788 SECTION 16.1 CHAPTER 16 SECTION f =(6x y) i +(1 x) j 2. f =(2Ax + By)i +(Bx +2Cy)j. 3. f = e xy [(xy +1)i + x 2 j]

Σχετικά έγγραφα
Homework 8 Model Solution Section

Areas and Lengths in Polar Coordinates

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Section 8.3 Trigonometric Equations

Solution to Review Problems for Midterm III

Areas and Lengths in Polar Coordinates

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

Second Order Partial Differential Equations

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Inverse trigonometric functions & General Solution of Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Trigonometric Formula Sheet

Example Sheet 3 Solutions

Rectangular Polar Parametric

Solutions to Exercise Sheet 5

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Matrices and Determinants

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

2 Composition. Invertible Mappings

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Quadratic Expressions

Parametrized Surfaces

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CRASH COURSE IN PRECALCULUS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

PARTIAL NOTES for 6.1 Trigonometric Identities

Section 9.2 Polar Equations and Graphs

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Answer sheet: Third Midterm for Math 2339

Section 7.6 Double and Half Angle Formulas

1 String with massive end-points

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Problem Set 3: Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

F19MC2 Solutions 9 Complex Analysis

Numerical Analysis FMN011

Spherical Coordinates

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Srednicki Chapter 55

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

D Alembert s Solution to the Wave Equation

Differential equations

Math221: HW# 1 solutions

Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Homework 3 Solutions

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Second Order RLC Filters

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Lecture 26: Circular domains

EE512: Error Control Coding

C.S. 430 Assignment 6, Sample Solutions

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Differentiation exercise show differential equation

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

Statistical Inference I Locally most powerful tests

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

New bounds for spherical two-distance sets and equiangular lines

Trigonometry 1.TRIGONOMETRIC RATIOS

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Approximation of distance between locations on earth given by latitude and longitude

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Reminders: linear functions

( y) Partial Differential Equations

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

derivation of the Laplacian from rectangular to spherical coordinates

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

is like multiplying by the conversion factor of. Dividing by 2π gives you the

6.3 Forecasting ARMA processes

10.7 Performance of Second-Order System (Unit Step Response)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

( ) 2 and compare to M.

Derivations of Useful Trigonometric Identities

If we restrict the domain of y = sin x to [ π 2, π 2

Section 8.2 Graphs of Polar Equations

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

4.6 Autoregressive Moving Average Model ARMA(1,1)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Transcript:

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 788 SECTION 6. CHAPTER 6 SECTION 6.. f =6x y) i + x) j. f =Ax + By)i +Bx +Cy)j. f = e xy [xy +)i + x j] 4. f = x + y ) [y x +xy)i +y x xy)j] 5. f = [ y sinx +)+4x y cosx +) ] i +4xy sinx +)j 6. f = x x + y i + y x + y j 7. f =e x y + e y x ) i + e x y e y x ) j =e x y + e y x )i j) 8. f = AD BC [ yi xj ] Cx + Dy) 9. f =z +xy) i +x +yz) j +y +zx) k 0. f = x x + y + z i + y x + y + z j + z x + y + z k. f = e z xy i + x j x y k). [ xyz f = x + y + z [ + ] [ + yz lnx + y + z) i + xyz + xy lnx + y + z) x + y + z ] k xyz + xz lnx + y + z) x + y + z. f = e x+y cos z + ) i +e x+y cos z + ) j ze x+y sin z + ) k 4. f = e yz /x yz x 4 i + z x j + yz ) x k 5. f = 6. f = [ y cosxy)+ ] i +xcosxy) j + x z k ) xy z 4 i + x x ) z z j y z +xz k 7. f =4x y) i +8y x) j; at, ), f = i +8j 8. f = x y) yi +xj), f, ) = i + j ] j 9. f = x x + y i + y x + y j; at, ), f = 4 5 i + 5 j

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 0. f = tan y/x) xy ) ) x π x + y i + x + y j, f, ) = 4 ) i + j. f = sin xy + xy cos xy) i + x cos xy j; at,π/), f = i SECTION 6. 789. f = e x +y ) [y x y)i +x xy )j], f, ) = e i j). f = e x sin z +y) i +e x cos z +y) j + e x cos z +y) k; at 0,π/4,π/4), f = i +j + k) 4. f = cos πzi cos πzj πx y) sin πzk, f, 0, ) = πk 5. f = i y y + z j z y + z k; at,, 4), f = i + 5 j 4 5 k 6. f = sinxyz )yz i + xz j +xyzk), f π, 4 ), = 7. a) f0, ) = 4 i b) f 4 π, 6 π) = c) f,e)= e) i j 8. a) f,, ) = 8 i + j 7 c) f,e,π/6) = i + π e j + k 9. For the function fx, y) =x xy + y, we have + ) i + 4 i + π j π ) k ) + j 8 k b) f,, ) = 5 8 i + 9 j + 8 k fx + h) fx) =fx + h,y+ h ) fx, y) =x + h ) x + h )y + h )+y + h ) [ x xy + y ] = [6x y) i + x) j] h i + h j)+h h h = [6x y) i + x) j] h +h h h The remainder gh) =h h h =h i h j) h i + h j), and gh) h = h i h j h cos θ h i h j h Since h i h j 0 as h 0 it follows that f =6x y) i + x) j 0. fx + h) fx) =[x +y) i +x +y) j] [h i + h j]+ h +h h + h ; gh) = h +h h + h is oh).

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 790 SECTION 6.. For the function fx, y, z) =x y + y z + z x, we have fx + h) fx) =fx + h,y+ h,z+ h ) fx, y, z) =x + h ) y + h )+y + h ) z + h )+z + h ) x + h ) x y + y z + z x ) = xy + z ) h + yz + x ) h + xz + y ) h +xh + yh + h h ) h + yh + zh + h h ) h +zh + xh + h h ) h = [ xy + z ) i + yz + x ) j + xz + y ) k ] h + gh) h, where gh) =xh + yh + h h ) i +yh + zh + h h ) j +zh + xh + h h ) k Since gh) h 0 as h 0 it follows that f = xy + z ) i + yz + x ) j + xz + y ) k [ ]. fx + h) fx) = xy +h x + h y) i +x j + zz + h ) k h i + h j + h k)+h ; gh) =h h is oh) and f =4xy i =x j + z k.. f = Fx, y) =xy i + +x ) j x =xy fx, y) =x y + gy) for some function g. Now, y = x + g y) =+x g y) = gy) =y + C, C a constant. Thus, fx, y) =x y + y + C 4. f =xy + x)i +x + y)j = f x =xy + x = fx, y) =x y + x + gy) Now, f y = x + g y) =x + y = g y) =y = gy) = y + C Thus, fx, y) =x y + x + y + C 5. f = Fx, y) =x + sin y) i +xcos y y) j x = x + sin y fx, y) = x + x sin y + gy) for some function g. Now, y = x cos y + g y) =x cos y y g y) = y gy) = y + C, C a constant. Thus, fx, y) = x + x sin y y + C. 6. f = yzi +xz +yz)j +xy + y )k = f x = yz = fx, y, z) =xyz + gy, z). f y = xz + g y = xz +yz = g y =yz = gy, z) =y z + hz) = fx, y, z) =xyz + y z + hz). f x = xy + y + h z) =xy + y = h z) =0 = hz) =C. Thus, fx, y, z) =xyz + y z + C. 7. With r =x + y + z ) / we have r x = x r, a) r y = y r, r z = z r. ln r) = x ln r) i + y ln r) j + ln r)k z = r r x i + r r y j + r r z k = x r i + y r j + z r k = r r

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION 6. 79 b) sin r) = x sin r) i + y sin r) j + sin r)k z = cos r r r r i + cos r j + cos r x y z k = cos r) x r i + cos r)y r j + cos r)z r k cos r ) = r r ) e c) e r r = r [ same method as in a) and b) ] r 8. With r n =x + y + z ) n/ we have r n x = n x + y + z ) n/) x) =nx + y + z ) n )/ x = nr n x. Similarly Therefore r n y = nrn y and r n z = nrn z. r n = nr n xi + nr n yj + nr n zk = nr n xi + yj + zk) =nr n r 9. a) f =x i +y j = 0 = x = y =0; f = 0 at 0, 0). b) c) f has an absolute minimum at 0, 0) 40. a) f = xi + yj) =0 at 0, 0) 4 x y b) c) f has a maximum at 0, 0)

