Probing holographic dualities through Penrose limits and dual spin chains. Horatiu Nastase IFT-UNESP

Σχετικά έγγραφα
Higher Derivative Gravity Theories

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Higher spin gauge theories and their CFT duals

2 Composition. Invertible Mappings

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Finite Field Problems: Solutions

Example Sheet 3 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Derivation of Optical-Bloch Equations

Geodesic Equations for the Wormhole Metric

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Forced Pendulum Numerical approach

Homework 8 Model Solution Section

derivation of the Laplacian from rectangular to spherical coordinates

Math221: HW# 1 solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

EE512: Error Control Coding

C.S. 430 Assignment 6, Sample Solutions

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Concrete Mathematics Exercises from 30 September 2016

Section 8.3 Trigonometric Equations

Matrices and Determinants

1 String with massive end-points

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Congruence Classes of Invertible Matrices of Order 3 over F 2

Every set of first-order formulas is equivalent to an independent set

The Simply Typed Lambda Calculus

Answer sheet: Third Midterm for Math 2339

Durbin-Levinson recursive method

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Space-Time Symmetries

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Numerical Analysis FMN011

Variational Wavefunction for the Helium Atom

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Cosmological Space-Times

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Solutions to Exercise Sheet 5

Lifting Entry (continued)

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Approximation of distance between locations on earth given by latitude and longitude

Parametrized Surfaces

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Example 1: THE ELECTRIC DIPOLE

( ) 2 and compare to M.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2. Soundness and completeness of propositional logic

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

ST5224: Advanced Statistical Theory II

ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

Orbital angular momentum and the spherical harmonics

( y) Partial Differential Equations

Second Order Partial Differential Equations

Srednicki Chapter 55

Spherical Coordinates

4.6 Autoregressive Moving Average Model ARMA(1,1)

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Section 9.2 Polar Equations and Graphs

6.4 Superposition of Linear Plane Progressive Waves

Problem Set 3: Solutions

Strain gauge and rosettes

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Areas and Lengths in Polar Coordinates

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

D Alembert s Solution to the Wave Equation

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

SPECIAL FUNCTIONS and POLYNOMIALS

Homework 3 Solutions

From the finite to the transfinite: Λµ-terms and streams

Differential equations

Dark matter from Dark Energy-Baryonic Matter Couplings

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Finite difference method for 2-D heat equation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Areas and Lengths in Polar Coordinates

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

(As on April 16, 2002 no changes since Dec 24.)

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

On a four-dimensional hyperbolic manifold with finite volume

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 13 - Root Space Decomposition II

Second Order RLC Filters

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Uniform Convergence of Fourier Series Michael Taylor

Partial Trace and Partial Transpose

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Differentiation exercise show differential equation

MA 342N Assignment 1 Due 24 February 2016

Transcript:

Probing holographic dualities through Penrose limits and dual spin chains Horatiu Nastase IFT-UNESP Gauge/gravity duality, Wurzburg August 018 based on: T. Araujo, G. Itsios, HN and E. O Colgain 1706.0711 (JHEP 18) and G. Itsios, HN, C. Nunez, K. Sfetsos and S. Zacarias 1711.09911 (JHEP 18) 1

Summary: 0. Introduction 1. GJV duality and +1d CS-SYM in IR. Penrose limits of GJV and string quantization 3.Spin chains in CS-SYM field theory IR limit 4. Penrose limits of Abelian and Nonabelian T-duals of AdS 5 S 5 5. Operators in field theory, RG flow and deconstruction 6. Conclusions.

