FRACTURE MECHANICS. Piet Schreurs. Eindhoven University of Technology Department of Mechanical Engineering Materials Technology September 5, 2013

Σχετικά έγγραφα
INDEX. Introduction (ch 1) Theoretical strength (ch 2) Ductile/brittle (ch 2) Energy balance (ch 4) Stress concentrations (ch 6)

CONTINUUM MECHANICS. e 3. x e 2 O e 1. - volume / area V 0, V / A 0,A - base vectors { e 1, e 2, e 3 } - position vector x 0, x

MECHANICAL PROPERTIES OF MATERIALS

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Dr. D. Dinev, Department of Structural Mechanics, UACEG

D Alembert s Solution to the Wave Equation

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

ADVANCED STRUCTURAL MECHANICS

Chapter 10: Failure. Titanic on April 15, 1912 ISSUES TO ADDRESS. Failure Modes:

Homework 8 Model Solution Section

(Mechanical Properties)

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Chapter 2. Stress, Principal Stresses, Strain Energy

Strain gauge and rosettes

Chapter 7 Transformations of Stress and Strain

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Mechanics of Materials Lab

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

High order interpolation function for surface contact problem

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

6.4 Superposition of Linear Plane Progressive Waves

CH-4 Plane problems in linear isotropic elasticity

Areas and Lengths in Polar Coordinates

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lecture 26: Circular domains

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Parametrized Surfaces

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

θ p = deg ε n = με ε t = με γ nt = μrad

Graded Refractive-Index

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Grey Cast Irons. Technical Data

Second Order Partial Differential Equations

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

3.5 - Boundary Conditions for Potential Flow


Spherical Coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Constitutive Relations in Chiral Media

Lifting Entry (continued)

4.4 Superposition of Linear Plane Progressive Waves

Approximation of distance between locations on earth given by latitude and longitude

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in


Numerical Analysis FMN011

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Wavelet based matrix compression for boundary integral equations on complex geometries

Finite difference method for 2-D heat equation

Solutions to Exercise Sheet 5

the total number of electrons passing through the lamp.

Areas and Lengths in Polar Coordinates

Matrices and Determinants

Thin Film Chip Resistors

Example Sheet 3 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Το σχέδιο της μέσης τομής πλοίου

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Electronic Supplementary Information (ESI)

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Crack Propagation Terminating at a Bimaterial Interface Studied Using Extended Finite Element Method

Eigenfunction expansion for penny-shaped and circumferential cracks

CONSULTING Engineering Calculation Sheet

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS

Answer sheet: Third Midterm for Math 2339

Multilayer Ceramic Chip Capacitors

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Eulerian Simulation of Large Deformations

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

1 String with massive end-points

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

CorV CVAC. CorV TU317. 1

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)

NTC Thermistor:TTC3 Series

Forced Pendulum Numerical approach

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

NTC Thermistor:SCK Series

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Section 8.3 Trigonometric Equations

A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i =

Transcript:

FRACTURE MECHANICS Piet Schreurs Eindhoven University of Technology Department of Mechanical Engineering Materials Technology September 5, 2013

INDEX back to index () 1 / 303

Introduction Fracture mechanisms Ductile/brittle Theoretical strength Experimental techniques Energy balance Linear elastic stress analysis Crack tip stresses Multi-mode loading Crack growth direction Crack growth rate Plastic crack tip zone Nonlinear fracture mechanics Numerical fracture mechanics Fatigue Engineering plastics () 2 / 303

() 3 / 303

back to index INTRODUCTION

Introduction () 5 / 303

Continuum mechanics V 0 A 0 u V A x 0 e 3 x e 1 O e 2 () 6 / 303

Continuum mechanics - volume / area V 0, V / A 0, A - base vectors { e 1, e 2, e 3 } - position vector x 0, x - displacement vector u - strains ε kl = 1 2 (u k,l + u l,k ) - compatibility relations - equilibrium equations σ ij,j + ρq i = 0 ; σ ij = σ ji - density ρ - load/mass q i - boundary conditions p i = σ ij n j - material model σ ij = N ij (ε kl ) () 7 / 303

