Electronic structure and spectroscopy of HBr and HBr +

Σχετικά έγγραφα
Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

ELECTRONIC SUPPORTING INFORMATION

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Hartree-Fock Theory. Solving electronic structure problem on computers

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Electronic Supplementary Information:

Fused Bis-Benzothiadiazoles as Electron Acceptors

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Electronic Supplementary Information

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

SUPPLEMENTARY INFORMATION

Σύνθεση και Χαρακτηρισµός Χαµηλοδιάστατων Ηµιαγωγών Αλογονιδίων του Μολύβδου και Χαλκογενιδίων.

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Supporting Information

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Supporting Information

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

vibrational Supplementary density of the Beyer-

Supplementary materials. Mode Analysis. Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf. Diller

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

of the methanol-dimethylamine complex

Electronic Supplementary Information (ESI)

Derivation of Optical-Bloch Equations

Butadiene as a Ligand in Open Sandwich Compounds

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Supplementary Information. Unveiling the complex vibronic structure of canonical adenine cation

difluoroboranyls derived from amides carrying donor group Supporting Information

Supporting Information

Supplementary Information for

Solar Neutrinos: Fluxes

Supporting Information

Channels and Monomolecular Nanotubes

Supporting Information

Supporting Information. Martin Srnec, Shaun D. Wong, Megan L. Matthews, Carsten Krebs, J.Martin Bollinger, Edward I. Solomon

Supplementary materials

Table of Contents 1 Supplementary Data MCD

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Supporting Information. Evaluation of spin-orbit couplings with. linear-response TDDFT, TDA, and TD-DFTB

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

Three coupled amplitudes for the πη, K K and πη channels without data

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Variational Wavefunction for the Helium Atom

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information

CE 530 Molecular Simulation

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

IV. ANHANG 179. Anhang 178

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose


Electronic Supplementary Information

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Solvent effects on structures and vibrations of zwitterionic dipeptides: L-diglycine and L-dialanine

Switching of the Photophysical Properties of. Bodipy-derived Trans Bis(tributylphosphine) Pt(II) bisacetylide Complexes with Rhodamine

Non-Gaussianity from Lifshitz Scalar

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006


Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supplementary Information

Cable Systems - Postive/Negative Seq Impedance

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Supplementary Information Chemical Partition of the Radiative Decay Rate of Luminescence of Europium Complexes

Supporting Information: Expanding the Armory: Predicting and Tuning Covalent Warhead. Reactivity.

Supporting Information

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Supplementary Information

Durbin-Levinson recursive method

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Electronic Supplementary Information

January 22, University of Minnesota, Minneapolis, Minnesota , USA

Supplementary Table 1. Construct List with key Biophysical Properties of the expression

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

ΚΩΔ / CODE CT-100 ΚΩΔ / CODE CT-110 ΚΩΔ / CODE CT-111

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

NN scattering formulations without partial-wave decomposition

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Supporting Information

Quartz Crystal Test Report

Solutions to Exercise Sheet 5

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

Πολιτιστικό Προφίλ Δήμου Κορυδαλλού

Θεωρητική Επιστήμη Υλικών

Η Διαγενειακή Αλληλεπίδραση Τρίτης Γενιάς και Τρίτης Ηλικίας και οι Αντοχές της Ελληνοαυστραλιανής Ταυτότητας

MAPPING REGIONAL BIOFUEL PRODUCTION POTENTIAL

Transcript:

Electronic structure and spectroscopy of HBr and HBr + Gabriel J. Vázquez 1 H. P. Liebermann 2 H. Lefebvre Brion 3 1 Universidad Nacional Autónoma de México Cuernavaca México 2 Universität Wuppertal Wuppertal Germany 3 Institut des Sciences Moléculaire d Orsay Orsay France 71 st ISMS Urbana Champaign, Illinois 20 24 June 2016 () 1 / 34

Outline Motivation Details of calculations Spectroscopic terms of HBr and HBr + Sample of HBr PECs (without/with spin orbit) Sample of HBr + PECs (without/with spin orbit) The mixed (E+V) Rydberg (ion pair) B 1 Σ + state Summary () 2 / 34