0. Introduction Penrose limit of gravity dual background: pp wave a large J charge limit. AdS 5 S 5 max. susy pp wave BMN operators Pp wave calculable for strings lightcone Hamiltonian H J calculable for BMN operators Want to use the same logic for less symmetric, and more complicated holographic dual pairs. We use it for GJV duality, and for T-duals of AdS 5 S 5. 3

GJV duality: warped, squashed AdS 4 S 6 vs. +1d N = SYM-CS theory in the IR. T-duals of AdS 5 S 5 less susy for the background. Abelian: known, but dual field theory only conjectured: quiver field theory. Nonabelian: recent, less known about it also a quiver. Find spin chains in the Penrose limit, but mismatch in conformal dimensions. Fixable for GJV, not so much for T-duals: field theory issue here? 4

1. GJV duality and +1d CS-SYM in the IR GJV find geometry (in string frame) (. ds = e ϕ/+a ds AdS 4 + 3 dα + 6 sin α (3 + cos α) ds CP + 9 ) sin α (5 + cos α) η, (ds AdS4 + 3 ) dα + Ξds CP + Ωη L string e ϕ = e ϕ (5 + cos α)3/4 0 (3 + cos α), B = e ϕ0/ sin α cos α 6L J 3L e ϕ 0/ sin αdα η, (3 + cos α) 1 F 0 =, 3L e 5ϕ 0 /4 ( 6L 4 sin F ) α cos α 3(3 cos α) = J + sin α dα η, e 3ϕ 0/4 (3 + cos α)(5 + cos α) (5 + cos α) F 4 = L3 e ϕ 0/4 ( 6vol(AdS 4 ) 1 3 (7 + 3 cos α) (3 + cos α) sin4 α vol(cp ) + 18 3 (9 + cos α) sin3 α cos α (3 + cos α)(5 + cos α) J dα η where η = dψ + ω, dω = J, ω = 1 sin λ(dσ + cos θdϕ), and ds CP = dλ + 1 4 sin λ { dθ + sin θdϕ + cos λ(dσ + cos θdϕ) } ) 5

Quantizing changes, n p = ˆF p, we find that the parameters of the solutions are n 6 = N and n 0 = k = πl s m, and that π 3/8 l s L = 7/48 3 7/4(kN 5 ) 1/4 ; e ϕ 0 = 11/1 π 1/ 1 3 1/6 (k 5 N) 1/6 L string = 1/6 ( ) π N 1/3 3 /3 l s 5 + cos α k Field theory: N = SYM-CS in the IR: -chiral superfield Φ = ϕ + θψ + θθf -vector superfield (in WZ gauge) V(x) = iθ θσ + θγ µ θa µ + i θ θ χ i θ θχ + θ θ D Is dimensional reduction of N = 4 SYM in 3+1d. superpotential W = gtr (Φ 1 [Φ, Φ 3 ]) = g 1 ϵ ijkf abc Φ a i Φb j Φc k Then, 6

Action (in the IR), CS + matter + superpotential, S CS = k ( d 3 xtr [ϵ µνρ A µ ν A ρ + i ) ] 4π 3 A µa ν A ρ + i χχ Dσ L m = Tr [ (D µ ϕ) i D µ ϕ i + i ψ i γ µ D µ ψ i F i F i + ϕ i Dϕ i + ϕ i σ ϕ i i ψ i σψ i +iϕ i χψ i + i ψ i χϕ i] L sp = d θw(φ) d θw(φ) ( ) W(ϕ) = Tr F i + W(ϕ) F ϕ i ϕ i 1 W(ϕ) i ϕ i ϕ j ψi ψ j 1 W(ϕ) ψ ϕ i ϕ i ψ j j Solve for σ a, D and find interaction potential terms V conf = 4π k Tr ( [[ϕ i, ϕ i ], ϕ k ][[ϕ j, ϕ j ], ϕ k ] ) V sp = g Tr ( [ϕ i, ϕ j ][ϕ i, ϕ j ] ) Obs.: in the IR, SYM subleading to CS drop it. 7

Moreover, in the IR, conformal term in the potential remains, while nonconformal one is in the vacuum. Indeed, classical conformal dimensions: [g] = 1/, [ϕ] = 1/ = [Φ], ([V ] = 3, [W ] = ), [ψ] = 1, [θ] = 1/. Then, V sp must be put to 0 (vacuum) in the IR [ϕ i, ϕ j ] = 0, i j. Obs: one still has [ϕ i, ϕ j ] 0. 8

