Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Σχετικά έγγραφα
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

PARTIAL NOTES for 6.1 Trigonometric Identities

Section 8.3 Trigonometric Equations

CRASH COURSE IN PRECALCULUS

Section 7.6 Double and Half Angle Formulas

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Trigonometric Formula Sheet

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Inverse trigonometric functions & General Solution of Trigonometric Equations

Areas and Lengths in Polar Coordinates

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Trigonometry 1.TRIGONOMETRIC RATIOS

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

derivation of the Laplacian from rectangular to spherical coordinates

MathCity.org Merging man and maths

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Chapter 6 BLM Answers

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Homework 8 Model Solution Section

Solution to Review Problems for Midterm III

Areas and Lengths in Polar Coordinates

Homework 3 Solutions

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

2 Composition. Invertible Mappings

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Math 6 SL Probability Distributions Practice Test Mark Scheme

Second Order RLC Filters

TRIGONOMETRIC FUNCTIONS

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Solutions to Exercise Sheet 5

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Approximation of distance between locations on earth given by latitude and longitude

Math221: HW# 1 solutions

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Homework#13 Trigonometry Honors Study Guide for Final Test#3

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Core Mathematics C34

Chapter 7 Analytic Trigonometry

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

MATH 150 Pre-Calculus

Principles of Mathematics 12 Answer Key, Contents 185

Section 9.2 Polar Equations and Graphs

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

C.S. 430 Assignment 6, Sample Solutions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Derivations of Useful Trigonometric Identities

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

[1] P Q. Fig. 3.1

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

1 String with massive end-points

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Core Mathematics C12

F-TF Sum and Difference angle

Matrices and Determinants

D Alembert s Solution to the Wave Equation

Numerical Analysis FMN011

Forced Pendulum Numerical approach

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Srednicki Chapter 55

the total number of electrons passing through the lamp.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

EE512: Error Control Coding

COMPLEX NUMBERS. 1. A number of the form.

Second Order Partial Differential Equations

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

CORDIC Background (2A)

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets


ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Rectangular Polar Parametric

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Answer sheet: Third Midterm for Math 2339

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Fourier Analysis of Waves

Lifting Entry (continued)

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Quadratic Expressions

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

CE 530 Molecular Simulation

PhysicsAndMathsTutor.com

Example Sheet 3 Solutions

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Transcript:

Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( - 1) - ( - 1) ( - 1) - ( - 1) ) sin 1 ) ( - 1) - ( + 1) ( + 1) - ( - 1) ) sin ) - ( + 1) ( + 1) - ( - 1) ( - 1) ) tan ) - + + - - ) sin cos - cos sin ) - 1-1 ) sin cos 1 + cos sin 1 ) - 1-1 ) cos π 1 cos π + sin π 1 sin π ) 1 1 1 ) cos π 1 cos π - sin π 1 sin π ) -1 1 0 1

) tan 0 - tan (-0 ) 1 + tan 0 tan (-0 ) ) - - - 1 - Find the exact value under the given conditions. 11) sin α = 0, 0 < α < π 1 ; cos β = 1, 0 < β < π Find cos (α + β). 11) 1 1 1) tan α = 1, π < α < π ; cos β = -, π 1 < β < π Find sin (α + β). 0 1) 1) sin α =, π < α < π; cos β =, 0 < β < π Find cos (α - β). 1) 1-1 1 1 + 1 1-1 1 - + 1 1 1) sin α = -, π < α < π ; tan β = - 1 1, π < β < π Find cos (α + β). 1) - 1 1-1 - 1 1 + 1 1 1-1 1 1) cos α = 1, 0 < α < π ; sin β = - 1, - π < β < 0 Find tan(α + β). 1) + - - + 1) cos α = - 1, π < α < π; sin β = 1 1, π < α < π Find tan(α - β). 1) - 11 0 0-0 - 1 0 Solve the problem. 1) If sin θ = 1, θ in quadrant II, find the exact value of cos θ + π 1) 1-1 + 1 - + 1-1

1) If cos θ = 1, θ in quadrant IV, find the exact value of tan θ + π 1) + 1 1-1 1-1 + 1 - Use the figures to evaluate the function if f(x) = sin x, g(x) = cos x, and h(x) = tan x. x + y = x + y = 1 (x, ) 1, y 1) f(α + β) 1) - 1 1-1 - + + 1 0) g(α + β) 0) - 1 - + 1 + + 1 1) h(α - β) 1) 1 + - 1-1 1 + + 1 1-1 - + 1 ) f(α - β) ) - + 1-1 - 1 + 1 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Establish the identity. ) sin x + π = cos x ) ) cos x + π = cos x - 1 sin x ) ) tan x - π = tan x - 1 1 + tan x )