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 79 SECTION 6. 4. a) Let c = c i + c j + c k. First, we take h = hi. Since c h is oh), c h 0 = lim h 0 h = lim c h h 0 h = c. Similarly, c = 0 and c =0. b) y z) h =[fx + h) fx) z h]+[y h fx + h)+fx)]=oh)+oh) =oh), so that, by part a), y z = 0. 4. lim gh) = lim h gh) ) ) = lim h 0 h 0 h h lim h 0 h 0 ) gh) =0)0) =0). h 4. a) In Section 5.6 we showed that f was not continuous at 0, 0). It is therefore not differentiable at 0, 0). b) For x, y) 0, 0), x = y y 4 = y x = yy x ) x + y. As x, y) tends to 0, 0) along the positive y-axis, ) tends to. SECTION 6.. f =xi +6yj, f, ) = i +6j, u = i j), f u, ) = f, ) u =. f = [ + cosx + y)]i + cosx + y)j, f0, 0) = i + j, u = 5 i + j), f u0, 0) = f0, 0) u = 5. f =e y ye x ) i +xe y e x ) j, f, 0) = i + e)j, u = i +4j), 5 f u, 0) = f, 0) u = 7 4e) 5 4. f = x y) yi +xj), f, 0) = j, u = i j), f u, 0) = f, 0) u = a b)y b a)x a b 5. f = i + j, f, ) = x + y) x + y) 4 i j), u = i j), f u, ) = f, ) u = 4 a b) d c 6. f = [d c)yi +c d)xj], f, ) = cx + dy) c + d) i j), u = ci dj), c + d f u, d c ) = f, ) u = c + d) c + d 7. f = x x + y i + y x j, f0, ) = j, u = 8 i + j), + y 65 f u0, ) = f0, ) u = 65

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 8. f =xyi +x + sec y)j, f, π 4 )= π i +j, u = i j) 5 f u, π ) = f, π ) u = π ) 4 4 5 +6 SECTION 6. 79 9. f =y + z)i +x + z)j +y + x)k, f,, ) = j, u = 6 6i +j + k), f u,, ) = f,, ) u = 6 0. f =z +xy)i +x +yz)j +y +zx)k, f, 0, ) = i + j +k, u = j k) 0 0 f u, 0, ) = f, 0, ) u = 0. f = x + y + z ) i +yj +z k ), f,, ) = 6i j +k), u = i + j), f u,, ) = f,, ) u =. f =Ax + Byz)i +Bxz +Cy)j + Bxyk, f,, )=A + B)i +B +4C)j +Bk u = Ai + Bj + Ck); A + B + C f. f = tan y + z) i + x +y + z) j + u = i + j k), f u, 0, ) = f, 0, ) u = π 4 = u,, ) = f,, ) u = A + B +AB +6BC A + B + C x +y + z) k, f, 0, ) = π 4 i + j + k, π 4. f =y cos z πyz cos πx +6zx)i +xy cos z z sin πx)j + xy sin z 4yz sin πx +x )k f0,,π)=π )i; u = i j +k), f u0,,π)= f0,,π) u = π ). 5. f = x x + y i + y x + y j, u = xi yj), x + y f ux, y) = f u = x + y 6. f = e xy [ y + xy y )i +x )y + xy )j ], f0, ) = j u = i +j), f u0, ) = f0, ) u = 4 5 5 5 7. f =Ax +By) i +Bx +Cy) j, fa, b) =aa +bb)i +ab +bc) j a) u = i + j), f u a, b) = fa, b) u = [ab A)+bC B)] b) u = i j), f u a, b) = fa, b) u = [aa B)+bB C)] 8. f = z x i z y j +ln x y ) k, f,, ) = i j u = i + j k); f u,, ) = f,, ) u = 0

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 794 SECTION 6. 9. f = e y z i +xyj xzk), f,, ) = i +4j +4k, r t) =i sin t ) j e t k, at,, ) t =, r ) = i k, u = 5 5i k), f u,, ) = f,, ) u = 7 5 5 0. f =xi + zj + yk, f,, ) = i +j k Direction: r ) = i +j k, u = i +j k), f u,, ) = f,, ) u =. f =x +yz) i + xz z ) j +xy yz) k, f,, ) = 6 i k The vectors v = ± i + j k) are direction vectors for the given line; u = ± are corresponding unit vectors; f u,, ) = f,, ) ±u) =± 8 4 ) [ i + j k] 4. f = e x cos πyzi πz sin πyzj πy sin πyzk), f0,, )= π j π k The vectors v = ± i +j +5k) are direction vectors for the line; u = ± are corresponding unit vectors; f u0,, )= f0,, π ) ±u) = 8 ) [ i +j +5k] 8. f =y e x i +ye x j, f0, ) = i +j, f = f, f = i + j) f increases most rapidly in the direction u = i + j); the rate of change is. f decreases most rapidly in the direction v = i + j); the rate of change is. 4. f = [ + cosx +y)]i + cosx +y)j, f0, 0) = i +j Fastest increase in direction u = i + j), rate of change f0, 0) = Fastest decrease in direction v = i + j), rate of change 5. f = x x + y + z i + y x + y + z j + f,, ) = 6 i j + k), f = z x + y + z k, f increases most rapidly in the direction u = i j + k); the rate of change is. 6 f decreases most rapidly in the direction v = i j + k); the rate of change is. 6 6. f =xze y + z )i + x ze y j +x e y +xz)k, f, ln, ) = i +4j +6k Fastest increase in direction u = 6i +j +k), rate of change f, ln, ) =4 7 Fastest decrease in direction v = 6i +j +k), 7 rate of change 4 7. f = f x 0 ) i. If f x 0 ) 0, the gradient points in the direction in which f increases: to the right if f x 0 ) > 0, to the left if f x 0 ) < 0.

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION 6. 795 8. 0; the vector c = y x 0,y 0 )i x x 0,y 0 )j is perpendicular to the gradient fx 0,y 0 ) and points along the level curve of f at x 0,y 0 ). fh, 0) f0, 0) h 9. a) lim = lim h 0 h h 0 h 0. a) h = lim h 0 h does not exist b) no; by Theorem 6..5 f cannot be differentiable at 0, 0) gx + h)oh) h [gx + h) gx)] fx) h b) h by Schwarz s inequality = gx + h) oh) h gx)0) = 0. λx, y) = 8 xi 6yj a) λ, ) = 8 λ, ) i =6j, u = [gx + h) gx)] fx) h h = gx + h) gx) fx) 0 8 λ, ) = i 6j, λ u, ) = λ, ) u = 97 97 b) u = i, λ u, ) = λ, ) u = 8 i j) i = 8 c) u = i + j), λ u, ) = λ, ) u = 6 i j) [ ] i + j) = 6. I = 4xi yj. We want the curve rt) =xt)i + yt)j which begins at, ) and has tangent vector r t) in the direction I. We can satisfy these conditions by setting These equations imply that x t) = 4xt), x0) = ; y t) = yt), y0) =. xt) = e 4t, yt) =e t. Eliminating the parameter, we get x = y ; the particle will follow the parabolic path x = y toward the origin.. a) The projection of the path onto the xy-plane is the curve C : rt) = xt)i + yt)j which begins at, ) and at each point has its tangent vector in the direction of f. Since we have the initial-value problems f =xi +6yj, x t) = xt), x0) = and y t) = 6yt), y0) =. From Theorem 7.6. we find that xt) =e t and yt) =e 6t. Eliminating the parameter t, we find that C is the curve y = x from, ) to 0, 0).

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 796 SECTION 6. b) Here so that x t) = xt), x0) = and y t) = 6yt), y0) = xt) =e t and yt) = e 6t. Eliminating the parameter t, we find that the projection of the path onto the xy-plane is the curve y = x from, ) to 0, 0). 4. z = fx, y) = x y ; f = xi yj, so we choose the projection rt) =xt)i + yt)j of the path onto the xy-plane such that x t) =xt), y t) = yt) a) With initial point,, ), we get xt) = et,yt) =e t, or y = x from, ), in the direction of decreasing x. b) With initial point, 0, ), we get xt) =et,yt) =0, or the x-axis from, 0), in the direction of increasing x. 5. The projection of the path onto the xy-plane is the curve C : rt) = xt)i + yt)j which begins at a, b) and at each point has its tangent vector in the direction of f = a xi +b yj ). We can satisfy these conditions by setting so that x t) = a xt), x0) = a and y t) = b yt), y0) = b xt) =ae a t and yt) =be bt. Since [ x ] b = a ) b [ e a t y ] a =, b C is the curve b) a x b =a) b y a from a, b) to 0, 0). 6. The particle must go in he direction T = e y cos xi e y sin xj, so we set x t) = e yt) cos xt), y t) = e yt) sin xt). Dividing, we have y t) sin xt) x = t) cos xt), or dy = tan x. dx 0, 0), we get y =ln sec x, in the direction of decreasing x since x 0) < 0). 7. We want the curve C : rt) = xt)i + yt)j which begins at π/4, 0) and at each point has its tangent vector in the direction of From T = e y sin x i e y cos x j. x t) = e y sin x and y t) = e y cos x With initial point