Alternative explanation: Gaiotto+Yin: D/D6 in massive IIA. D:Φ 1 D6, Φ, Φ 3 D6, Q, Q : D-D6 coords. Then in the IR, W = Tr [Φ 1 [Φ, Φ 3 ]] + QΦ 1 Q [Φ 1 ] = 1, [Q] = [ Q] = [Φ,3 ] = 1/. Why? Φ 1 is auxiliary (no d 4 θ Φ 1 Φ 1 ). Can add ϵtr Φ 1 / W = 1 ϵ Tr [([Φ 3, Φ 3 ] + QQ) ] In our symmetric case (GJV): [Φ 1 ] = [Φ ] = [Φ 3 ] = /3; then only W/ ϕ i F i in action ([F ] = 5/3), so δs/δf i again W/ ϕ i = 0 [ϕ i, ϕ j ] = 0. 9

. Penrose limits of GJV and their quantization. Penrose limit: close to null geodesic for geodesic parametrized by λ, in direction x λ, need no acceleration, Γ i λλ = 0. For isometry direction, Also ds = 0 (null). g ij j g λλ = 0 GJV: σ, ψ, ϕ isometries: σ g µν = ϕ g µν = ψ g µν = 0. Motion in ψ: α = π/, ρ = 0, λ = 0. Motion in σ: λ = π/4, α = π/, θ = π/, ρ = 0. Motion in ϕ: λ = π/, α = π/, θ = π/, ρ = 0. Motion in ϕ + σ: θ = 0, λ = π/4, α = π/, ρ = 0, ψ = 0. 10

Motion in ψ: pp wave:. ds pp = 4dx + dx + du + e ϕ = e ϕ 0, H 3 = 0, 3 (dy i ) + i=1 dw j d w j u + j=1 3 yi + 1 4 F 0 = 0, F = e ϕ 0 du dx +, F4 = 3e ϕ 0 dx + dy 1 dy dy 3 i=1 w j (dx + ) j=1 Symmetries U(1) ± SO(3) r U(1) u SO(3) U(1) R SU() r U(1) u SU() L Closed string in background find Hamiltonian H = 4 n= A=1 N (A) n n 8 1 + (α p + ) + and eigenenergies at n/(α p + ) 1 E A 1 + 1 n B=5 N (B) n 1 4 + (α p + ), EB 1 + n (α p + ) n (α p + ) 11

Motion in σ: pp wave ds pp = 4dx + dx + 3 dx i + 8 dy k ( i=1 k=4 ) 1 3 x i + y 4 3 + y 5 + y 6 + y 7 + y 8 (dx + ) 8 6 i=1 1 [ ( ) ( )] x + x + y 5 cos + y 6 sin (dx + ) 6 4 4 [ ( ) ( )] x + x + B = y 5 cos + y 6 sin dy 4 dx +, 3 4 4 F 4 = 3e ϕ 0 dx+ dx 1 dx dx 3 [ ( ) ( ) ] + e ϕ 0 x dx + + x + cos dy 5 + sin dy 6 dy 7 dy 8 3 4 4 1

Motion in ϕ: pp wave ds = dx + dx + dρ + ρ ds (S ) + dv + dx + x dσ + dw [ 1 + dw 1 3 v + 1 4 ρ + 1 1 x + 1 ( ) ] cos x+ 1 4 w 1 sin x+ 4 w + 1 16 (w 1 + w ) (dx + ), e ϕ = e ϕ 0, 3 F 4 = dx + ρ dρ vol(s ) + 1 dx + xdx dz dσ, e ϕ 0 6e ϕ 0 H 3 = 1 ( ) dx + cos x+ 3 4 dw 1 sin x+ 4 dw dv Motion in ϕ + σ: pp wave is (modulo rescalings and signs) the same as for motion in σ. 13