Material behavior σ ε σ ε t 1 t 2 t t 1 t 2 t t 1 t 2 t t 1 t 2 t σ ε ε e ε p σ ε t 1 t 2 t t 1 t 2 t t 1 t 2 t t 1 t 2 t () 8 / 303

Stress-strain curves σ σ ε ε σ σ ε ε () 9 / 303

Fracture () 10 / 303

Fracture mechanics questions : when crack growth? ( crack growth criteria) crack growth rate? residual strength? life time? inspection frequency? repair required? fields of science : material science and chemistry theoretical and numerical mathematics experimental and theoretical mechanics () 11 / 303

Overview of fracture mechanics LEFM (Linear Elastic Fracture Mechanics) energy balance crack tip stresses SSY (Small Scale Yielding) DFM (Dynamic Fracture Mechanics) NLFM (Non-Linear Fracture Mechanics) EPFM (Elasto-Plastic Fracture Mechanics) Numerical methods : EEM / BEM Fatigue (HCF / LCF) CDM (Continuum Damage Mechanics) Micro mechanics micro-cracks (intra grain) voids (intra grain) cavities at grain boundaries rupture & disentangling of molecules rupture of atomic bonds dislocation slip () 12 / 303

Experimental fracture mechanics () 13 / 303

Linear elastic fracture mechanics () 14 / 303

Dynamic fracture mechanics () 15 / 303

Nonlinear fracture mechanics CTOD J-integral () 16 / 303

Numerical techniques () 17 / 303

Fatigue () 18 / 303

Objectives Insight in : crack growth mechanisms brittle / ductile energy balance crack tip stresses crack growth direction plastic crack tip zone crack growth speed nonlinear fracture mechanics numerical methods fatigue () 19 / 303

Outline () 20 / 303

back to index FRACTURE MECHANISMS

Fracture mechanisms shear fracture cleavage fracture fatigue fracture crazing de-adhesion () 22 / 303

Shearing dislocations voids crack dimples load direction () 23 / 303

Cleavage intra-granulair inter-granulair intra-granular HCP-, BCC-crystal T low ε high 3D-stress state inter-granular weak grain boundary environment (H2) T high () 24 / 303

Fatigue clam shell pattern striations () 25 / 303

Crazing stress whitening crazing materials : PS, PMMA () 26 / 303

() 27 / 303

back to index DUCTILE/BRITTLE

Ductile - brittle behavior σ ABS, nylon, PC PE, PTFE 0 10 100 ε (%) surface energy : γ [Jm 2 ] solids : γ 1 [Jm 2 ] independent from cleavage/shearing ex.: alloyed steels; rubber () 29 / 303

Charpy v-notch test () 30 / 303

Charpy Cv-value C v fcc (hcp) metals low strength bcc metals Be, Zn, ceramics C v high strength metals Al, Ti alloys T NDT FATT FTP T t T - Impact Toughness C v - Nil Ductility Temperature NDT - Nil Fracture Appearance Transition Temperature FATT(T t ) - Nil Fracture Transition Plastic FTP () 31 / 303

back to index THEORETICAL STRENGTH

Theoretical strength f f r f x σ a 0 1 2 λ x r S ( ) 2πx f (x) = f max sin ; x = r a 0 λ σ(x) = 1 ( ) 2πx f (x) = σmax sin S λ () 33 / 303

Energy balance available elastic energy per surface-unity [N m 1 ] required surface energy U i = 1 S = x=λ/2 x=0 x=λ/2 x=0 = σ max λ π f (x) dx σ max sin ( ) 2πx dx λ [Nm 1 ] energy balance at fracture U a = 2γ [Nm 1 ] U i = U a λ = 2πγ σ = σ max sin ( ) x γ σ max σ max () 34 / 303

Approximations linearization ( ) x σ = σ max sin γ σ max x γ σ2 max linear strain of atomic bond ε = x a 0 x = εa 0 σ = εa 0 γ σ2 max elastic modulus ( ) ( dσ dσ E = = 0) dε x=0 dx x=0 a = σ 2 max Eγ σ max = theoretical strength a 0 a 0 γ σ th = Eγ a 0 () 35 / 303

