 116.2 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 igure S10. 13 C{ 1 H} (CD 2 Cl 2 ) NMR of 2. 149.4 147.5 139.5 137.6 137.1 136.9 136.8 136.6 136.5 136.4 136.2 136.1 135.7 135.0 134.4 134.3 124.9 122.8 120.6 118.4 117.2 117.1 116.3 116.2 151 149 147 145 143 141 139 137 135 133 131 129 127 125 123 121 119 117 115 igure S11. 13 C{ 1 H} (CD 2 Cl 2 ) NMR of 2, expanded region. 7

2. Air Stability Test 0 min 5 min -30-40 -50-60 -70-80 -90-100 -110-120 -130-140 -150-160 -170 igure S12. 19 { 1 H} (CH 2 Cl 2 ) NMR spectrum of 2 after exposure to air. 0 min 5 min -42-43 -44-45 -63.0-64.0-65.0-126 -130-134 igure S13. 19 { 1 H} (CH 2 Cl 2 ) NMR spectrum of 2 after exposure to air, expanded region. 8

3. Gutmann-Beckett Method LA O O LA Et Et Et Et Et Et Et Et Et [B(C 6 5 ) 4 ] 150.3 144.2 Et 3 O Et Et 73.0 21.3 O 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0-10 -20 igure S14. 31 { 1 H} (CH 2 Cl 2 ) NMR spectrum of Gutmann-Beckett method with 2. -30 4. Silane Stability Test -63.7-63.7-133.3-163.9-164.0-164.0-167.7-167.8-167.8-176.1 Et 3 Si -30-40 -50-60 -70-80 -90-100 -110-120 -130-140 -150-160 -170-180 -190-200 -210-220 igure S15. 19 { 1 H} (CH 2 Cl 2 ) NMR spectrum of 2 after exposure to Et 3 SiH for 16 hours. 9

5. Lewis Acid Catalysis 5.1 Dimerization of 1,1-diphenylethylene 2 eq 1 mol% <cat> CH 2 Cl 2, rt, 30 min h h h 2 = 78% [(C 6 5 ) 3 ][B(C 6 5 ) 4 ] = 86% [1] 1.15 0.98 1.00 5.49 3.44 3.41 3.14 3.11 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 igure S16. 1 H (CDCl 3 ) NMR spectrum from the catalytic dimerization of 1,1- diphenylethylene by 2. 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 10

5.2 Hydroarylation of diphenylamine with 1,1 -diphenylethylene H N 1.5 mol% <cat> CH 2 Cl 2, rt, 6 h H N h h 2 = 84% [(C 6 5 ) 3 ][B(C 6 5 ) 4 ] = >99% [2] MS (EI ionization), [m/z]: 349.2 (M-H). 2.00 15.99 5.12 2.01 11.0 igure S17. 10.0 9.0 8.0 7.0 6.0 5.0 1 H (CDCl 3 ) NMR spectrum from the catalytic hydroarylation of diphenylamine with 1,1 -diphenylethylene by 2. 4.0 3.0 2.0 1.0 0.0 11

5.3 Double hydroarylation of di-para-tolylamine with para-tolylacetylene H N 5 mol % <cat> CH 2 Cl 2, rt, 24 h H N MS (EI ionization), [m/z]: 298.1 (M-H). 2 = 91% [(C 6 5 ) 3 ][B(C 6 5 ) 4 ] = 74% 2.40 2.23 2.05 2.03 2.15 0.97 3.00 2.68 5.93 6.93 6.91 6.79 6.76 6.55 6.32 6.32 6.31 6.28 5.73 2.04 2.00 1.86 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 igure S18. 1 H NMR spectrum for the catalytic double hydroarylation of di-para-tolylamine with para-tolylacetylene by 2. 12

6. hosphorane/hosphonium Exchange Experiments 5.1 Competition between 2 and (C 6 5 ) 3 2 [B(C 6 5 ) 4 ] C 6 5 C 6 5 C 6 5 DCM, rt 24 h C 6 C 6 5 5 C 6 5 [B(C 6 5 ) 4 ] 1.48 1.00 2.3 0.7-42.7-44.2 20 10 0-10 -20-30 -40-50 -60-70 -80-90 -100-110 -120-130 -140-150 -160-170 igure S19. 19 { 1 H} (CH 2 Cl 2 ) NMR spectrum of 2 and (C 6 5 ) 3 2. 13