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION 6. 797 we obtain so that dy dx = y t) x t) = cot x y =ln sin x + C. Since y = 0 when x = π/4, we get C =ln and y =ln sin x. As T π/4, 0) = i j, the curve y =ln sin x is followed in the direction of decreasing x. 8. z = x)i + 6y)j, so the projection of the path onto the xy-plane satisfies x t) = xt), y dy t) = 6yt), or dx = 6y. With initial point 0, 0), this gives the curve x y =x ) +, in the direction of increasing x. 9. a) b) f +h, + h) ) f, 4) + h) ++h) 6 lim = lim h 0 h h 0 h [ ] 4h + h = lim h 0 4 = lim h 0 44 + h) =6 h ) ) h +8 h +8 f, 4+h f, 4) +4+h) 6 4 4 lim = lim h 0 h h 0 h = lim h 0 6 h +h ++4+h 6 h = lim h 0 6 h +4) =4 c) u = 7 7 i +4j), f, 4) = i + j; f u, 4) = f, 4) u = 7 6 7 d) The limits computed in a) and b) are not directional derivatives. In a) and b) we have, in essence, computed f, 4) r 0 taking r 0 = i +4j in a) and r 0 = 4i + j in b). is r 0 a unit vector. GMm 40. f = xi + yj + zk) = GMm x + y + z ) / r r 4. a) u = cos θ i + sin θ j, fx, y) = x i + y j; f ux, y) = f u = x i + ) y j b) f = x +y y ) i +x xy) j, f, ) = i +j cos θ i + sin θ j) = x f u, ) = cosπ/) + sinπ/) = cos θ + y sin θ In neither case

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 798 SECTION 6. 4. f ux, y) = x cos 5π 4 + y sin 5π ) ) 4 =xey +x e y = xe y + x) f u, ln ) = e ln +)= 4 4. fg)= fg) x i + fg) j + fg) k = f g y z x + g ) x 44. ) f = g x = f g x i + g y j + g z k = f g + g f ) f i + g y ) f j + g z i + f g y + g y ) + g ) f k g ) j + f g z + g z ) x i + y j + z k ) k = x g f g x g i + y g f g y g j + z g f g z g k = gx) fx) fx) gx) g x) 45. f n = n x i + n y j + n n n n k = nf i + nf j + nf z x y z k = nf n f SECTION 6.. fb) =f, ) = ; fa) =f0, ) = 0; fb) fa) = f = x y ) i x j; b a = i +j and f b a) =x y x The line segment joining a and b is parametrized by Thus, we need to solve the equation x = t, y =+t, 0 t t +t) t =, which is the same as t 4t +=0, 0 t The solutions are: t =,t=. Thus, c =, 5 ) satisfies the equation. Note that the endpoint b also satisfies the equation.. f =4zi yj +4x +z)k, fa) =f0,, ) = 0, fb) =f,, ) = b a = i +j + k, so we want x, y, z) such that f b a) =4z 4y +4x +z =6z 4y +4x = fb) fa) = Parametrizing the line segment from a to b by xt) = t, yt)= + t, zt) = + t, we get t =, or c =,, ). a) fx, y, z) =a x + a y + a z + C b) fx, y, z) =gx, y, z)+a x + a y + a z + C 4. Using the mean-value theorem 6.., there exists c such that fc) b a) =0

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 5. a) U is not connected b) i) gx) =fx) ii) gx) = fx) 6. By the mean-value theorem fx ) fx )= fc) x x ) for some point c on the line segment x x. Since Ω is convex, c is in Ω. Thus SECTION 6. 799 fx ) fx ) = fc) x x ) fc) x x M x x. by Schwarz s inequality 7. f =xyi + x j; frt)) r t) = i + e t j ) e t i e t j)=e t 8. f = i j; frt)) r t) =i j) ai ab sin atj) =a + b sin at) 9. f = x +y x ) i + frt)) r t) = 0. f = x + y 4xi +y j) y sin t +y x j, frt)) = ) + cos t i + cos t + cos t j ) 4 sin t cos t cos t i sin t j) = + cos = t sin t + cos t i + cos t + cos t j frt)) r t) = e 4t + t 4et i +t / j) e t i + t / j)= 8e4t + e 4t + t. f =e y ye x ) i +xe y + e x ) j; frt)) = t t ln t) i + frt)) r t) =. f = t t ln t) i + x + y xi + yj + zk) + z frt)) r t) =. f = yi +x z)j yk; t t ln t + t ) ) j t i +[+lnt] j +e 4t sin ti + cos tj + et k) cos ti sin tj +e t k)= 4e4t +e 4t frt)) r t) = t i + t t ) j t k ) i +tj +t k ) =t 5t 4 sin t + cos t t t ln t + ) j t ) ) t = t t +lnt + [ln t] + t 4. f =x i +y j frt)) r t) =a cos ωti +b sin ωtj) ωa sin ωti + ωb cos ωtj + bωk) =ωb a ) sin ωt cos ωt 5. f =xi +yj + k; frt)) r t) =a cos ωt i +b sin ωt j + k) aω sin ωt i + bω cos ωt j + bωk) =ω b a ) sin ωt cos ωt + bω

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 800 SECTION 6. 6. f = y cosx + z)i +ysinx + z)j + y cosx + z)k frt)) r t) = [cos t cost + t )i + cos t sint + t )j + cos t cost + t )k] i sin tj +t k) = cos t[+t ) cos t cost + t ) sin t sint + t )] 7. du dt = dx x dt + dy =x y) sin t)+4y x)cos t) y dt = cos t sin t + sin t cos t = sin t cos t 8. du dt = x dx dt + y dy dt = + = y x ) x t + ) y t ) + t ) t +t ) t ) =t +4+ t 9. 0.... du dt = dx x dt + dy y dt =e x sin y + e y cos x) ) +e x cos y + e y sin x) ) = e t/ sin t + cos t) + e t cos t + sin t) du dt = x dx dt + y dy =4x y) sin t)+y x) cos t dt = sin tsin t 4 cos t) + cos t sin t cos t) du dt = dx x dt + dy y dt =ex sin y)t)+e x cos y)π) = e t [t sinπt)+π cosπt)] du dt = x dx dt + y dy dt + z dz = t e t t + + et +ln t t + dt = z x t + z y ) e t + t) du dt = dx x dt + dy y dt + dz z dt =y + z)t)+x + z) t)+y + x)t ) y ) t +ln e t + t) x = t)t)+t t + ) t)+tt ) = 4t +6t 4t 4. du dt = x dx dt + y dy dt + z dz = sin πy + πz sin πx)t + πx cos πy ) cos πx t) dt =t [ sin[π t)] + π t ) sinπt ) ] πt cos[π t)]+tcosπt ) 5. V = πr h, dv dt = V r dr dt + V h dh dt = πrh ) dr dt + πr ) dh dt.

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 At the given instant, dv dt = π80)) + 88 π96) ) = π. The volume is increasing at the rate of 88 π in. / sec. 6. v = πr h, dr dt =, dv dt = v r dr dt + v h dh dt =πrhdr dh + πr dt dt dh dv =, r =, h =8 = dt dt = 49π : SECTION 6. 80 decreasing at the rate of 49π cm /sec. 7. A = xy sin θ; da dt = A dx x dt + A dy y dt + A [ dθ θ dt = y sin θ) dx ] dy dθ +xsin θ) +xy cos θ). dt dt dt At the given instant da dt = [ sin ) 0.5)+.5sin ) 0.5).5) cos ) 0.)] = 0.87 ft /s = 4.4 in /s 8. 9. 0. dz dt =xdx dt + y dy dt. = dz dt =xdx dt + y But x + y = = x dx dt x ) dx = x dx y dt dt = 5. +y dy dt s = x x s + y =x y)cos t)+ x)t cos s) y s =scos t t sin s cos t st cos s cos t t = x x t + y =x y) s sin t)+ x)sin s) y t = s cos t sin t + st sin s sin t s cos t sin s s = x x s + y y s = [cosx y) sinx + y)]t +[ cosx y) sinx + y)]s dy =0 = dt = x dx y dt z is increasing 5 centimeters per second =t s) cosst s + t ) t +s) sinst + s t ) t = x x t + y y t = [cosx y) sinx + y)]s +[ cosx y) sinx + y)] t) =s +t) cosst s + t ) s t) sinst + s t ). s = x x s + y y s =xtan y)st)+ x sec y ) ) =4s t tan s + t ) + s 4 t sec s + t ) t = x x t + y y t =xtan y) s ) + x sec y ) t) =s 4 t tan s + t ) +s 4 t sec s + t )