) tan π + x = -cot x ) ) cos π - θ = -sin θ ) ) csc π + u = sec u ) ) cos(α + β) = cot β - tan α ) cos α sin β 0) cos(x - y) - cos(x + y) = sin x sin y 0) 1) cos(x - y) 1 + tan x tan y = cos(x + y) 1 - tan x tan y 1) ) cot(π - θ) = - cot θ ) Solve the problem. ) If tan α = x + 1 and tan β = x - 1, show that cot(α + β) = - x x ) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. ) sin cos -1 1 - sin-1 ) 1 0 ) cos tan -1 - sin-1 ) 1 ) tan tan -1 + sin-1 1 ) + 1 - + ) cos sin -1 1 - tan-1 1 ) + 1 + + 1

) cos tan -1 1 - cos-1 ) 1 1 Use the information given about the angle θ, 0 θ π, to find the exact value of the indicated trigonometric function. ) sin θ = 1 1, 0 < θ < π Find cos(θ). ) - 11-1 0 11 0) tan θ =, π < θ < π Find sin(θ). 0) - - 1) csc θ = -, tan θ > 0 Find cos(θ). 1) 1-1 - ) sin θ =, tan θ < 0 Find sin(θ). ) - - ) tan θ =, π < θ < π Find cos(θ). ) - - ) sin θ = -, π < θ < π Find tan(θ). ) - - ) cos θ = - 1, π < θ < π Find tan(θ). ) 11 1 11 1 11 ) cos θ = -, π < θ < π Find sin θ. ) - -

Use the figures to evaluate the function given that f(x) = sin x, g(x) = cos x, and h(x) = tan x. x + y = x + y = 1 (a, ) - 1, b ) f(α) ) 1 - - 1 ) f(β) ) - - Find the exact value of the expression. ) sin cos -1 - ) 1 - - 1 0) sin sin -1 0) 1 0 1 1) cos sin -1-1 1) + 1-1 1 1 11 1 ) tan cos -1 - ) - - 1 - ) sec tan -1 ) - 1 - -

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the problem. ) The path of a projectile fired at an inclination θ (in degrees) to the horizontal with an initial speed v0 is a parabola. The range R of the projectile, that is, the horizontal distance that the projectile travels, is found by using the formula ) R = v 0 g sin(θ) where g is the acceleration due to gravity. The maximum height H of the projectile is v 0 H = (1 - cos(θ)) g Find the range R and the maximum height H in terms of g if the projectile is fired with an initial speed of 00 meters per second at an angle of 1 and then at an angle of.. Do not use a calculator, but simplify the answers. Establish the identity. ) tan u (1 + cos(u)) = 1 - cos(u) ) ) cot(θ)= csc θ - cot θ ) ) cos(x) = cos x - sin x cos x ) ) cot u = csc u + cot u csc u - cot u ) ) cos(u) = cos (u) - 1 ) 0) sin (x) = 1 (sin(x))(1 - cos(x)) 0) 1) 1 + 1 sin(θ) = sin θ - cos θ sin θ - cos θ 1) ) cos(θ) = cos θ - sin θ cos θ + sin θ ) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use the information given about the angle θ, 0 θ π, to find the exact value of the indicated trigonometric function. ) sin θ = 1, 0 < θ < π Find sin θ. ) - 1 + 1

) sin θ = 1, tan θ > 0 Find cos θ. ) + 1-1 ) tan θ = 1, π < θ < π Find sin θ. ) 1 1-1 1 1 1-1 1 ) tan θ = 1, π < θ < π Find cos θ. ) 1 1-1 1 1 1-1 1 ) cot θ = -, sec θ > 0 Find sin θ. ) - 0 + 0 - + 0-0 ) tan θ =, cos θ < 0 Find sin θ. ) - 1 - - 1 + - + ) cos θ = -, π < θ < π Find cos θ. ) - 0-0 0) cos θ = -, sin θ > 0 Find cos θ. 0) - 0-0 1) cos(θ) = 1, 0 < θ < π Find cos θ. 1) - - ) cos(θ) = 1, 0 < θ < π Find sin θ. ) - -