5.1 Competition between 1 and [(C 6 5 ) 3 ][B(C 6 5 ) 4 ] C 6 C 6 5 5 C 6 5 [B(C 6 5 ) 4 ] DCM, rt 24 h [B(C 6 5 ) 4 ] C 6 5 C 6 5 C 6 5 1.66 1.00 2.6 0.7-42.3-44.2 20 10 0-10 -20-30 -40-50 -60-70 -80-90 -100-110 -120-130 -140-150 -160-170 igure S20. 19 { 1 H} (CH 2 Cl 2 ) NMR spectrum of 1 and [(C 6 5 ) 3 ][B(C 6 5 ) 4 ]. 14

7. hosphorane/hosphonium Self-Exchange Experiments [AA] [AB] = Eq n 1 ( 1 2k 2 )(1 e 2kτ ) 2k 2 + (1 2k 2 )(e 2kτ ) 2τ = 1 k ln (1 + ( [AB] [AA]) ) Eq n 2 6.1 Self-Exchange of (C 6 5 ) 3 2 and [(C 6 5 ) 3 ][B(C 6 5 ) 4 ] C 6 5 C 6 5 C 6 5 C 6 C 6 5 5 C 6 5 [B(C 6 5 ) 4 ] DCM, rt C 6 C 6 5 5 C 6 5 [B(C 6 5 ) 4 ] C 6 5 C 6 5 C 6 5 15

igure S21. 2D 19-19 NOSY/EXSY of (C 6 5 ) 3 2 and [(C 6 5 ) 3 ][B(C 6 5 ) 4 ]. 16

= 400 ms = 300 ms = 250 ms = 200 ms = 100 ms = 50 ms -145-147 igure S22. -149-151 -153-155 -157 Selective 1D 19 NMR exchange spectroscopy (SEXY) for phosphorus-substituted meta-c- [(C 6 5 ) 3 ][B(C 6 5 ) 4 ] exchanging with (C 6 5 ) 3 2. -159-161 -163-165 -167 17

2(τ) 1.0 0.8 0.6 0.4 0.2 0.0 igure S23. 0 0.001 0.002 0.003 0.004 0.005 0.006 ln(1+[ab]/[aa]) Graph of 2τ vs ln (1+([AB]/[AA])) for phosphorus-substituted meta-c- of [(C 6 5 ) 3 ][B(C 6 5 ) 4 ] exchanging with (C 6 5 ) 3 2. k = 0.0057 s -1. 18

6.2 Self-Exchange of 1 and 2 [B(C 6 5 ) 4 ] DCM, rt [B(C 6 5 ) 4 ] = 400 ms = 300 ms = 250 ms = 200 ms = 100 ms = 50 ms -67.90 igure S24. -68.00-68.10-68.20-68.30-68.40-68.50-68.60-68.70-68.80 Selective 1D 19 NMR exchange spectroscopy (SEXY) for of 2 exchanging with 1. 19

2(τ) 1.0 0.8 0.6 0.4 0.2 0.0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 ln(1+[ab]/[aa]) igure S25. Graph of 2τ vs ln (1+([AB]/[AA])) for of 2 exchanging with 1. k = 0.18. 20