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 80 SECTION 6... s = x x s + y y s + z z s = z y sec xy tan xyt)+z x sec xy tan xy +zsec xyst) = sec[sts t )] s 4 t s t ) tan[sts t )]+s t tan[sts t )]+4s t ) t = z y sec xy tan xys)+z x sec xy tan xy t)+zsec xys ) = sec[sts t )] s 5 t s t ) tan[sts t )] 4s 5 t 4 tan[sts t )]+s 4 t ) s = x x s + y y s + z z s =x y)cos t)+ x) cos t s))+ztcos s) =scos t sin t s) cos t + s cos t cos t s)+t sin s cos s t = x x t + y y t + z z t =x y) s sin t)+ x)cos t s))+zsin s) = s cos t sin t + s sin t s) sin t s cos t cos t s)+t sin s 4. s = x x s + y y s + z z s = e yz s + xz e yz 0+xyze yz s = s et s +t ) +4st s + t ) lnst)e t s +t ) t = x x t + y y t + z z t = e yz t + xz e yz t +xyze yz t 5. 6. = t et s +t ) + t s + t )s +7t ) lnst)e t s +t ) d dt [frt))] = [ frt)) r ] t) r r t) t) = f ut) rt)) r t) where ut) = r t) r t) x [fr)] = d r [fr)] dr x = f r) r x = f r) x r ; similarly y [fr)] = f r) y r and z [fr)] = f r) z r. Therefore fr) =f r) x r i + f r) y r j + f r) z r k = f r) r r. 7. a) cos r) r r b) r cos r + sin r) r r 8. a) r ln r)=+lnr) r r b) e r )= re r r r = e r r

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION 6. 80 9. a) r cos r sin r) r r b) sin r r cos r sin r ) r r 40. a) b) du dt = dx ds x ds dt + y dy ds ds dt 4. a) b) r = x w x w r + x t ) t + y w r y w r + y t To obtain / s, replace each r by s. ) t + z w r z w r + z t ) t. r 4. a) b) r = x x r + z z r + w w r, v = y y v + w w v

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 804 SECTION 6. 4. 44. du dt = dx x dt + dy y dt d u dt = d x x dt + dx dt and the result follows. s = x x s + y y s u s = x [ u x dx dt + u y x x s + x s ] dy + d y dt y dt + dy [ ] u dx dt x y dt + u dy y dt u x x s + u y x ) y s + y y s + y ) u x s x y s + u y y s 45. a) b) = u x ) x + u s x y x y s s + u y r = x x r + y y r = cos θ + x y sin θ y s ) + x x s + y y s θ = x x θ + y y θ = r sin θ)+r cos θ) x y ) ) = cos θ + ) cos θ sin θ + sin θ, r x x y y ) ) r = sin θ ) cos θ sin θ + cos θ, θ x x y y ) + ) ) r r = cos θ + sin θ ) ) + sin θ + cos θ ) = θ x y ) + x ) y 46. a) By Exercise 45 a) w r = w w w cos θ + sin θ, x y w Solve these equations simultaneously for and x b) To obtain the first pair of equations set w = r; to obtain the second pair of equations set w = θ. θ = w w r sin θ + r cos θ. x y w y. c) θ is not independent of x; r = x + y gives r x = x x + y = r cos θ = cos θ r 47. Solve the equations in Exercise 45 a) for x x = r cos θ r θ Then and y : sin θ, y = r sin θ + r θ cos θ u = x i + y j = r cos θ i + sin θ j)+ sin θ i + cos θ j) r θ 48. ur, θ) =r = u =re r

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 49. ux, y) =x xy + y = r r cos θ sin θ = r 50. u = r e r + r θ = x x θ + y r = r sin θ), θ e θ = r sin θ)e r r cos θ e θ y = r sin θ + r cos θ θ x y u = sin θ r θ x r sin θ u x x r + u y x sin θ) θ = r cos θ SECTION 6. 805 ) y + cos θ ) r y + r cos θ u x x y r + u y y r = sin θ ) u + cos θ + r sin θ cos θ x y y u x + rcos θ sin θ) u x y 5. From Exercise 45 a), u r = u x cos θ + u y x sin θ cos θ + u y sin θ ) u θ = u x r sin θ u y x r sin θ cos θ + u y r cos θ r cos θ + x y sin θ. The term in parentheses is r. Now divide the second equation by r and add the two equations. The result follows. 5. ux, y) =x xy + y 4 4, dy dx = x = y y x 4y x = =x y, x y x y x y = x +4y 5. Set u = xe y + ye x x y. Then x = ey + ye x 4xy, y = xey + e x x dy dx = / x / y = ey + ye x 4xy xe y + e x x. 54. ux, y) =x / + y /, = dy dx = x y y / = x) x = x /, y = y / 55. Set u = x cos xy + y cos x. Then = cos xy xy sin xy y sin x, x y = x sin xy + cos x dy dx = / x cos xy xy sin xy y sin x = / y x. sin xy cos x

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 806 SECTION 6.4 56. Set ux, y, z) =z 4 + x z + y + xy. Then x =xz + y, y =y + x, z =4z +x z z x = x z = xz + y 4z +x z, z y = y z = y + x 4z +x z 57. Set u = cos xyz +ln x + y + z ). Then x = yz sin xyz + x x + y + z, z = xy sin xyz + z x + y + z. y z x = / x / z z y = / y / z = xz sin xyz + y x + y + z, and x yz x + y + z ) sin xyz = z xy x + y + z ) sin xyz, y xz x + y + z ) sin xyz = z xy x + y + z ) sin xyz. 58. a) Use du dt = du dt i + du dt j and apply the chain rule to u,u. b) i) du dt = tex cos yi + e x sin yj)+π e x sin yi + e x cos yj) = te t / cos πti + sin πtj)+πe t / sin πti + cos πtj) ii) ut) =e t / cos πti + e t / sin πtj du / sin πt + te dt = πet t / cos πt)i +πe t / cos πt + te t / sin πt)j 59. s = x x s + y y s, t = x x t + y y t 60. du dt = dx x dt + dy y dt + dz z dt where x = x i + x j + x k, y = y i + y j + y k, z = z i + z j + z k. SECTION 6.4. Set fx, y) =x + xy + y. Then, f =x + y)i +x +y)j, f, ) = i j. normal vector i + j; tangent vector i j tangent line x + y + = 0; normal line x y =0

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION 6.4 807. Set fx, y) =y x) x, f = y x +)i +y x)j, f, 4) = 6i +4j normal vector i + j; tangent vector i + j tangent line x y + = 0; normal line x +y 6 = 0. Set fx, y) = x + y ) 9 x y ). Then, f =[4xx + y ) 8x]i + [ 4y x + y ) +8y ] j, ) f, = 6 i +0j. normal vector i 5 j; tangent vector 5i + j tangent line x 5y + = 0; normal line 5x + y 6 =0 4. Set fx, y) =x + y, f =x i +y j, f, ) = i +j normal vector i +4j; tangent vector 4i j tangent line x +4y 9 = 0; normal line 4x y =0 5. Set fx, y) =xy x + y +5x. Then, f =y 4x +5)i +xy +)j, f4, ) = 7i +7j. normal vector 7i 7j; tangent vector 7i + 7j tangent line 7x 7y + 6 = 0; normal line 7x +7y 8=0 6. Set fx, y) =x 5 + y 5 x. f =5x 4 6x )i +5y 4 j, f, ) = i +5j normal vector i 5j; tangent vector 5i + j tangent line x 5y + 4 = 0; normal line 5x + y 6=0 7. Set fx, y) =x x y x + y. Then, f =6x xy ) i + x y +)j, f, ) = 5i +5j. normal vector i j; tangent vector i + j tangent line x y = 0; normal line x + y +=0 8. Set fx, y) =x + y +x. f =x +)i +yj, f, )=5i +6j normal vector 5i +6j; tangent vector 6i 5j tangent line 5x +6y = 0; normal line 6x 5y +=0 9. Set fx, y) =x y + a y. By 5.4.4) m = / x / y = xy x + a. At 0,a) the slope is 0. 0. Set fx, y, z) =x + y ) z. f =4xx + y )i +4yx + y )j k, f,, 4) = 8i +8j k Tangent plane: 8x +8y z = 0 Normal: x =+8t, y =+8t, z =4 t