. Open string quantization Open strings attached to D4-brane [ wrapping R t CP : (t, λ, θ, ϕ, σ) (x ±, x, y, z) x ± ], Y 7, Y 8, Y σ 0 5 4 + Y 6 sin σ 0 4. String action is S pp = 1 4πα πα dσ 0 p ( + X dσ [η 1 ab ( a X i b X i + a Y k b Y k ) + µ i 0 + Y 4 3 + Y 5 + Y 6 + Y 7 + Y 8 + 1 ] σ 0 σ 0 ) [Y 5 + Y 6 sin 8 6 6 4 4 ] ] σ 0 σ 0 + [Y 3 µ 5 + Y 6 sin 1 Y 4 4 4 X 4, Y 5, Y 6 hard. X i, Y 7, Y 8 simple. Eigenmodes ω (i) n = µ + n (α p + ), ω(i ) n = and same for ϕ, σ, or ϕ + σ pp waves. µ 6 + n (α p + ), I = 7, 8. 14

3. Spin chains in CS-SYM field theory IR limits Interactions in IR involving scalars ϕ i : [ϕ i, ϕ j ] = 0, and. H int,1 = 4π k Tr ( [[ϕ i, ϕ i ], ϕ k ][[ϕ j, ϕ j ], ϕ k ] ) Closed string spin chain: pick out Z among ϕ i rest ϕ m, m = 1,. Z e iα Z corresponds to U(1) of pp wave in ψ. Define J = 0 for Z J Z = 1/. Then, Z Z ϕ m ϕ m A µ D µ 1/ 1/ 1/ 1/ 1 1 J 1/ 1/ 0 0 0 0 J 0 1 1/ 1/ 1 1 Unique object with J = 0, Z, defines the vacuum 0, p + 1 JN J/ Tr [ZJ ] 15

Oscillators: trickier. Since [ϕ i, ϕ j ] = 0, one possibility is [ϕ m, ϕ m ]. Also (ϕ i ϕ j ) (like for ABJM) doesn t work. Only possibility for oscillators such that a M n 0, p + Φ M = {ϕ m, ϕ m, Z, D a } J 1 l=0 e πinl J Tr [Z l Φ M Z J l ] Then classical dimensions match n = 0 pp wave results: 4 with J = 1 and 4 with J = 1/. 16

Insertion of Φ M = Z Feynman diagrams give factor f Z (p) = 8 sin ( ) p 1 sin p string Hamiltonian (ϕ ) (ϕ ).. Insertion of Φ M = ϕ m f ϕ (p) = 8 sin p string Hamiltonian 10(ϕ ) 3(ϕ ). Insertion of Φ M = ϕ m f ϕ (p) = [ 16 sin p string Hamiltonian 4(ϕ ) 3 (ϕ ). ( ) 5 6 sin p ( 1 3 sin )] p Feynman diagram factor is F(x) F tree (x) = 1+f i(p) N k ln x Λ+finite = 1+f i(p) λ to be compared with ln x Λ+finite F(x) F tree (x) = (1 + tree finite) x 1 δ (λ) ln x Λ + finite x (λ) 17

Thus J ( J)(tree) + δ (λ) = ( J)(tree) f i (p) λ In N = 4 SYM, we had no f(λ) max. susy. In N = 6 ABJM (3/4 maximal susy) one f(λ). Now, f i (λ) for each insertion, and at small coupling, f i (λ)g(p) = f i (p)λ. Moreover, valid only at small p. At strong coupling, n (α p + ) = L string α n J λ/3n J 18

Z insertion:. J 1 4λ sin p ( 1 sin p ) vs. 1 f Z(λ) sin p/ 1 1 f Z(λ) sin p gives f Z(λ) 8λ to f Z (λ) λ/3. ϕ m insertion: J 1 4λ sin p ( 1 sin p ) vs. 1 f Z(λ) sin p/ 1 1 f Z(λ) sin p gives f ϕ (λ) 40λ vs. f ϕ (λ) λ/3. ϕ m insertion: ( ) 1 J 1 8λ sin p 1 3 sin p, vs. 4 1 f ϕ(λ) sin p 1 1 f ϕ(λ) sin p gives f ϕ (λ) 16λ vs. f ϕ (λ) λ /3. Open strings on D-branes: not even J at n = 0 works out. 19