Discrepancy with experimental observations a 0 [m] E [GPa] σ th [GPa] σ b [MPa] σ th /σ b glass 3 10 10 60 14 170 82 steel 10 10 210 45 250 180 silica fibers 10 10 100 31 25000 1.3 iron whiskers 10 10 295 54 13000 4.2 silicon whiskers 10 10 165 41 6500 6.3 alumina whiskers 10 10 495 70 15000 4.7 ausformed steel 10 10 200 45 3000 15 piano wire 10 10 200 45 2750 16.4 discrepancy with experiments σ th σ b () 36 / 303

Griffith s experiments 11000 σ b [MPa] 170 10 20 d [µ] DEFECTS FRACTURE MECHANICS () 37 / 303

Crack loading modes Mode I Mode II Mode III Mode I = opening mode Mode II = sliding mode Mode III = tearing mode () 38 / 303

back to index EXPERIMENTAL TECHNIQUES

Surface cracks dye penetration small surface cracks fast and cheap on-site magnetic particles cracks disturbance of magnetic field surface cracks for magnetic materials only eddy currents impedance change of a coil penetration depth : a few mm s difficult interpretation () 40 / 303

Electrical resistance () 41 / 303

X-ray orientation dependency () 42 / 303

Ultrasound piëzo-el. crystal wave sensor S in out t t () 43 / 303

Acoustic emission registration intern sounds (hits) () 44 / 303

Adhesion tests blade wedge test peel test (0 o and 90 o ) bending test scratch test indentation test laser blister test pressure blister test fatigue friction test () 45 / 303

back to index ENERGY BALANCE

() total energy balance 47 / 303 Energy balance a B = thickness A = Ba Ḃ = 0 U e = U i + U a + U d + U k [Js 1 ] d dt ( ) = da d dt da ( ) = Ȧ d da ( ) = ȧ d da ( ) du e da = du i da + du a da + du d da + du k da [Jm 1 ]

Griffith s energy balance no dissipation no kinetic energy energy balance energy release rate crack resistance force du e da du i da = du a da G = 1 ( due B da du ) i [Jm 2 ] da R = 1 ( ) dua = 2γ [Jm 2 ] B da Griffith s crack criterion G = R = 2γ [Jm 2 ] () 48 / 303

Griffith s energy balance du e = 0 a U a da needed G, R 2γ a c available a c U i () 49 / 303

Griffith stress σ y 2a a thickness B x σ U i = 2πa 2 B 1 σ 2 2 E G = 1 ( ) dui B da = 1 B ; U a = 4aB γ [Nm = J] ( ) dua = R 2πa σ2 da E = 4γ [Jm 2 ] Griffith stress σ gr = 2γE πa ; critical crack length a c = 2γE πσ 2 () 50 / 303

Griffith stress: plane stress 2γE σ gr = (1 ν 2 )πa () 51 / 303

Discrepancy with experimental observations σ gr σ c reason remedy neglection of dissipation measure critical energy release rate G c glass G c = 6 [Jm 2 ] wood G c = 10 4 [Jm 2 ] steel G c = 10 5 [Jm 2 ] composite design problem / high alloyed steel / bone (elephant and mouse) energy balance G = 1 ( due B da du ) i = R = G c da critical crack length a c = G ce 2πσ 2 ; Griffith s crack G = G c criterion () 52 / 303

Compliance change compliance : C = u/f F u a P F u P a + da F F a a + da a a + da du i du i du e fixed grips u constant load u () 53 / 303

Compliance change : Fixed grips fixed grips : du e = 0 Griffith s energy balance du i = U i (a + da) U i (a) (< 0) = 1 2 (F + df)u 1 2 Fu = 1 2 udf G = 1 2B udf da = 1 2B = 1 2B F 2 dc da u 2 dc C 2 da () 54 / 303

Compliance change : Constant load constant load du e = U e (a + da) U e (a) = Fdu Griffith s energy balance du i = U i (a + da) U i (a) (> 0) = 1 2 F(u + du) 1 2 Fu = 1 2 Fdu G = 1 2B F du da = 1 2B F 2 dc da () 55 / 303

Compliance change : Experiment F a 1 a 2 ap a 3 a 4 F u u G = shaded area a 4 a 3 1 B () 56 / 303