Use the Half-angle Formulas to find the exact value of the trigonometric function. ) sin 1 1 - - 1-1 + - 1 + ) ) cos 1 ) 1 - - 1 + - 1-1 + ) sin ) 1 + - 1 + 1 - - 1 - ) cos ) - 1 - - 1 + 1-1 + ) cos - π ) 1 1 + 1 + 1 1-1 - ) sin π ) - 1-1 1-1 - - 1 - Find the exact value of the expression. ) sin 1 cos-1 ) 1 1 1 0) cos 1 sin-1 0) 1 1

Use the figures to evaluate the function given that f(x) = sin x, g(x) = cos x, and h(x) = tan x. x + y = x + y = 1 (a, ) - 1, b 1) f α 1) - 1 + 1 + 1-1 ) f β ) - - ) h β ) - - Express the product as a sum containing only sines or cosines. ) sin(θ) cos(θ) ) 1 [sin(1θ) + sin(θ)] 1 [cos(1θ) - cos(θ)] 1 [sin(1θ) + cos(θ)] sin cos(θ ) ) cos(θ) cos(θ) ) cos (θ ) 1 [ cos θ + cos(θ)] 1 [cos(θ) - cos θ] 1 [cos(θ) - sin θ] ) sin(θ) cos(θ) ) 1 [cos(θ) - cos θ] sin cos(0θ ) 1 [cos(θ) + sin θ] 1 [sin(θ) - sin θ]

) cos θ cos θ ) 1 [cos(θ) - sin(θ)] 1 [cos(θ) + cos(θ)] 1 cos (θ) 1 [cos(θ) - sin(θ)] ) sin θ cos θ ) 1 [cos(θ) - sin(θ)] 1 sin cos(θ) 1 [cos(θ) + sin(θ)] 1 [sin(θ) - sin(θ)] Complete the identity. ) sin(θ) sin(θ) cos(θ) cos(θ) =? cos (0θ) sin (0θ) cos (1θ) + cos (θ) cos (θ) - cos (1θ) ) Express the sum or difference as a product of sines and/or cosines. 0) sin(θ) + sin(θ) sin(1θ) cos(θ) sin(θ) sin(θ) sin(θ) sin(θ) cos(θ) 0) 1) cos(θ) - cos(θ) - cos(θ) sin(θ) cos(θ) - sin(θ) sin(θ) cos(θ) cos(θ) 1) ) sin(θ) - sin(θ) sin(θ) cos(θ) cos(θ) sin(θ) cos(θ) sin(θ) cos(θ) ) ) cos θ + cos θ ) cos(θ) sin(θ) sin θ sin(θ) sin θ cos(θ) cos θ ) sin 11θ + sin θ ) sin θ sin θ cos(θ) sin θ sin θ cos θ sin(θ) ) sin(θ) - sin(θ) sin(θ) cos θ sin(θ) cos θ sin θ cos(θ) sin θ cos(θ) ) 11

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Establish the identity. sin(θ) + sin(θ) ) cos(θ) + cos(θ) = tan(θ) ) ) sin(θ) + sin(θ) sin(θ) - sin(θ) = - tan(θ) tan(θ) ) ) cos(θ) - cos(θ) cos(θ)+ cos(θ) = - tan(θ) tan(θ) ) ) sin θ[sin θ + sin(θ)] = cos(θ)[cos(θ) - cos(θ)] ) 0) sin α - sin β sin α + sin β = tan α - β cot α + β 0) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Complete the identity. 1) 1 - cos(θ) + cos(θ) - cos(θ) =? sin θ sin(θ) sin(θ) cos θ cos(θ) sin(θ) cos θ cos(θ) cos(θ) sin θ cos(θ) sin(θ) 1) Solve the equation on the interval 0 θ < π. ) cos θ + = π, 11π π, π π, π π, π ) ) sin θ = 1 π, π, π, 11π π, π ) π, π, π, π π, π ) sin θ - = 0 π, π, π, π π, π, π, 11π ) π, π π, π 1

) tan θ = ) π, π π π π, π ) sec θ = - ) π, π, π, 11π π, π π, π π, π, 11π ) cot θ = - ) π, π π, π, 1π π, π, 1π, π π, π ) cot θ - 1 = 0 π, π π, π π, 11π π, π ) ) csc θ - 1 = ) π π π π 1) cos(θ) = 1) π π, 11π π 1, 11π 1, 1π 1, π 1 π 111) cos θ - π = 111) π, π π, π, 11π π, π, π, and 1π π, π 1