8. Computational Details Table S1. Cartesian coordinates (Å) of [(3,5-( ) 2 C 6 H 3 ) 3 ] + Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 1.635604 0.526982-0.535622 2 15 0 0.001519-0.000581-1.022988 3 6 0-0.360081-1.680660-0.540738 4 6 0-1.273900 1.151894-0.542039 5 6 0-1.319723-1.941663 0.450197 6 6 0-1.578548-3.265118 0.818544 7 6 0-0.893863-4.314429 0.202424 8 6 0 0.060962-4.046357-0.789276 9 6 0 0.339159-2.734809-1.164618 10 6 0 2.202290 1.657163-1.160959 11 6 0 3.475817 2.072424-0.781586 12 6 0 4.180661 1.382591 0.215693 13 6 0 3.610972 0.267486 0.833133 14 6 0 2.336748-0.170678 0.460597 15 6 0-1.022307 2.111851 0.451098 16 6 0-2.039310 2.998104 0.817518 17 6 0-3.288585 2.931936 0.197299 18 6 0-3.531685 1.972560-0.796281 19 6 0-2.534491 1.075430-1.169852 20 9 0-3.595587-2.640054 1.903772 21 9 0-3.121654-4.778427 1.807991 22 6 0 0.770712-5.213464-1.463508 23 9 0 1.273353-6.065060-0.539723 24 9 0-0.093905-5.906939-2.241980 25 9 0 1.791629-4.789995-2.245761 26 6 0-1.782199 4.009313 1.926479 27 9 0-0.491147 4.427520 1.911591 28 9 0-2.577949 5.091286 1.806776 29 9 0-2.016390 3.446403 3.139487 30 9 0-5.888630 1.980325-0.562267 31 9 0-5.037169 3.018401-2.291361 32 6 0 4.135259 3.268829-1.455518 33 9 0 3.267644 3.928079-2.259236 34 9 0 4.598974 4.141686-0.530993 35 9 0 5.184650 2.867074-2.211578 36 6 0 4.352497-0.461528 1.945366 37 9 0 5.687312-0.302666 1.840558 38 9 0 3.965631 0.012545 3.157320 39 9 0 4.079261-1.790724 1.919657 40 6 0-4.893557 1.944530-1.478240 41 9 0-5.050771 0.827925-2.228120 42 6 0-2.585824-3.546626 1.925145 43 9 0-1.985398-3.462273 3.139853 44 9 0 0.005160 0.000065-2.600599 45 1 0-1.869660-1.130935 0.929572 46 1 0-1.106107-5.345449 0.490027 47 1 0 1.080811-2.542936-1.941274 48 1 0 1.668901 2.200982-1.941841 49 1 0 5.178705 1.714556 0.506357 50 1 0 1.907196-1.050709 0.940773 51 1 0-0.046583 2.181115 0.933443 52 1 0-4.075813 3.631202 0.483652 53 1 0-2.737565 0.337976-1.947689 21

Table S2. Cartesian coordinates (Å) of (3,5( ) 2 C 6 H 3 ) 3 2 Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 15 0 0.002178-0.009529 0.000545 2 6 0 0.200218-1.842618-0.003913 3 6 0-0.336362-2.615840 1.036747 4 6 0 0.888157-2.478461-1.047935 5 6 0-0.200112-4.006725 1.018340 6 1 0-0.864368-2.137574 1.859619 7 6 0 1.050320-3.867088-1.037329 8 1 0 1.302153-1.894382-1.867877 9 6 0 0.500538-4.639343-0.011662 10 1 0 0.616643-5.722837-0.014883 11 6 0-1.684098 0.736179-0.015198 12 6 0-2.562210 0.479149-1.078228 13 6 0-2.103904 1.562984 1.038284 14 6 0-3.848126 1.028518-1.074226 15 1 0-2.250737-0.155401-1.906076 16 6 0-3.379314 2.133704 1.015575 17 1 0-1.442758 1.756389 1.880900 18 6 0-4.260050 1.866372-0.035936 19 1 0-5.261519 2.295703-0.038721 20 6 0 1.488834 1.080872 0.020633 21 6 0 1.715478 1.989781-1.023971 22 6 0 2.407079 1.006921 1.078480 23 6 0 2.838512 2.821538-0.997913 24 1 0 1.024087 2.045373-1.862758 25 6 0 3.544607 1.819689 1.077392 26 1 0 2.243459 0.311014 1.899336 27 6 0 3.761325 2.738213 0.047755 28 1 0 4.647163 3.372718 0.052718 29 6 0-0.765823-4.826971 2.158937 30 6 0 1.778404-4.538151-2.183340 31 6 0 4.518122 1.735187 2.234581 32 6 0 3.034161 3.845028-2.097067 33 6 0-4.775525 0.746722-2.238048 34 6 0-3.795538 3.078489 2.123783 35 9 0-3.215917 2.757924 3.309457 36 9 0-5.140683 3.077677 2.312680 37 9 0-3.433307 4.362053 1.837175 38 9 0-6.079148 0.934435-1.908725 39 9 0-4.506170 1.567522-3.293155 40 9 0-4.646888-0.529968-2.686805 41 9 0 0.020972-0.003839-1.690479 42 9 0-0.014870-0.016042 1.691618 43 9 0 0.127430-4.928671 3.184407 44 9 0-1.895587-4.271771 2.669942 45 9 0-1.071646-6.092300 1.770900 46 9 0 2.299051-5.739105-1.821655 47 9 0 0.940587-4.765601-3.234992 48 9 0 2.800417-3.772906-2.648863 49 9 0 4.111628 2.512639 3.278652 50 9 0 5.761482 2.154851 1.885509 51 9 0 4.632512 0.465907 2.706568 52 9 0 2.378369 5.006135-1.809647 53 9 0 4.343767 4.160079-2.270888 54 9 0 2.557396 3.405410-3.290619 22