4. Penrose limits of Abelian and Nonabelian T-duals of AdS 5 S 5 Apply the same technique to understand field theories AdS/CFT. dual to T-duals of AdS 5 S 5. Abelian T-dual on ψ of AdS 5 S 5 /Z k : coordinate acted on by Z k : ψ. ds = 4 L ds (AdS 5 ) + 4 L dω (α, β) + L dψ cos α + L cos α dω (χ, ξ), B = L ψ sin χ dχ dξ, F 4 = 8 L4 e Φ = L cos α g s α g s α cos 3 α sin α sin χ dα dβ dχ dξ Here we rescaled ψ = L α ψ, meaning ψ = α ψ L [ 0, πkα /L ]. Also define g s = L g s. α For Penrose limits, 3 isometries: ξ, β, ψ. For geodesic in ξ: at χ = π/, α = 0, r = 0, ψ = 0. ds = 4 dx + dx + d r + r dω 3 + dx + x dβ + dz + dy ( r + x + 4 z ) (dx + ) B = y dz dx +, e Φ = 1 g s F 4 = 4 x g s dx dβ dz dx +. 0

Geodesic in β: at α = π/, r = 0, ψ = ψ 0, χ = χ 0, ξ = ξ 0,. ds = 4 dx + dx + d r + r dω 3 + 4 dy + y dω (χ, ξ) + α d ψ ( r + 4 y )(dx + ) y B = α ψ sin χ dχ dξ, e ϕ = y α g s F 4 = 8 y3 g s α sin χ dx+ dy dχ dξ doesn t test T-duality. Is not in Brinkmann form unclear. In ψ: at α = 0, χ = π/. But motion just in ψ is pathologic. Geodesic must move in ψ AND ξ, with ξ = dξ du = J (at dt/du = 1/4). From null condition, find ψ = 1 4 which means J 1/. ( 1 4 J ) = ψ = 1 4 J u 1

Pp wave is [ r ds = du dv + d r + r dω 3 + dz + dx + x dβ + dw. e Φ = g s 16 + 8J 1 16 α L g s, B = u dz dw, F 4 = J x du dz dx dβ g s Non-tachyonic mode 8J 1 0 1 J 1. x + J z ] du Closed string in pp wave gives ( κ 1 + κ = 1) S = 1 [ ( ) X dτ dσ X i X i 1 ( ) + X ( ) + X 3 ( ) + X 4 + 4 π α 16 ( ) X 5 ( ) + X 6 + (8J 1) + J ( X 7) ( ) ] κ 1 X 7 σ X 8 κ X 8 σ X 7 16 and frequencies ωn,i = n + 1 16, i = 1,..., 4 ωn,i = n + 8 J 1 16 ωn,± = n + J ± 1, i = 5, 6 n + J 4

Nonabelian T-dual of AdS 5 S 5 /Z k on direction becoming ρ [0, πk] is. ds = 4 L ds (AdS 5 ) + 4 L dω (α, β) + α d ρ L cos α + α 3 ρ 3 B = α ρ sin χ dχ dξ, + L 4 cos 4 α e Φ F = 8 L4 g s α 3/ sin α cos3 α dα dβ, F 4 = 8 α 3/ L 4 g s ρ 3 cos 3 α α ρ + L 4 cos 4 α α L ρ cos α α ρ + L 4 cos 4 α dω (χ, ξ) = L cos α g s α 3 ( α ρ + L 4 cos 4 α ) sin α sin χ dα dβ dχ dξ For Penrose limits, isometries: on β and ξ. For geodesic on β, at α = π/, ρ = ρ 0, χ = χ 0, ξ = ξ 0, is ds = 4 dx + dx + d r + r dω 3 + dy ( x 4 + y ) dx + B = g s F = +4 α y d ρ + 4 α ρ y 16 α ρ + y 4dΩ (χ, ξ) 16 α 3 ρ 3 16 α ρ + y sin χ dχ dξ, 4 e Φ = gs y ( 16 α ρ + y 4) 64α 3 y 3 dy, g α 3/dx+ s F 4 = 8 α 3/ y 3 ρ 3 16 α ρ + y sin χ 4 dx+ dy dχ dξ 3