11) cot θ - π = 1 11) π π, π, 11π 1π, and π, π π, π, π, and 1π Solve the equation. Give a general formula for all the solutions. 11) cos θ = 1 {θ θ = kπ} θ θ = π + kπ 11) {θ θ = π + kπ} θ θ = π + kπ 11) sin θ = 1 θ θ = π + kπ θ θ = π + kπ 11) {θ θ = π + kπ} {θ θ = kπ} 11) sin θ = 11) θ θ = π + kπ, θ = π + kπ θ θ = π + kπ, θ = π + kπ θ θ = π + kπ, θ = π + kπ θ θ = π + kπ, θ = π + kπ 11) csc θ = 11) θ θ = π + kπ {θ θ = π + kπ} 1 θ θ = π + kπ θ θ = π + kπ Use a calculator to solve the equation on the interval 0 θ < π. Round the answer to two decimal places. 11) sin θ = 0. 0., 1.1 0.,. 0.,. 0.,.1 11) 11) tan θ =. 1.1,. 1.1, 1. 1.1,.0 1.1,.1 11) 11) csc θ = 0.0 0.0,. 0.1,. 0.1 11) ) cot θ = -.,.1.,.1.,..,. ) 1

Solve the equation on the interval [0, π). 11) Suppose f(x) = cos θ -1. Solve f(x) = 0. π 0 π π 11) 1) Suppose f(x) = cos θ + 1. Solve f(x) = 0. 1) π, π π π, π π, π Solve the problem. 1) What are the x-intercepts of the graph of f(x) = sin(x) + on the interval [0, π]? π, π, π, 11π, 1π, 1π π 1, 11π 1, 1π 1, π 1 π, π, π, 11π, 1π, 1π π, π 1) 1) Given f(x) = tan x, for what values of x is f(x) > - on the interval - π, π? 1) - π, π - π, π 0, π - π, π Solve the problem using Snellʹs Law: sin θ 1 sin θ = v 1 v. 1) A light beam in air travels at. meters per second. If its angle of incidence to a second medium is and its angle of refraction in the second medium is, what is its speed in the second medium (to two decimal places)? 1.0 mps.01 mps. mps 1. mps 1) The index of refraction of light passing from air into a second medium is 1.. If the angle of incidence is, what is the angle of refraction (to two decimal places)?....1 1) 1) 1) A light beam in air travels at. meters per second. If its angle of incidence to a second medium is and its angle of refraction in the second medium is, what is its speed in the second medium (to two decimal places)?.0 mps. mps. mps.0 mps 1) Solve the problem. 1) A weight suspended from a spring is vibrating vertically with up being the positive direction. The function f(t) = sin πt - π represents the distance in centimeters of the weight from its rest position as a function of time t, where t is measured in seconds. Find the smallest positive value of t for which the displacement of the weight above its rest position is cm. Round answer to three decimal places, if necessary. 0. sec 0. sec 1. sec. sec 1) 1

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) Wildlife management personnel use predator-prey equations to model the populations of certain predators and their prey in the wild. Suppose the population M of a predator after t months is given by 1) M = 0 + 1 sin π t while the population N of its primary prey is given by N = 1,0 + 00 cos π t Find the values of t, 0 t < 1, for which the predator population is. Find the values of t, 0 t < 1, for which the prey population is,. ) You are flying a kite and want to know its angle of elevation. The string on the kite is meters long and the kite is level with the top of a building that you know is meters high. Use an inverse trigonometric function to find the angle of elevation of the kite. Round to two decimal places. ) 1