Table S3. Cartesian coordinates (Å) of [(C 6 5 ) 3 ] + Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 15 0 0.000241-0.000265 0.700889 2 6 0-1.221522-1.210246 0.241603 3 6 0-2.485078-1.163650 0.874634 4 6 0-1.001287-2.229370-0.711070 5 6 0-3.475996-2.102546 0.603448 6 6 0-1.984420-3.175767-0.997849 7 6 0-3.220537-3.113485-0.337233 8 6 0 1.658847-0.452992 0.240641 9 6 0 2.251028-1.570484 0.873051 10 6 0 2.430752 0.248601-0.711516 11 6 0 3.559753-1.958285 0.601366 12 6 0 3.742063-0.128740-0.998832 13 6 0 4.306863-1.230569-0.339080 14 6 0-0.437282 1.662495 0.240910 15 6 0 0.233073 2.734219 0.874568 16 6 0-1.428753 1.980097-0.713410 17 6 0-0.084969 4.061473 0.602062 18 6 0-1.757123 3.304335-1.001540 19 6 0-1.086762 4.344503-0.340527 20 9 0 0.000674-0.000118 2.269402 21 9 0 1.537408-2.287364 1.751585 22 9 0 4.097760-3.008203 1.212633 23 9 0 5.549343-1.591314-0.610288 24 9 0 4.454679 0.546190-1.895906 25 9 0 1.921868 1.292635-1.378420 26 9 0 1.209046 2.474916 1.755068 27 9 0 0.553996 5.052451 1.214539 28 9 0-1.395022 5.600849-0.612608 29 9 0-2.695967 3.583833-1.900742 30 9 0-2.076721 1.017327-1.381942 31 9 0-2.748264-0.187131 1.753342 32 9 0-4.653860-2.042810 1.215420 33 9 0-4.154879-4.008548-0.607988 34 9 0-1.757387-4.130216-1.895392 35 9 0 0.156465-2.310899-1.379390 23

Table S4. Cartesian coordinates (Å) of (C 6 5 ) 3 2 Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 15 0 0.000271-0.001799-0.000476 2 9 0 0.002514-0.002241 1.666664 3 9 0-0.001597-0.002271-1.667463 4 6 0 0.031221 1.834428-0.000377 5 6 0-0.913578 2.581026-0.719322 6 6 0 1.000333 2.548781 0.718968 7 6 0-0.906026 3.977543-0.718137 8 6 0 1.039091 3.944772 0.718767 9 6 0 0.078133 4.661334 0.000582 10 6 0 1.575450-0.946119-0.002112 11 6 0 1.710999-2.142163 0.717623 12 6 0 2.693708-0.500146-0.721452 13 6 0 2.901332-2.872454 0.717363 14 6 0 3.900203-1.203530-0.720096 15 6 0 4.001778-2.397392-0.001039 16 6 0-1.606225-0.891782 0.001339 17 6 0-1.782718-2.082420-0.718491 18 6 0-2.708341-0.408204 0.721323 19 6 0-2.997145-2.771924-0.717568 20 6 0-3.937979-1.070279 0.720677 21 6 0-4.080391-2.259960 0.001599 22 9 0-0.765283-2.628801-1.406365 23 9 0-3.126750-3.922517-1.393197 24 9 0-5.250467-2.906970 0.001657 25 9 0-4.981352-0.568198 1.396269 26 9 0-2.630341 0.744424 1.408644 27 9 0-1.895212 1.971502-1.406240 28 9 0-1.839485 4.663506-1.392860 29 9 0 0.100308 5.998193 0.001041 30 9 0 1.994809 4.598935 1.393907 31 9 0 1.961242 1.906557 1.405369 32 9 0 0.675133-2.653762 1.404786 33 9 0 2.991459-4.026858 1.392906 34 9 0 5.149262-3.083683-0.000434 35 9 0 4.960386-0.737069-1.395056 36 9 0 2.655258 0.654441-1.408838 24