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 808 SECTION 6.4. Set fx, y, z) =x + y xyz. Then, f =x yz) i +y xz) j xyk, f,, ) = 6i + 5 j 6k; tangent plane at,, ) : 6x ) + 5 y ) 6 z ) =0, which reduces to 4x 5y +4z =0. Normal: x =+4t, y = 5t, z = +4t. Set fx, y, z) =xy +z. f = y i +xyj +4zk, f,, ) = 4i +4j +8k Tangent plane: x + y +z 7=0 Normal: x =+t, y =+t, z =+t. Set z = gx, y) =axy. Then, g = ayi + axj, g tangent plane at, a, ) : z =x ) + a y a, ) = i + aj. ) a, which reduces to x + ay z =0 Normal: x =+t, y = a + at, z = t 4. Set fx, y, z) = x + y + z. f = x i + y j + z k, f, 4, ) = i + 4 j + k Tangent plane: x + y +z 8=0 Normal: x =+t, y =4+t, z =+t 5. Set z = gx, y) = sin x + sin y + sin x + y). Then, g = [cos x + cos x + y)] i + [cos y + cos x + y)] j, g0, 0) = i +j; tangent plane at 0, 0, 0): z 0=x 0)+y 0), x +y z =0. Normal: x =t, y =t, z = t 6. Set fx, y, z) =x + xy + y 6x + z. f =x + y 6)i +x +y)j k, f4,, 0) = k Tangent plane: z = 0 Normal: x =4, y =, z = 0 + t 7. Set fx, y, z) =b c x a c y a b z. Then, f x 0,y 0,z 0 )=b c x 0 i a c y 0 j a b z 0 k; tangent plane at x 0,y 0,z 0 ): b c x 0 x x 0 ) a c y 0 y y 0 ) a b z 0 z z 0 )=0, which can be rewritten as follows: b c x 0 x a c y 0 y a b z 0 z = b c x 0 a c y 0 a b z 0 = f x 0,y 0,z 0 )=a b c. Normal: x = x 0 +b c x 0 t, y = y 0 a c y 0 t, z = z 0 a b z 0 t

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION 6.4 809 8. Set fx, y, z) = sinx cos y) z. f = cos y cosx cos y)i x sin y cosx cos y)j k, f, π, 0) = j k Tangent plane: y + z = π Normal: x =, y = π + t, z = t 9. Set z = gx, y) =xy + a x + b y. g = y a x ) i + x b y ) j, g = 0 = y = a x and x = b y. Thus, y = a b 6 y 4, y = b 6 a, y = b /a, x = b y = a /b and g a /b, b /a ) =ab. The tangent plane is horizontal at a /b, b /a, ab ). 0. z = gx, y) =4x +y x + xy y. g =4 x + y)i ++x y)j g = 0 = 4 x + y =0, +x y =0 = x = 0,y= 8 The tangent plane is horizontal at 0, 8, 8 ).. Set z = gx, y) =xy. Then, g = yi + xj. The tangent plane is horizontal at 0, 0, 0). g = 0 = x = y =0.. z = gx, y) =x + y x y xy. g =x y)i +y x)j g =0 = x y =0=y x =0 = x =,y= The tangent plane is horizontal at,, ).. Set z = gx, y) =x +xy y 5x +y. Then, g =4x +y 5) i +x y +)j. g = 0 = 4x +y 5=0=x y + = x =, y = 6. The tangent plane is horizontal at, 6, ). 4. a) Set fx, y, z) =xy z. f = yi + xj k, f,, ) = i + j k upper unit normal = i j + k) b) Set fx, y, z) = x y z. f = x i + j k, f,, 0) = i + j k y lower unit normal: = i + j k) 5. x x 0 / x)x 0,y 0,z 0 ) = y y 0 / y)x 0,y 0,z 0 ) = z z 0 / z)x 0,y 0,z 0 )

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 80 SECTION 6.4 6. All the tangent planes pass through the origin. To see this, write the equation of the surface as xfx/y) z =0. The tangent plane at x 0,y 0,z 0 ) has equation [ ) )] [ )] x0 x x 0 ) f x0 x0 x0 + f y y 0 ) y 0 y 0 y 0 y f x0 z z 0 )=0. 0 y 0 The plane passes through the origin: x 0 y 0 f x0 y 0 ) x 0 f x0 y 0 ) + x 0 y 0 f x0 y 0 ) + z 0 = z 0 x 0 f x0 y 0 ) =0. 7. Since the tangent planes meet at right angles, the normals F and G meet at right angles: F x G x + F y G y + F z G z =0. 8. The sum of the intercepts is a. To see this, note that the equation of the tangent plane at x 0,y 0,z 0 ) can be written x x 0 + y y 0 + z z 0 =0. x0 y0 z0 Setting y = z = 0 we have x x 0 x0 = y 0 + z 0. Therefore the x-intercept is given by x = x 0 + x 0 y 0 + z 0 )=x 0 + x 0 a x 0 )= x 0 a. Similarly the y-intercept is y 0 a and the z-intercept is z0 a. The sum of the intercepts is x 0 + y 0 + z 0 ) a = a a = a. 9. The tangent plane at an arbitrary point x 0,y 0,z 0 ) has equation y 0 z 0 x x 0 )+x 0 z 0 y y 0 )+x 0 y 0 z z 0 )=0, which simplifies to x y 0 z 0 x + x 0 z 0 y + x 0 y 0 z =x 0 y 0 z 0 and thus to + y + z =. x 0 y 0 z 0 The volume of the pyramid is V = Bh = [ ] x0 )y 0 ) z 0 )= 9 x 0y 0 z 0 = 9 a. 0. The equation of the tangent plane at x 0,y 0,z 0 ) can be written x 0 / x x 0 )+y 0 / y y 0 )+z 0 / z z 0 )=0 Setting y = z =0, we get the x-intercept x = x 0 + x / 0 y / 0 + z / 0 )=x 0 + x / 0 a / x / 0 ) = x = x / 0 a / Similarly, the y-intercept is y / 0 a / and the z-intercept is z / 0 a /. The sum of the squares of the intercepts is x 0 / + y 0 / + z 0 / )a 4/ = a / a 4/ = a.

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION 6.4 8. The point,, ) is the tip of r). Since r t) =i t j 4tk, we have r ) = i j 4k. Now set fx, y, z) =x + y +z 5. The function has gradient xi +yj +6zk. At the point,, ), The angle θ between r ) and the gradient gives cos θ = i j 4k) 9 f = i +j 6k). i +j 6k) 7 = 9 7 = 0.504. 9 Therefore θ =.04 radians. The angle between the curve and the plane is π θ =.57.04 = 0.58 radians.. The curve passes through the point,, ) at t =, and its tangent vector is r ) = i +4j +k. For the ellipsoid, set fx, y, z) =x +y +z. f =xi +4yj +6zk, f,, ) = 6i +8j +6k, which is parallel to r ).. Set fx, y, z) =x y +x + z. Then, f =xy +)i +x yj +z k, f,, )=6i +8j +k. The plane tangent to fx, y, z) = 6 at,, ) has equation 6x )+8y ) + z )=0, or x +4y +6z =. Next, set gx, y, z) =x + y z. Then, g =6xi +yj k, g,, ) = i +j k. The plane tangent to gx, y, z) =9at,, ) is x )+y ) z )=0, or 6x + y z =. 4. Sphere: fx, y, z) =x + y + z 8x 8y 6z +4, f =x 8)i +y 8)j +z 6)k f,, ) = 4i 6j 4k Ellipsoid: gx, y, z) =x +y +z, g =xi +6yj +4zk g,, )=4i +6j +4k Since their normal vectors are parallel, the surfaces are tangent. 5. A normal vector to the sphere at,, ) is xi +y 4) j +z )k =i j +k. A normal vector to the paraboloid at,, ) is 6xi +4yj k =6i +4j k.

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 8 SECTION 6.4 Since i j +k) 6i +4j k) =0, the surfaces intersect at right angles. 6. Surface A: Set fx, y, z) =xy az, f = yi + xj azk Surface B: Set gx, y, z) =x + y + z, Surface C: Set hx, y, z) =z +x cz +y ). g =xi +yj +zk h =4xi 4cyj + c)zk Where surface A and surface B intersect, f g =4xy az )=0 Where surface A and surface C intersect, f h = 4 c)xy az )=0 Where surface B and surface C intersect, g h = 4[x cy + c)z ]=0 7. a) x +4y + 6 = 0 since plane p is vertical. b) y = 4 x +6)= 4 [4t )+6]= t z = x +y +=4t ) + t) +=4t 6t +6 rt) =4t )i tj + 4t 6t +6)k c) From part b) the tip of r) is,, ). r ) = 4i j +70j as d to write We take Rs) =i j +k)+s4i j +70k). d) Set gx, y) =x +y +. Then, g =xi +6yj and g, ) = 4i 8j. An equation for the plane tangent to z = gx, y) at,, ) is z = 4x ) 8y + ) which reduces to 4x 8y z =9. e) Substituting t for x in the equations for p and p, we obtain From the first equation and then from the second equation Thus, ) rt) =ti 4 t + )j + 5 t ) k. t +4y + 6 = 0 and 4t 8y z =9. y = 4 t +) z =4t 8 [ 4 t +)] 9 = 5 t. Lines l and l are the same. To see this, consider how l and l are formed; to assure yourself, replace t in ) by4s + to obtain Rs) found in part c).