For geodesic in ξ, find no solution ned also motion in ρ.. Define ρ = L α ρ and redefine also coupling as g s = g α 3/ s L 3. Then pp wave near geodesic at χ = π/, α = 0, r = 0 is L ds = 4 ds (AdS 5 ) + 4 dω dρ (α, β) + cos α + ρ cos α ρ + cos 4 α dω (χ, ξ) L ρ 3 B = sin χ dχ dξ, e Φ = cos α( ρ + cos 4 α ) ρ + cos 4 α F = 8 L g s sin α cos 3 α dα dβ, F 4 = 8 L3 g s g s ρ 3 cos 3 α ρ + cos 4 α sin α sin χ dα dβ dχ dξ Particle on the null geodesic ṫ = 1/4 and p ξ Then, find which means again J 1/. ρ = 1 4 ρ + 1 ρ J L = ρ ρ +1 ξ = J. 4

Moreover, ρ L α L /α.. Pp wave becomes J 1 4J needs to fit in (0, πk], meaning k ds = du [ dv + d r + r dω 3 + dx + x dβ + dz + dw ] r 16 + x 16 (8J 1) + (ρ + 1) J z F ρ 4 z z F w w du H = db = 1 e Φ = ρ + 1 g s ρ + 3 du dz dw ρ + 1 F 4 = J x ρ + 1 g s du dx dz dβ, F = 0 which means that non-tachyonic 8J 1 0 1 J 1. 5

Closed string on pp wave S = 1 [ (( ) X dτ dσ X i X i 1 ( ) + X ( ) + X 3 ( ) + X 4 + 4 π α 16 ( ) X 5 ( ) + X 6 + (8J 1) + (ρ + 1) J ( X 7) ( ) Fz X 7 ( ) ] Fw X 8 16 ρ 4 ρ + 3 ( ) ] κ ρ 1 X 7 σ X 8 κ X 8 σ X 7 + 1. Frequencies are ωn,i = n + 1 16, i = 1,..., 4, ω n,i = n + 8 J 1 16 n 1: Abelian T-dual n 1 gives ω n,i = n + 1 16, i = 1,..., 4 ωn,i = n + 1 a, i = 5, 6 16 ωn,± = n + 1 ( a + ) ± 1 ( ) a + 1 16 n + ( a 1 ) 16 8, i = 5, 6 Abelian and Nonabelian pp waves both preserve just the minimum (for pp waves) 1/ susy. 6

5. Operators in field theory, RG flow and deconstruction AdS/CFT map Conjecture for field theories: quivers: Abelian: SU(N) k N = susy. Each node: N = vector multiplet of SU(N), each adjoining nodes: N = bifundamental hypers. Nonabelian: infinitely long quiver, SU(N) SU(N)... SU(kN)... Terminates only for a completion of the background. Quiver dual AdS 5 S 5 /Z k and its Penrose limit was considered before [Alishahiha+Sheikh-Jabbari 00 & Mukhi+Rangamani+Verlinde 00]. 7

Field theory limit Limit is different than theirs. ψ or ρ [0, πk] gives k L /α = 4πg B s N, meaning g Y M N k = 4πgB s N k k unlike the case in previous papers. T-duality acts as gs A = gb s and since gs A = L g s, we find g s k/n 1. α α L, Nonabelian case: g s = L 3 /α 3/ g s, so we find g s 1/N 1. Then strings on pp waves are classical need only compute eigenvalues. 8