Motivation Hydrogen halides HX (X=Cl, Br, I) testing ground for molecular photodissociation/photoionization Display Rydberg valence mixing Relativistic spin orbit coupling due to (the K and L shells of) Br Changes in bonding, from covalent to ionic, with increasing internuclear distance HBr the least studied HX (HCl the most) No PECs available for HBr PECs required by Dr. Kvaran to shed light on the mixed double well Rydberg (ion pair) (E+V) B 1 Σ + state () 3 / 34

Ab initio electronic structure calculations of HBr and HBr + Type: SCF MRSD(TQ) CI SCF: C 2v symmetry Package: MRD CI a Core: Br relativistic effective core potential CI: 8 active e [two 4s and six 4p of Br] Br basis: cc pvqz + diffuse (two s, two p, one d) Excitations: S + D + (T, Q) Functions: H (6s5p1d) MOs HBr (X 1 Σ + ) Br (6s7p3d1f) Conf. HBr (X) 1σ 2 2σ 2 3σ 2 1π 4 4σ 2 5σ 2 2π 4 6σ 2 7σ 2 3π 4 1δ 4 8σ 2 4π 4 Total HBr 12s12p4d1f 82 atomic functions a Bonn-Wuppertal package, Buenker & Peyerimhoff () 4 / 34

Table: Spectroscopic terms of the Br atom a Term Configuration J Energy (ev) Exp. This work 4 D 4s 2 4p 4 ( 3 P 2)4d 7/2 9.800 4 D 4s 2 4p 4 ( 3 P 1)5p 1/2 9.778 2 D 4s 2 4p 4 ( 3 P 1)5p 3/2 9.754 2 D 4s 2 4p 4 ( 3 P 1)5p 5/2 9.734 2 S 4s 2 4p 4 ( 3 P 1)5p 1/2 9.680 4 D 4s 2 4p 4 ( 3 P 2)5p 3/2 9.514 2 D 4s 2 4p 4 ( 1 D)5s 3/2 9.411 2 D 4s 2 4p 4 ( 1 D)5s 5/2 9.409 4 P 4s 2 4p 4 ( 3 P 2)5p 1/2 9.399 4 D 4s 2 4p 4 ( 3 P 2)5p 5/2 9.385 4 D 4s 2 4p 4 ( 3 P 2)5p 7/2 9.363 4 P 4s 2 4p 4 ( 3 P 2)5p 3/2 9.299 4 P 4s 2 4p 4 ( 3 P 2)5p 5/2 9.258 2 P 4s 2 4p 4 ( 3 P 0)5s 1/2 8.551 2 P 4s 2 4p 4 ( 3 P 1)5s 3/2 8.329 4 P 4s 2 4p 4 ( 3 P 1)5s 1/2 8.292 4 P 4s 2 4p 4 ( 3 P 2)5s 3/2 8.047 4 P 4s 2 4p 4 ( 3 P 2)5s 5/2 7.865.................................. 1/2 0.456 b 2 P 4s 2 4p 5 3/2 0.000 a 35 Br: [Ar] 4s 2 3d 10 4p 5 ; b Aso = 3685 cm 1 () 5 / 34

Table: Spectroscopic terms of the Br + ion. Term Configuration J Energy (ev) Exp. This work 3 D 3 D 3 D 3 D 3 D 5 D 5 D 5 D 5 D 5 D 3 P 3 P 3 S 3 P 5 S 1 S 4s 2 4p 4 4s 2 4p 3 ( 4 S )4d 1 13.934 4s 2 4p 3 ( 4 S )4d 2 13.827 4s 2 4p 3 ( 2 D )5s 3 13.684 4s 2 4p 3 ( 2 D )5s 2 13.598 4s 2 4p 3 ( 2 D )5s 1 13.567 4s 2 4p 4 ( 4 S )4d 0 12.918 4s 2 4p 3 ( 4 S )4d 1 12.912 4s 2 4p 3 ( 4 S )4d 4 12.905 4s 2 4p 3 ( 4 S )4d 2 12.903 4s 2 4p 3 ( 4 S )4d 3 12.899 4s 2 4p 5 0 12.427 4s4p 5 1 12.249 4s 2 4p 3 ( 4 S )5s 1 12.208 4s 2 4p 5 2 11.956 4s 2 4p 3 ( 4 S )5s 2 11.644 0 3.455 1 D 4s 2 4p 4 2 1.498................................ 0 0.475 3 P 4s 2 4p 4 1 0.388 2 0.000 () 6 / 34