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 8. a) normal vector: 5 i 4 4 5 j; normal line: x =+ 5 t, y = b) tangent line: x =+ 4 5 c) y t, y =+ 5 t SECTION 6.4 8 5 t x 9. a) normal vector: i +j +4k; normal line: x =+t, y =+t, z =+4t b) tangent plane: x )+y )+4z ) = 0 or x + y +z 7=0 c) 40. a) b).5 0.5 0-0 c) f = 0 at ±, 0), - 0 0, ± ) / 0-0.5 - -.5 -.5 - -0.5 0 0.5.5

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 84 SECTION 6.5 4. a) b).5 0.5 0-0.5-0 -.5 -.5 - -0.5 0 0.5.5 0-0 - c) f = 4x 4x ) i 4y 4y ) j; f =0: 4x 4x =0 = x =0, ±; 4y 4y =0 = y =0, ± f = 0 at 0, 0), ±, 0), 0, ±), ±, ±) 4. a) b) 0 - - 0-0 - - c) f = 0 at 0, 0), ± /, ± / ) 0 - - - - 0 SECTION 6.5. f = x) i y j = 0 only at, 0). The difference f + h, k) f, 0) = [ + h) + h) k ] = h k 0 for all small h and k; there is a local maximum of at, 0).. f = x) i ++y) j = 0 only at, ). The difference f + h, +k) f, ) = [ + h)+ +k) + h) + +k) +5] 5= h + k does not keep a constant sign for small h and k;, ) is a saddle point.

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION 6.5 85. f =x + y +)i +x +y) j = 0 only at, ). The difference f +h, +k) f, ) =[ +h) + +h) + k)++k) + +h)+] ) = h + hk + k is nonnegative for all small h and k. To see this, note that h + hk + k h h k + k = h k ) 0; there is a local minimum of at, ). 4. f =x ) i + j is never 0 ; there are no stationary points and no local extreme values. 5. f =x + y 6) i +x +y) j = 0 only at 4, ). f xx =, f xy =, f yy =. At 4, ), D=> 0 and A => 0 so we have a local min; the value is 0. 6. f =x +y +)i +x +6y + 0) j = 0 only at, ). f x =, f y x =, f y =6; D = 6 > 0, A= = local min; the value is 8. 7. f =x 6y) i + y 6x ) j = 0 at, ) and 0, 0). f xx =6x, f xy = 6, f yy =6y, D =6xy 6. At, ), D= 08 > 0 and A => 0 so we have a local min; the value is 8. At 0, 0), D= 6 < 0 so we have a saddle point. 8. f =6x + y +5)i +x y 5) j = 0 at f x =6, f y x =, 5 ), 5. f y = ; D =6 ) < 0; 5/, 5/) is a saddle point. 9. f =x 6y +6)i +y 6x +)j = 0 at 5, 7 ) and, ). f xx =6x, f xy = 6, f yy =, D =x 6. At 5, 7 7 ),D=4> 0 and A =0> 0 so we have a local min; the value is 4. At, ),D= 4 < 0 so we have a saddle point. 0. f =x y ) i + x +4y +5)j = 0 at, ). f x =, the value is 4. f y x =, f y =4; D = 4 ) > 0, A= = local minimum;. f = sin y i + x cos y j = 0 at 0,nπ) for all integral n. f xx =0, f xy = cos y, f yy = x sin y. Since D = cos nπ = < 0, each stationary point is a saddle point.

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 86 SECTION 6.5. f = sin y i ++x cos y) j = 0 at, nπ) and, n +)π) for all integral n. f x =0, f = cos y, y x so they are all saddle points f y = x sin y; D =0 x sin y) cos y<0 at the above points. f =xy ++y ) i + x +xy + ) j = 0 at, ) and, ). f xx =y, f xy =x +y, f yy =x, D =4xy 4x + y). At both, ) and, ) we have saddle points since D = 4 < 0. 4. f = y + y ) x i + x y ) j = x + y x x i x + y y xy j is never 0; no stationary points, no local extreme values. 5. f =y x ) i + x 8y ) j = 0 only at, 4). f xx =x, f xy =, f yy =6y, D =x y. At, 4),D=> 0 and A =6> 0 so we have a local min; the value is 6. 6. f =x y) i + x y) j = 0 only at 0, 0) f x =, f y x =, f y = ; D = ) ) < 0; 0, 0) is a saddle point. 7. f =y x ) i + x y ) j = 0 only at, ). f xx =x, f xy =, f yy =y, D =4x y. At, ), D=> 0 and A => 0 so we have a local min; the value is. 8. f =xy y ) i +x xy +)j = 0 at, ),, ) f x =y, f =x y), y x, ) and, ) are saddle points. f y = x; D = 4xy 4x y) < 0 at the above points; 9. f = x y ) x + y +) i + 4xy x + y j = 0 at, 0) and, 0). +) f xx = 4x +xy +x x + y +), f xy = 4y +4y x y x + y +), f yy = 4x +4x xy x + y +). f, 0) = ; f, 0) = point A B C D result, 0) 0 loc. min., 0) 0 loc. max.

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 0. f = ln xy + ) i + x j = 0 at, /) x y SECTION 6.5 87 f x = x + x, f y x = y, f y = x y At, /), f x =, f y x =, f = 0 and D = 9 < 0 = saddle point. y. f = 4x 4x ) i +y j = 0 at 0, 0),, 0), and, 0). f xx =x 4, f xy =0, f yy =. f±, 0) =. point A B C D result 0, 0) 4 0 8 saddle, 0) 8 0 6 loc. min., 0) 8 0 6 loc. min.. f =xe x y + x + y ) i +ye x y x y ) j = 0 at 0, 0), 0, ), 0, ) A = f y x =xex x +x +xy )+e x y +6x +y ) B = f y x = y x +x +xy )+e yex x y 4xy) C = f y = y yex y yx y )+e x y x 6y ) At 0, 0), AC B = )) = 4 > 0,A>0 local minimum; the value is 0. At 0, ±), AC B =4e ) 4e )= 8e > 0, saddle points. f = cos x sin y i + sin x cos y j = 0 at π, π), π, π), π, π), π, π), π, π). f xx = sin x sin y, f xy = cos x cos y, f yy = sin x sin y point A B C D result π, π) 0 loc. max. π, π) 0 loc. min. π, π) 0 0 saddle π, π) 0 loc. min. π, π) 0 loc. max. f π, π) = f π, π) =; f π, π) = f π, π) = 4. f = sin x cosh y i + cos x sinh y j = 0 at π, 0), 0, 0), π, 0). f xx = cos x cosh y, f xy = sin x sinh y, f yy = cos x cosh y D = cos x cosh y sin x sinh y<0; π, 0), 0, 0), π, 0) are saddle points.

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 88 SECTION 6.5 5. a) f =x + ky) i +y + kx) j and f0, 0) = 0 independent of the value of k. b) f xx =, f xy = k, f yy =, D =4 k. Thus, D<0 for k > and 0, 0) is a saddle point c) D =4 k > 0 for k <. Since A = f xx => 0, 0, 0) is a local minimum. d) The test is inconclusive when D =4 k = 0 i.e., for k = ±. If k = ±, fx, y) =x ± y) and 0, 0) is a minimum.) 6. a) f =x + ky) i +kx +8y) j = 0 at 0, 0). b) f x =, f y x = k, f y = 8; we want 6 k < 0, or k > 4 c) We want 6 k > 0, or k < 4 d) k = ±4. If k = ±4, fx, y) =x ± y) and 0, 0) is a minimum.) 7. Let P x, y, z) be a point in the plane. We want to find the minimum of fx, y, z) = x + y + z. However, it is sufficient to minimize the square of the distance: F x, y, z) =x + y + z. It is clear that F has a minimum value, but no maximum value. Since P lies in the plane, x y +z =6 which implies y =x +z 6 = x + z 8). Thus, we want to find the minimum value of Now, The gradient is 0 when F x, z) =x +4x + z 8) + z F =[x +8x + z 8)] i + [8x + z 8)+z] k x +8x + z 8) = 0 and 8x + z 8)+z =0 The only solution to this pair of equations is: x = z = 9, from which it follows that y = 6 9. The point in the plane that is closest to the origin is P 9, 6 9, ) 9. The distance from the origin to the plane is: F P )= 6. Check using.6.5): dp, 0) = 0 0+ 0 6 + ) + = 6. 8. We want to minimize x +) +y ) +z 4) on the plane. Since z = 6 x +y, we need to minimize fx, y) =x +) +y ) + 0 x +y) ; f = x 6y +6) i + 84 6x +0y) j = 0 at 4, 6) Closest point 4, 6, ), distance= 4)) + 6) +4 ) = 9 [ 9. fx, y) =x ) +y ) + z =x ) +y ) + x +y since z = ] x +y f = [x )+x] i + [y ) + 4y] j = 0 = x =,y=. f xx =4> 0, f xy =0, f yy =6, D =4> 0. Thus, f has a local minimum at /, /). The shortest distance from,, 0) to the cone is f, ) = 6 4