Answer Key Testname: UNTITLED1 1) D ) C ) A ) C ) D ) A ) D ) A ) D ) B 11) D 1) C 1) D 1) C 1) B 1) D 1) C 1) C 1) A 0) C 1) C ) D ) sin x + π = sin x cos π + sin π cos x = (sin x)(0) + (1)(cos x) = cos x. ) cos x + π = cos x cos π - sin x sin π = cos x - 1 sin x. ) tan x - π = tan x - tan π/ 1 + (tan x)(tan π/) = tan x - 1 1 + tan x. ) tan π sin ((π/) + x) sin (π/) cos x + sin x cos (π/) + x = = cos ((π/) + x) cos (π/) cos x - sin (π/) sin x = 1 cos x + sin x 0 0 cos x - 1 sin x π ) cos - θ = cos π cos θ + sin π sin θ = 0 cos θ - 1 sin θ = - sin θ ) csc π + u = 1 sin (π/) cos u + cos (π/) sin u = 1 = sec u. 1 cos u + 0 sin u ) cos(α + β) cos α cos β - sin α sin β cos α cos β = = cos α sin β cos α sin β cos α sin β = -cot x. sin α sin β - cos α sin β = cos β sin β - sin α = cot β - tan α cos α 0) cos (x - y) - cos (x + y) = cos x cos y + sin x sin y - ( cos x cos y - sin x sin y) = sin x sin y. cos (x - y) cos x cos y + sin x sin y 1/(cos x cos y) cos x cos y + sin x sin y 1) = = cos (x + y) cos x cos y - sin x sin y 1/(cos x cos y) cos x cos y - sin x sin y = 1 + tan x tan y 1 - tan x tan y. ) cot(π - θ) = ) cot(α + β) = ) D ) B cos(π - θ) sin(π - θ) cos π cos θ + sin π sin θ (-1) cos θ + 0 sin θ = = sin π cos θ - cos π sin θ 0 cos θ - (-1) sin θ = - cos θ sin θ = - cot θ 1 1 - tan α tan β 1 - (x + 1)(x - 1) = = = 1 - (x - 1) = - x tan(α + β) tan α + tan β (x + 1) + (x - 1) x x 1

Answer Key Testname: UNTITLED1 ) B ) A ) B ) A 0) C 1) C ) D ) C ) B ) D ) B ) C ) D ) C 0) D 1) D ) D ) D ) θ = 1 : R = 0,000, H = g θ =. : R = 000( - ) ; g 0,000( ) 000( - ), H = g g ) tan u (1 + cos(u)) = 1 - cos(u) (1 + cos(u)) = 1 - cos(u) 1 + cos(u) ) cot(θ) = cos(θ) sin(θ) = 1 - sin θ sin θ cos θ = 1 sin θ - cos θ sin θ = csc θ - cot θ ) cos(x) = cos(x + x) = cos(x) cos x - sin(x) sin x = (cos x - sin x) cos x - sin x cos x sin x = cos x - sin x cos x - sin x cos x = cos x - sin x cos x. ) cot u = 1 tan u = 1 + cos u csc u + cot u = 1 - cos u csc u - cot u ) cos(u) = cos[(u)] = cos (u) - 1 0) sin (x) = (sin (x))(sin(x)) = 1 - cos(x) (sin(x)) = 1 (sin(x))(1 - cos(x)). 1) sin θ - cos θ sin θ - cos θ = sin θ + sin θ cos θ + cos θ = 1 + sin θ cos θ = 1 + 1 sin(θ) ) cos(θ) = cos[(θ)] = cos (θ) - sin (θ) = (cos θ - sin θ) - ( sin θ cos θ) = cos θ - sin θ cos θ + sin θ - sin θ cos θ = cos θ - sin θ cos θ + sin θ ) A ) A ) C ) B ) A 1

Answer Key Testname: UNTITLED1 ) D ) B 0) A 1) B ) B ) A ) B ) A ) C ) B ) C ) A 0) A 1) B ) D ) D ) A ) B ) D ) B ) D ) D 0) D 1) C ) D ) D ) C ) D sin (θ) + sin (θ) sin (θ) cos (θ) sin (θ) ) = = cos (θ) + cos (θ) cos (θ) cos (θ) cos (θ) ) ) sin (θ) + sin (θ) sin (θ) - sin (θ) = sin (θ) cos (θ) sin (θ) cos (θ) = sin (θ) cos (θ) = tan (θ) cos (θ) tan (θ) = sin (θ) tan (θ) cos (θ) - cos (θ) - sin (θ) sin (θ) sin (θ) = = - cos (θ) + cos (θ) cos (θ) cos (θ) cos (θ) sin(θ) = - tan (θ) tan (θ) cos(θ) ) sin θ[sin θ + sin(θ)] = sin θ[ sin(θ) cos(θ)] = cos(θ)[sin θ sin(θ)] = cos(θ) 1 (cos(θ) - cos(θ)) = cos( 0) θ)[cos(θ) - cos(θ)] sin α - β cos α + β sin α - sin β sin α + sin β = sin α + β cos α - β = sin α - β cos α - β cos α + β sin α + β = tan α - β cot α + β 1) D ) C ) A ) A ) B ) D ) B 1

Answer Key Testname: UNTITLED1 ) B ) B 1) C 111) B 11) C 11) A 11) B 11) B 11) B 11) D 11) C 11) C ) D 11) B 1) A 1) C 1) D 1) C 1) D 1) D 1) A 1) M =, t = ; N =,, t =, ) 0. 0