Lowest electronic states of HBr Excitation MO configuration Ginter s notation Character π 5dσ (σ 2 π 3 )5dσ n 3 Π i (2, 1, 0), N 1 Π (1) R g 3 Σ (1, 0 + ), G 1 Σ (0 ), f 3 i (2, 1, 0), F 1 (2) π 5pπ (σ 2 π 3 )5pπ e 3 Σ + (1, 0 ), E 1 Σ + (0 + ) R π 5pσ (σ 2 π 3 )5pσ d 3 Π i (2, 1, 0 ± ), D 1 Π (1) R π 5sσ (σ 2 π 3 )5sσ b 3 Π i (2, 1, 0 ± ), C 1 Π (1) R σ σ (σπ 4 )σ t 3 Σ + (1, 0 ), V 1 Σ + (0 + ) I P π σ (σ 2 π 3 )σ a 3 Π i (2, 1, 0), A 1 Π (1) V (σ 2 π 4 ) X 1 Σ + (0 + ) G () 7 / 34

12 11 HBr 100000 90000 10 80000 9 8 7 6 1 Π 3 Σ + 70000 60000 50000 5 4 3 2 1 0 3 Π 40000 H + Br( 3 P o) 30000 20000 10000 X 1 Σ + 2 3 4 5 6 7 8 9 0 10 [MXLSYX73 () 8 / 34

120000 HBr Omega states 110000 100000 90000 80000 70000 60000 50000 40000 30000 [MXL73 20000 10000 0 2 3 4 5 6 7 8 9 10 () 9 / 34

150000 140000 % 130000 120000 110000 100000 90000 80000 70000 60000 50000 2 3 4 5 6 7 () 10 / 34

150000 140000 & 130000 120000 110000 100000 90000 80000 70000 60000 50000 2 3 4 5 6 7 () 11 / 34

150000 140000 % 130000 120000 110000 100000 90000 80000 70000 60000 50000 2 3 4 5 6 7 () 12 / 34

110000 100000 90000 80000 % & 13 14 % 70000 60000 50000 2 () 3 4 5 6 7 8 9 10 11 12 15 16 17 18 13 / 34