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION 6.5 89 0. V =8xyz, x + y + z = a = V x, y) =8xy a x y, x > 0, y>0, x + y <a V = 8ya x y ) 8x y a x y i + 8xa x y ) 8xy a x y j = 0 at a/,a/ ) dimensions: a a a, maximum volume: 8 9 a. a) - - 0 b) 4 0.5 0-0.5 - - 0 0 - - -0.5 0 0.5 c) f =4y 4x ) i +4x 4y ) j = 0 at 0, 0),, ),, ). f xx = x, f xy =4, f yy = y, D = 44x y 6 point A B C D result 0, 0) 0 4 0 6 saddle, ) 4 8 loc. max., ) 4 8 loc. max. f, ) = f, ) =. a) b).5 0.5 0-0 -0.5 0 - - -.5 -.5 - -0.5 0 0.5.5 c) f =4x 4x) i +yj = 0 at 0, 0),, 0),, 0). f xx =x 4, f x,y =0, f yy =, D =4x 8 point A B C D result 0, 0) 8 0 8 saddle, 0) 8 0 6 loc. min., 0) 8 0 6 loc. min. f, 0) = f, 0) = 0

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 80 SECTION 6.5. a) 4 b).5 0.5 0-0.5 0-0 - -.5 -.5 - -0.5 0 0.5.5 f, ) = is a local max.; f has a saddle at 0, 0). 4. a) b) 0.6 0.4 0. 0 - - 0 - - 0 0 - - - - 0 f0, 0) = 0 is a local min.; f0, ) = f0, )=e are local maxima; f has a saddle at ±, 0). 5. a) - 0-0 b) 0 0 - - - - - 0 f, 0) = is a local min.; f, 0) = is a loc. max.

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION 6.6 8 6. a) b) 0 8 0-0 4 6 8 0 0 0 8 6 4 6 4 0 0 4 6 8 0 fπ/,π/) = fπ/, 5π/) = f5π/,π/) = f5π/, 5π/) = are local maxima; π/, π/), π/,π/), π/, π/), π/, 5π/), 5π/, π/) are saddle points of f; f7π/6, 7π/6) = fπ/6, π/6) = are local minima. SECTION 6.6. f =4x 4) i +y ) j = 0 at, ) in D; f, ) = Next we consider the boundary of D. We y 4 parametrize each side of the triangle: C : r t) =t i, t [0, ], C : r t) =i + t j, t [0, 4], C : r t) =t i +tj, t [0, ], Now, x f t) =fr t)) = t ), t [0, ]; critical number: t =, f t) =fr t)) = t ) +, t [0, 4 ]; critical number: t =, f t) =fr t)) = 6t 8t +, t [0, ]; critical number: t =. Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f 0) = f 0) = f0, 0) = ; f ) = f, 0)=0; f ) = f 0) = f, 0) = ; f ) = f, )=; f 4) = f ) = f, 4) = 0; f /) = f/, 4/) =. f takes on its absolute maximum of 0 at, 4) and its absolute minimum of at, ).. f = i +j 0; no stationary points in D; Next we consider the boundary of D. We parametrize each side of the triangle: C : r t) =t i, t [0, 4], C : r t) =t i + t +6) j, t [0, 4], C : r t) =t j, t [0, 6],

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 8 SECTION 6.6 and evaluate f: f t) =fr t)) = t, t [0, 4 ]; no critical numbers, f t) =fr t)) = 6t +4, t [0, 4 ]; no critical numbers, f t) =fr t)) = + t, t [0, 6 ]; no critical numbers. Evaluating these functions at the endpoints of their domains, we find that: f 0) = f 0) = f0, 0) = ; f 4) = f 4) = f4, 0) = 0; f 0) = f 6) = f0, 6) = 4; f takes on its absolute maximum of 4 at 0, 6) and its absolute minimum of 0 at 4, 0).. f =x + y 6) i +x +y) j = 0 at 4, ) in D; f4, ) = Next we consider the boundary of D. We parametrize each side of the rectangle: C : r t) = t j, t [0, ] C : r t) =t i j, t [0, 5] C : r t) =5i tj, t [0, ] C 4 : r 4 t) =t i, t [0, 5] Now, f t) =fr t)) = t, t [0, ]; no critical numbers y - - - 4 5 x f t) =fr t)) = t 9t +8, t [0, 5 ]; critical number: t = 9 f t) =fr t)) = t 5t 6, t [0, ]; critical number: t = 5 f 4 t) =fr 4 t)) = t 6t, t [0, 5 ]; critical number: t = Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f 0) = f 4 0) = f0, 0) = ; f ) = f 0) = f0, ) = 8; f 9/) = f9/, ) = 49 4 ; f 5) = f ) = f5, ) = ; f 5/) = f5, 5/) = 49 4 ; f 0) = f 4 5) = f5, 0) = 6. f 4 ) = f, 0) = 0 f takes on its absolute maximum of 8 at 0, ) and its absolute minimum of at 4, ). 4. f =x +y) i +x +6y) j = 0 at 0, 0) in D; f0, 0) = 0 Next we consider the boundary of D. We parametrize each side of the square: C : r t) =t i j, t [, ], C : r t) =i + t j, t [, ], C : r t) =t i +j, t [, ], C 4 : r 4 t) = i + t j, t [, ],

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION 6.6 8 and evaluate f: f t) =fr t)) = t 4t +, t [, ]; no critical numbers, f t) =fr t)) = 4 + 4t +t, t [, ]; critical number: t =, f t) =fr t)) = t +4t +, t [, ]; no critical numbers, f 4 t) =fr 4 t)) = 4 4t +t, t [, ]; critical number: t =. Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f ) = f 4 ) = f, ) = 4; f ) = f ) = f, ) = 8; f /) = f, /) = 8 ; f ) = f ) = f, ) = 4; f ) = f 4 ) = f, ) = 8; f 4 /) = f, /) = 8. f takes on its absolute maximum of 4 at, ) and, ) and its absolute minimum of 0 at 0, 0). Note that x +xy +y =x + y) +y. The results follow immediately from this observation. 5. f =x +y) i +y +x) j = 0 at 0, 0) in D; f0, 0) = Next we consider the boundary of D. We parametrize the circle by: C : rt) = cos t i + sin t j, t [0, π ] The values of f on the boundary are given by the function F t) =frt)) = 6 + sin t cos t, t [0, π ] F t) = cos t sin t : F t) =0 = cos t = ± sin t = t = 4 π, 4 π, 5 4 π, 7 4 π Evaluating F at the endpoints and critical numbers, we have: F 0) = F π) =f, 0)=6; F 4 π) = F 5 4 π) ) = f, F 4 π) = f, ) = F 7 4 π) ) = f, =0 f takes on its absolute maximum of at, ) and at, ) ; minimum of 0 at, ) and at, ). = f, ) = ; 6. f = yi +x )j = 0 at, 0), which is not in the interior of D. The boundary is f takes on its absolute rt) = cos t i + sin t j. frt)) = sin t cos t ) = 9 sin tcos t ), t [0, π]. df dt = 9 cos t cos t ); df dt =0 = cos t =, which yields the points A, 0), B, ),C, ): fa) =0, fb) = 7 4 min, fc) = 7 4 max 7. f =x )i +y ) j = 0 only at, ) in D. As the sum of two squares, fx, y) 0. Thus, f, ) = 0 is a minimum. To examine the behavior of f on the boundary of D, we note that f represents the square of the distance between x, y) and, ). Thus, f is maximal at the point of the boundary furthest from, ). This is the point, ) ; the maximum value of f is f, ) =6+4.