Table S5. Cartesian coordinates (Å) of B(C 6 5 ) 3 Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0-0.094953 2.489641-0.656690 2 6 0 0.515293 1.487129-1.433171 3 6 0 1.611722 1.905108-2.210128 4 6 0 2.069444 3.221994-2.234028 5 6 0 1.436055 4.179230-1.434702 6 6 0 0.349688 3.810999-0.634289 7 5 0 0.006554 0.001806-1.434001 8 9 0 2.248187 1.026002-3.012134 9 9 0 3.103895 3.580476-3.009614 10 9 0-0.248120 4.728704 0.140651 11 9 0-1.135786 2.185124 0.146397 12 6 0-1.534094-0.299791-1.440231 13 6 0-2.443158 0.451045-2.209290 14 6 0-3.812186 0.188026-2.241266 15 6 0-4.326049-0.850980-1.458539 16 6 0-3.465811-1.618242-0.666235 17 6 0-2.099458-1.340984-0.680003 18 9 0-1.999981 1.452779-2.997326 19 9 0-1.318258-2.101370 0.115191 20 9 0-3.963347-2.605858 0.093382 21 9 0-4.637892 0.914306-3.009819 22 6 0 1.037863-1.181754-1.430635 23 6 0 0.844706-2.347137-2.196280 24 6 0 1.752099-3.405460-2.214062 25 6 0 2.901219-3.332630-1.419856 26 6 0 3.133662-2.200729-0.631809 27 6 0 2.215542-1.151582-0.660104 28 9 0-0.238813-2.463587-2.992212 29 9 0 1.537974-4.487284-2.978070 30 9 0 4.230462-2.139114 0.138400 31 9 0 2.480872-0.091899 0.131896 32 9 0 3.775507-4.343456-1.413798 33 9 0-5.637113-1.110209-1.467543 34 9 0 1.868432 5.443945-1.435570 25

Table S6. Cartesian coordinates (Å) of [B(C 6 5 ) 3 ] - Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 0.125172 2.589072-0.607718 2 6 0 0.550241 1.713780-1.617001 3 6 0 1.450908 2.276476-2.525841 4 6 0 1.931976 3.586852-2.438268 5 6 0 1.495770 4.408471-1.400931 6 6 0 0.579141 3.904818-0.478797 7 9 0 1.907043 1.563351-3.590586 8 9 0 2.810983 4.071141-3.348529 9 9 0 0.133179 4.703928 0.520273 10 9 0-0.799139 2.198028 0.302263 11 6 0-1.558038 0.001975-2.151554 12 6 0-2.280662 0.972430-2.850875 13 6 0-3.631257 0.843013-3.192817 14 6 0-4.319975-0.314903-2.838493 15 6 0-3.641069-1.324700-2.157038 16 6 0-2.291911-1.150834-1.837734 17 9 0-1.689441 2.125606-3.264131 18 9 0-1.698016-2.196815-1.214112 19 9 0-4.298208-2.462371-1.826627 20 9 0-4.278929 1.825155-3.864822 21 6 0 1.057013-0.867034-2.453887 22 6 0 0.808433-1.487096-3.681125 23 6 0 1.690533-2.382622-4.295192 24 6 0 2.901965-2.684220-3.676389 25 6 0 3.210119-2.076730-2.459674 26 6 0 2.297159-1.188723-1.884341 27 9 0-0.332302-1.231653-4.376376 28 9 0 1.387206-2.957752-5.483889 29 9 0 4.394720-2.348474-1.861092 30 9 0 2.693558-0.611718-0.724043 31 9 0 3.770117-3.546936-4.251617 32 9 0-5.625843-0.461476-3.157757 33 9 0 1.947171 5.678906-1.295800 34 5 0 0.016489 0.133319-1.617410 35 9 0 0.025449-0.313482-0.257156 Table S7. Cartesian coordinates (Å) of C 2 O Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 0.392343-0.881189 0.000024 2 8 0 1.574231-0.881188-0.000009 3 9 0-0.396439 0.193561-0.000006 4 9 0-0.396439-1.955938 0.000039 26

Table S8. Cartesian coordinates (Å) of [ O] - Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0-0.922255-0.027060-0.141732 2 9 0-0.535423 0.520074 1.151943 3 9 0-0.535528-1.420909 0.031214 4 9 0-2.365460-0.126958 0.031190 5 8 0-0.515657 0.548010-1.137934 9. References [1] M. érez, L. J. Hounjet, C. B. Caputo, R. Dobrovetsky, D. W. Stephan, J. Am. Chem. Soc., 2013, 135, 18308-18310. [2] M. erez, T. Mahdi, L. J. Hounjet, D. W. Stephan, Chem. Commun., 2015, 51, 11301-11304. 27