Table: Molecular states correlating to the various dissociation limits of HBr. states Number of Limit Relative Relative states energy (ev) a energy (ev) b 3,5 [Σ + (1), Π(1), (1)] H( 2 S1/2 )+Br( 4 D 7/2 ) 9.800 3,5 [Σ (1), Π(1), (1)] H( 2 S1/2 )+Br( 4 D 1/2 ) 9.778 1,3 [Σ (1), Π(1), (1)] H( 2 S1/2 )+Br( 2 D 3/2 ) 9.754 1,3 [Σ (1), Π(1), (1)] H( 2 S1/2 )+Br( 2 D 5/2 ) 9.734 1,3 [Σ (1)] H( 2 S1/2 )+Br( 2 S 1/2 ) 9.680 3,5 [Σ (1), Π(1), (1)] H( 2 S1/2 )+Br( 4 D 3/2 ) 9.514 1,3 [Σ + (1), Π(1), (1)] H( 2 S1/2 )+Br( 2 D 3/2 ) 9.411 1,3 [Σ + (1), Π(1), (1)] H( 2 S1/2 )+Br( 2 D 5/2 ) 9.409 3,5 [Σ + (1), Π(1)] H( 2 S1/2 )+Br( 4 P 1/2 ) 9.399 3,5 [Σ (1), Π(1), (1)] H( 2 S1/2 )+Br( 4 D 5/2 ) 9.385 3,5 [Σ (1), Π(1), (1)] H( 2 S1/2 )+Br( 4 D 7/2 ) 9.363 3,5 [Σ + (1), Π(1)] H( 2 S1/2 )+Br( 4 P 3/2 ) 9.299 3,5 [Σ + (1), Π(1)] H( 2 S1/2 )+Br( 4 P 5/2 ) 9.258 1,3 [Σ (1), Π(1)] H( 2 S1/2 )+Br( 2 P 1/2 ) 8.551 1,3 [Σ (1), Π(1)] H( 2 S1/2 )+Br( 2 P 3/2 ) 8.329 3,5 [Σ (1), Π(1)] H( 2 S1/2 )+Br( 4 P 1/2 ) 8.292 3,5 [Σ (1), Π(1) H( 2 S1/2 )+Br( 4 P 3/2 ) 8.047 3,5 [Σ (1), Π(1)] H( 2 S1/2 )+Br( 4 P 5/2 ) 7.865.................................................... H( 2 S 1/2 )+Br( 2 P 1/2 ) 0.456 1,3 [Σ + (1), Π(1)] H( 2 S1/2 )+Br( 2 P 3/2 ) 0.000 a Energies referred to the lowest dissociation limit. () 15 / 34

Table: Spectroscopic constants of the electronic states of HBr. a State T e (ev) R e (A) ω e (cm 1 ) ω ex e (cm 1 ) D e (cm 1) e 3 Σ + [73 740.] V 1 Σ + [75 293.] g 3 Σ 1 [76 522.3] [1.415] g 3 Σ 0 + [75 378.4] [1.519] d 3 Π 0 [76 088.8] [1.4904] [2418.5] d 3 Π 1 [73 542.] d 3 Π 2 [73 440.] C 1 Π 70 527.6 1.465 2552. 52. b 3 Π 0 + [68 911.] [1.455] [2452] b 3 Π 0 [68 904.] 19680. b 3 Π 1 [67 088.4] 1.442 [2444.2] b 3 Π 2 [67 663.0] [1.473] t 3 Σ + 1 [60 522.3] repulsive A 1 Π 1 [50 440.] repulsive a 3 Π 0 [42 088.8] a 3 Π 1 [41 542.] a 3 Π 2 [40 000.] repulsive X 1 Σ + 0.0 1.41443 2648.975 45.2175 31523. a The values of Te in brackets correspond to ν 00 () 17 / 34

24 22 2 2 4 Σ Σ HBr + 200000 190000 180000 6WXEXIW,&V EFSZII: 170000 20 18 4 Π 2 Σ 2 Π 2 Σ + 2 Π 2 Σ + 2 H + Br + ( 1 S) H + + Br( 2 P o ) 160000 150000 140000 16 4 Σ H + Br + ( 1 D) 130000 14 2 Σ + H + Br + ( 3 P) 120000 110000 12 100000 X 2 Π -4,&V!I: 90000 2 3 4 5 6 7 8 9 10 () 19 / 34