Example B 2h F u a u F u = Fa3 3EI = 4Fa3 EBh 3 C = u F = 2u F = 8a3 EBh 3 G = 1 [ 1 B 2 F 2 dc ] = 12F 2 a 2 da EB 2 h 3 [J m 2 ] G c = 2γ F c = B 1 a 6 γeh3 dc da = 24a2 EBh 3 () 57 / 303

Example h a question : which h(a) makes dc da C = u F = 2u F = 8a3 EBh 3 independent from a? dc da = 24a2 EBh 3 choice : h = h 0 a n Fa 3 u = 3(1 n)ei = 4Fa 3 (1 n)ebh 3 = 4Fa3(1 n) (1 n)ebh0 3 C = 2u F = dc da 8a3(1 n) (1 n)ebh 3 0 dc da = 24a(2 3n) EBh 3 0 constant for n = 2 3 h = h 0 a 2 3 () 58 / 303

back to index LINEAR ELASTIC STRESS ANALYSIS

Deformation P Q X + d X u x + d x Q P X e 3 e 2 x e 1 x i = X i + u i (X i ) x i + dx i = X i + dx i + u i (X i + dx i ) = X i + dx i + u i (X i ) + u i,j dx j dx i = dx i + u i,j dx j = (δ ij + u i,j )dx j ds = d x = dx i dx i ; ds = dx = dx i dx i () 60 / 303

Strains ds 2 = dx i dx i = [(δ ij + u i,j )dx j ][(δ ik + u i,k )dx k ] = (δ ij δ ik + δ ij u i,k + u i,j δ ik + u i,j u i,k )dx j dx k = (δ jk + u j,k + u k,j + u i,j u i,k )dx j dx k = (δ ij + u i,j + u j,i + u k,i u k,j )dx i dx j = dx i dx i + (u i,j + u j,i + u k,i u k,j )dx i dx j = ds 2 + (u i,j + u j,i + u k,i u k,j )dx i dx j ds 2 ds 2 = (u i,j + u j,i + u k,i u k,j )dx i dx j = 2γ ij dx i dx j Green-Lagrange strains γ ij = 1 2 (u i,j + u j,i + u k,i u k,j ) linear strains ε ij = 1 2 (u i,j + u j,i ) () 61 / 303

Compatibility 3 displacement components 9 strain components 6 dependencies 6 compatibility equations 2ε 12,12 ε 11,22 ε 22,11 = 0 2ε 23,23 ε 22,33 ε 33,22 = 0 2ε 31,31 ε 33,11 ε 11,33 = 0 ε 11,23 + ε 23,11 ε 31,12 ε 12,13 = 0 ε 22,31 + ε 31,22 ε 12,23 ε 23,21 = 0 ε 33,12 + ε 12,33 ε 23,31 ε 31,32 = 0 () 62 / 303

Stress unity normal vector stress vector Cauchy stress components stress cube n = n i e i p = p i e i p i = σ ij n j σ 33 σ 23 3 2 σ 21 σ 31 σ 13 σ 32 σ 12 σ 22 1 σ 11 () 63 / 303

Linear elastic material behavior σ ij = C ijkl ε lk material symmetry isotropic material 2 mat.pars () 64 / 303

Hooke s law for isotropic materials σ 11 σ 22 σ 33 σ 12 σ 23 σ 31 σ ij = E ( ε ij + ν ) 1 + ν 1 2ν δ ijε kk i = 1, 2, 3 ε ij = 1 + ν ( σ ij ν ) E 1 + ν δ ijσ kk i = 1, 2, 3 1 ν ν ν 0 0 0 ν 1 ν ν 0 0 0 = α ν ν 1 ν 0 0 0 0 0 0 1 2ν 0 0 0 0 0 0 1 2ν 0 0 0 0 0 0 1 2ν α = E/[(1 + ν)(1 2ν)] ε 11 ε 22 ε 33 ε 12 ε 23 ε 31 ε 11 ε 22 ε 33 ε 12 ε 23 ε 31 = 1 E 1 ν ν 0 0 0 ν 1 ν 0 0 0 ν ν 1 0 0 0 0 0 0 1 + ν 0 0 0 0 0 0 1 + ν 0 0 0 0 0 0 1 + ν σ 11 σ 22 σ 33 σ 12 σ 23 σ 31 () 65 / 303