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 84 SECTION 6.6 8. f =y +)i +x ) j = 0 at, ) which is not in the interior of D. Next we consider the boundary of D. C : r t) =t j + t j, t [, ], C : r t) =t i +4j, t [, ], and evaluate f: We parametrize the boundary by: f t) =fr t)) = t t + t +, t [, ]; no critical numbers, f t) =fr t)) = 5t, t [, ]; no critical numbers. Evaluating these functions at the endpoints of their domains, we find that: f ) = f ) = f, 4) = ; f ) = f ) = f, 4) = 9. f takes on its absolute maximum of 9 at, 4) and its absolute minimum of at, 4). 9. f = x y x + y +) i + 4xy x + y j = 0 at, 0) and, 0) in D; f, 0) =, f, 0) =. +) Next we consider the boundary of D. We parametrize each side of the squre: Now, C : r t) = i + t j, t [, ] C : r t) =t i +j, t [, ] C : r t) =i + t j, t [, ] C 4 : r 4 t) =t i, t [, ] f t) =fr t)) = 4 t, +5 t [, ]; critical number: t =0 f t) =fr t)) = t t, +5 t [, ]; no critical numbers f t) =fr t)) = 4 t, +5 t [, ]; critical number: t =0 f 4 t) =fr 4 t)) = t t, +5 t [, ]; no critical numbers Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f ) = f 4 ) = f, ) = 4 9 ; f 0) = f, 0) = 4 5 ; f ) = f ) = f, ) = 4 9 ; f 4 ) = f ) = f, ) = 4 9 ; f 0) = f, 0) = 4 5 ; f ) = f ) = f, ) = 4 9. f takes on its absolute maximum of at, 0) and its absolute minimum of at, 0). 0. f = x y x + y +) i + 4xy x + y j = 0 at, 0) in D; f, 0) =. +) Next we consider the boundary of D. We parametrize each side of the triangle: C : r t) =t i t j, t [0, ] C : r t) =i + t j, t [, ] C : r t) =t i + t j, t [0, ],

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 and evaluate f: SECTION 6.6 85 f t) =fr t)) = t t +, t [0, ]; critical number: t =/, f t) =fr t)) = 4 t, +5 t [, ]; critical number: t =0 f t) =fr t)) = t t +, t [0, ]; critical number: t =/. Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f 0) = f 0) = f0, 0) = 0; f / ) = f/, / ) = / ; f ) = f ) = f, ) = 4 9 ; f 0) = f, 0) = 4 5 ; f ) = f ) = f, ) = 4 9 ; f / ) = f/, / ) = /. f takes on its absolute maximum of 0 at 0, 0) and its absolute minimum of at, 0).. f =4 4x) cos y i 4x x ) sin y j = 0 at, 0) in D: f, 0) = Next we consider the boundary of D. We parametrize each side of the rectangle: C : r t) =t j, t [ 4 π, 4 π ] C : r t) =t i 4π j, t [0, ] C : r t) =i + t j, t [ 4 π, 4 π ] C 4 : r 4 t) =t i + 4π j, t [0, ] Now, f t) =fr t)) = 0; f t) =fr t)) = 4t t ), t [0, ]; critical number: t =; f t) =fr t)) = 0; f 4 t) =fr 4 t)) = 4t t ), t [0, ]; critical number: t =; f at the vertices of the rectangle has the value 0; f ) = f 4 ) = f, 4 π) = f, 4 π) =. f takes on its absolute maximum of at, 0) and its absolute minimum of 0 along the lines x =0 and x =.. f =x )i +yj = 0 at, 0) which is not in the interior of D. Boundary: On y = x, f =x ) + x 4 df, dx =x )+4x =0atx = =, ) On y =4x, f =x ) +6x, df dx =x )+x =0atx = 7 = 7, 7 ). So the maximum and minimum occur at one or more of the following points: 0, 0), 4, 6),, ), 7, 7 ). Evaluating f at these points, we find that f, ) = 5 is the absolute minimum of f; f4, 6) = 57 is the absolute maximum of f.

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 86 SECTION 6.6. f =x y) i + x y ) j = 0 at, ) in D; f, ) = Next we consider the boundary of D. We parametrize each side of the triangle: C : r t) = i + t j, t [, ], C : r t) =t i + t j, t [, ], C : r t) =t i +j, t [, ], - - x - y and evaluate f: f t) =fr t)) = 8+6t t, t [, ]; critical numbers: t = ±, f t) =fr t)) = t, t [, ]; critical number: t =0, f t) =fr t)) = t 6t 8, t [, ]; critical numbers: t = ±. Evaluating these functions at the endpoints of their domains and at the critical numbers, we find that: f ) = f ) = f, ) = ; f ) = f, ) = 8 4 =.66; f ) = f, ) = 8+4 =.4; f ) = f ) = f, ) = 4; f 0) = f0, 0)=0; f ) = f ) = f, ) = ; f ) = f, ) = 8+4 ; f ) = f, ) = 8 4 f takes on its absolute maximum of at, ) and its absolute minimum of 8 4 at, ) and, ). 4. f =x 4)i +yj = 0 at 4, 0) which is not in the interior of D. Next we examine f on the boundary of D: C : r t) =ti +4tj, t [0,, ], Note that Next and C : r t) =ti + t j, t [0, ]. f t) =f r t)) = 7t 8t +6, f t) =f r t)) = t 4) + t 6. f t) =4t 8=0 = t =4/7 and gives x =4/7, y =6/7 f t) =6t 5 +t 8=0 = t = and gives x =, y =. The extreme values of f can be culled from the following list: f0, 0) = 6, f, 8)=68, f 4 7, ) 6 7 = 56 7, f, ) = 0. We see that f, ) = 0 is the absolute minimum and f, 8) = 68 is the absolute maximum.

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 SECTION 6.6 87 4xy 5. f = x + y +) i + y x x + y j = 0 at 0, ) and 0, ) in D; +) f0, ) =, f0, ) = Next we consider the boundary of D. We parametrize the circle by: C : rt) = cos t i + sin t j, t [0, π ] The values of f on the boundary are given by the function F t) =frt)) = 4 5 sin t, t [0, π ] F t) = 4 5 cos t : F t) =0 = cos t =0 = t = π, π. Evaluating F at the endpoints and critical numbers, we have: F 0) = F π) =f, 0) = 0; F π) = f0, ) = 4 5 ; F π) = f0, ) = 4 5 f takes on its absolute maximum of at 0, ) and its absolute minimum of at0, ). 6. f =x +)i +8y ) j = 0 at, 4) in D; f, ) 4 = Next we consider the boundary of D. We parametrize the ellipse by: C : rt) = cos t i + sin t j, t [0, π ] The values of f on the boundary are given by the function F t) =frt)) = 4 cos t + 4 sin t + cos t sin t =4+cost sin t, t [0, π ] F t) = sin t cos t : F t) =0 = cos t = sin t = t = 4 π, or 7 4 π Evaluating F at the endpoints and critical numbers, we have: F 0) = F π) =f, 0) = 6; F 4 π) = f, ) / =4 ; F 7 4 π) ) = f, / =4+ f takes on its absolute maximum of 4 + at, / ) ; f takes on its absolute minimum of at, 4). 7. f =x y)i x y) j = 0 at each point of the line segment y = x from 0, 0) to 4, 4). Since fx, x) = 0 and fx, y) 0,f takes on its minimum of 0 at each of these points. Next we consider the boundary of D. We parametrize each side of the triangle: C : r t) =tj, t [0, ] C : r t) =ti, t [0, 6] C : r t) =ti + t) j, t [0, 6]

P: PBU/OVY P: PBU/OVY QC: PBU/OVY T: PBU JWDD07-6 JWDD07-Salas-v December 7, 006 6:6 88 SECTION 6.6 and observe from fr t)) = t, t [0, ] fr t)) = t, t [0, 6] fr t)) = t ), t [0, 6] that f takes on its maximum of 44 at the point 0, ). 8. f = xi yj) 0 in D. Note that fx, y) is the reciprocal of the distance of x, y) x + y / ) from the origin. The point of D closest to the origin draw a figure) is, ). Therefore f, ) = / is the maximum value of f. The point of D furthest from the origin is, 4). Therefore f, 4) = /5 is the least value taken on by f. 9. Using the hint, we want to find the maximum value of fx, y) =8xy x y xy in the triangular region. The gradient of f is: The gradient is 0 when D = 8y xy y ) i + 8x x xy ) j 8y xy y = 0 and 8x x xy =0 The solution set of this pair of equations is: 0, 0), 8, 0), 0, 8), 6, 6). It is easy to verify that f is a maximum when x = y =6. The three numbers that satisfy x + y + z =8 and maximize the product xyz are: x = 6,y = 6,z = 6. 0. fy, z) =0yz y z yz, f = 0z yz z )j + 60yz y z yz )k = 0 at ) 5, 5 ) 5 other points are not in the interior); f, 5 = 54 4. On the line y + z =0,fy, z) = 0 so the maximum of xyz occurs at x = y = 5, z =5. fx, y) =xy x y), 0 x, 0 y x. [ dom f) is the triangle with vertices 0, 0),, 0), 0, ).] f =y xy y )i + x xy x ) j = 0 = x = y =0,x=,y=0,x=0,y=,x=y =. Note that [ 0, 0 ] is not an interior point of the domain of f.) f xx = y, f xy = x y, f yy = x. At, ), D = > 0 and A<0 so we have a local max; the value is /7. Since fx, y) = 0 at each point on the boundary of the domain, the local max of /7 is also the absolute max.