70000 HBr + Omega-States 60000 50000 40000 30000 +7HSYFPIXWTPMXXMRK 20000 10000 0 2 3 4 5 6 7 8 9 10 () 20 / 34

Table: Molecular states correlating to the various dissociation limits of HBr +. Molecular states Number of Limit Relative Relative molecular states energy (ev) a,b energy (ev) b 2,4 [Σ + (1), Σ (2), Π(2), (1)] H( 2 P 1/2, 2p)+Br + ( 3 P 0 ) 10.674 2,4 [Σ + (1), Σ (2), Π(2), (1)] H( 2 P 3/2, 2p)+Br + ( 3 P 1 ) 10.587 H(2)+Br + ( 3 P 1 ) 10.587 2,4 [Σ (1), Π(1)] H( 2 S1/2, 2s)+Br + ( 3 P 1 ) 10.587 2,4 [Σ + (1), Σ (2), Π(2), (1)] H( 2 P 1/2, 2p)+Br + ( 3 P 1 ) 10.587 H + +Br( 2 P 1/2 ) 10.335 2,4 [Σ + (1), Σ (2), Π(2), (1)] H( 2 P 3/2, 2p)+Br + ( 3 P 2 ) 10.198 H(2)+Br + ( 3 P 2 ) 10.198 2,4 [Σ (1), Π(1)] H( 2 S1/2, 2s)+Br + ( 3 P 2 ) 10.198 2,4 [Σ + (1), Σ (2), Π(2), (1)] H( 2 P 1/2, 2p)+Br + ( 3 P 2 ) 10.198 H + +Br( 2 P 3/2 ) 10.114 H + +Br( 4 P 1/2 ) 10.077 H + +Br( 4 P 3/2 ) 9.832 H + +Br( 4 P 5/2 ) 9.649 2 [Σ + (1)] H( 2 S1/2, 1s)+Br + ( 1 S 0 ) 3.455 H + +Br( 2 P 1/2 ) 2.241 H + +Br( 2 P 3/2 ) 1.784 2 [Σ + (1), Π(1), (1)] H( 2 S1/2, 1s)+Br + ( 1 D 2 ) 1.498............................................................. H( 2 S 1/2, 1s)+Br + ( 3 P 0 ) 0.475 H( 2 S 1/2, 1s)+Br + ( 3 P 1 ) 0.388 2,4 [Σ (1), Π(1)] H( 2 S1/2, 1s)+Br + ( 3 P 2 ) 0.000 a Energies referred to the lowest dissociation limit. b Energies of H + +Br are calculated as: IP(H) IP(Br)+EE(Br)= 13.598 11.813 + EE(Br)= 1.784 ev + EE(Br). () 22 / 34

Table: Spectroscopic constants of the electronic states of HBr + State T e (ev) R e (A) ω e (cm 1 ) ω ex e (cm 1 ) D e (cm 1 ) 2 2 Π [108 400.] repulsive B 2 Σ + [78 557.] repulsive 29 116. 1.6933 1384 26.2 13066. A 2 Σ + 28 421.2 1.6842 999.25 19.12 0.0 1.4484 2459. 44.3 31132. X 2 Π 0.0 1.4484 2441.52 47.40 31407. () 24 / 34

200000 180000 160000 HBr + H + Br+(1S) 2sig+ 2sig- 2Pi 4sig- 4Pi HBr 1 Σ + H + +Br - 1A1 1Pi 3Pi 3Sigma 140000 H+ + Br (2Po) H + Br+(1D) 120000 H(1s) + Br+ H+ + Br- H(2s) + Br 100000 H + Br+(2D)? H(2s) + Br- 80000 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 r / a 0 () 29 / 34

HBr, HBr + 140000 120000 100000 80000 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 r / a 0 () 31 / 34

Table: Calculated vibrational levels of the B 1 Σ + adiabatic potential compared to the observed a vibrational levels of V 1 Σ + and E 1 Σ + of HBr (cm 1 ) T 0,v (calc. adiab.) b Exp. label. T 0,v (exp.) 81 145 V(m+10) 81 197.2 80 543 V(m+9) 80 638.0 80 076 E (v=1) 80 168.8 80 350 V(m+8) 80 029.7 79 770 V(m+7) 79 480.3 79 027 V(m+6) 78 940.2 78 471 V(m+5) 78 388.8 77 313 E(v=0) 77 939.9 78 232 V(m+4) 77 830.0 77 383 V(m+3) 77 343.8 76 589 V(m+2) 76 963.7 76 078 V(m+1) 76 516. 75 548 V(m) 75 293. The origin of the energies is the v =0 level of X 1 Σ + () 32 / 34

Summary A study of the electronic structure and spectroscopy of HBr and HBr + is underway We expect to generate useful data on this system, such as: PECs, excitation, ionization and dissociation energies, spectroscopic constants, transition moment properties, dipole moment functions,... () 33 / 34

T H A N K S () 34 / 34