Field theory has superpotential W = and kinetic terms L kin = k i=1 with symmetries: k i=1 d θ Tr i+1 [V i X i W i ] d θ d θ Tr i [ V i e V V i + W i e +V W i + X i ev X i ] -SU() R acting on V i and W i -U(1) R acting on X i and d θ as X i e iα X i, d θ e iα d θ. -non-r U(1) acting on V i, W i as V i e iα V i, W i e iα W i. Same in dual: SU() χ,ξ U(1) β U(1) ψ. 9

Charge assignment. X V W X V W 1 1 1 1 1 1 J 1 0 1 1 0 1 1 kj 0 1 1 0 1 1 H 1 0 1 1 1 Large charge (BMN) operators for U(1) ψ = U(1) extra, but also U(1) ξ SU() R, with ( ) J J them = ( J1 J ) us = ξ ψ = J 1 4J We can t vary J 1 /J, and J 1 /J = 1, for J = 1/, is only possibility. Vacuum, T-dual to one of Mukhi et al. quiver us winds around the p = 1, m = 0 them = m = 0, p = 1 us = O k = 1 N Tr [V 1 V...V k ] 30

Oscillators of energy H = 1: D a, a = 0, 1,, 3, W i, W i, X i, X i, O Dp = a D,0 m = 0, p = 1 us = 1 Nk 1 N O Xp = a X,0 m = 0, p = 1 us = 1 Nk 1 N O X p = a X,0 m = 0, p = 1 us = 1 Nk 1 N O W,0 = a W,0 m = 0, p = 1 us = 1 1 N k N O W,0 = a W,0 m = 0, p = 1 us = 1 k 1 N a X,n m, p = 1 us = 1 Nk 1 N k Tr [V 1...V i 1 (D a V i )...V k ] i=1 k Tr [V 1...V i 1 X i V i...v k ] i=1 k Tr [V 1...V i 1 X i V i...v k ] i=1 k Tr [V 1...V i 1 V i W i V i...v k ] i=1 k Tr [V 1...V i 1 W i V i+1...v k ] i=1 k l=1 Tr [V 1...V l 1 X l V l...v k ]e πiln k 31

Note that now, momentum m = i n i. Eigenenergies: for pp waves, should be ω 0,a = 1 4, a = 1,, 3, 4, ω 0,i = 8J 1 4, i = 5, 6, ω 0,+ = J, ω 0, = 0 D a matches: H = 1 ω 0,a = 1/4 (rescale). But X, X, W, W give H = 1 also. Origin: extra interactions in g YM N k k limit. From interaction V g Y M Tr i W i V i = Tr i ( W i W i V i V i ) mixing O W,0 and O W,0 and V g Y M Tr k[ X i V i V i X i ] mixing O X,0 and O X,0. 3

Nonabelian case: RG flow in ρ. Match it to Abelian case if ρ 0 g s = 1 g s. Eigenenergies ω = ω k (u) flow in lightcone time u, between u = 0 and u =. flow generic in Gaiotto-Maldacena backgrounds. Conformal symmetry broken in dual by winding modes of strings? Or dual to conconformal theory in higher dimensions via deconstruction: -Wilson loops show deviation from conformal behaviour. -pp wave limit of Janus solution (dual to defect CFT) has similarity with Nonabelian case. 33

. Conclusions We can use Penrose limits to probe difficult holographic dualities For GJV, Penrose limit with closed strings matches BMN sectors in field theory, but only to leading order. Open strings don t match. We find several functions f i (λ) between weak and strong coupling. For abelian and nonabelian T-duals of AdS 5 S 5 /Z k, BMN-type operators are clear, but naive calculations don t match large contributions from Feynman diagrams that can t be neglected, unlike N = 4 SYM or ABJM cases. Take pp wave calculations as predictions that probe unknown field theories. 34