Equilibrium equations σ 12 σ 13 + σ 13,3 dx 3 σ 23 + σ 23,3 dx 3 σ 33 + σ 33,3 dx 3 σ 22 σ 32 σ 11 σ 21 1 σ 11 + σ 11,1 dx 1 σ 21 + σ 21,1 dx 1 σ 31 + σ 31,1 dx 1 3 2 σ 13 σ 23 σ 33 σ 31 σ 12 + σ 12,2 dx 2 σ 22 + σ 22,2 dx 2 σ 32 + σ 32,2 dx 2 volume load ρq i force equilibrium σ ij,j + ρq i = 0 i = 1, 2, 3 moment equilibrium σ ij = σ ji () 66 / 303

Plane stress σ 33 = σ 13 = σ 23 = 0 equilibrium (q i = 0) σ 11,1 + σ 12,2 = 0 ; σ 21,1 + σ 22,2 = 0 compatibility 2ε 12,12 ε 11,22 ε 22,11 = 0 Hooke s law σ ij = E 1 + ν ( ε ij + ν ) 1 ν δ ijε kk ; ε ij = 1 + ν E Hooke s law in matrix notation ε 11 ε 22 = 1 1 ν 0 ν 1 0 E ε 12 0 0 1 + ν σ 11 σ 22 = E 1 ν 0 ν 1 0 1 ν σ 2 12 0 0 1 ν ( σ ij ν ) 1 + ν δ ijσ kk σ 11 σ 22 σ 12 ε 11 ε 22 ε 12 ε 33 = ν E (σ 11 + σ 22 ) = ν 1 ν (ε 11 + ε 22 ) ε 13 = ε 23 = 0 i = 1, 2 () 67 / 303

Plane strain ε 33 = ε 13 = ε 23 = 0 equilibrium (q i = 0) σ 11,1 + σ 12,2 = 0 ; σ 21,1 + σ 22,2 = 0 compatibility 2ε 12,12 ε 11,22 ε 22,11 = 0 Hooke s law ε ij = 1 + ν E (σ ij νδ ij σ kk ) ; σ ij = E ( ε ij + ν ) 1 + ν 1 2ν δ ijε kk i = 1, 2 Hooke s law in matrix notation σ 11 σ 22 E = 1 ν ν 0 ν 1 ν 0 (1 + ν)(1 2ν) σ 12 0 0 1 2ν ε 11 ε 22 = 1 + ν 1 ν ν 0 ν 1 ν 0 σ 11 σ 22 E ε 12 0 0 1 σ 12 Eν σ 33 = (1 + ν)(1 2ν) (ε 11 + ε 22 ) = ν (σ 11 + σ 22 ) σ 13 = σ 23 = 0 ε 11 ε 22 ε 12 () 68 / 303

Displacement method σ ij,j = 0 σ ij = E 1 + ν E 1 + ν ( ε ij,j + ( ε ij + ν ) 1 2ν δ ijε kk,j ν 1 2ν δ ijε kk,j ) = 0 ε ij = 1 2 (u i,j + u j,i ) E 1 1 + ν 2 (u Eν i,jj + u j,ij ) + (1 + ν)(1 2ν) δ iju k,kj = 0 BC s u i ε ij σ ij () 69 / 303

Stress function method ψ(x 1, x 2 ) σ ij = ψ,ij + δ ij ψ,kk σ ij,j = 0 ε ij = 1 + ν (σ ij νδ ij σ kk ) E ε ij = 1 + ν } { ψ,ij + (1 ν)δ ij ψ,kk } E 2ε 12,12 ε 11,22 ε 22,11 = 0 2ψ,1122 + ψ,2222 + ψ,1111 = 0 (ψ,11 + ψ,22 ),11 + (ψ,11 + ψ,22 ),22 = 0 Laplace operator : 2 = 2 x 2 1 + 2 x 2 2 = ( ) 11 + ( ) 22 } bi-harmonic equation 2 ( 2 ψ) = 4 ψ = 0 BC s } ψ σ ij ε ij u i () 70 / 303

Cylindrical coordinates z e z e t e r x e 3 e 2 e 1 θ r y vector bases { e 1, e 2, e 3 } { e r, e t, e z } e r = e r (θ) = e 1 cosθ + e 2 sinθ e t = e t (θ) = e 1 sinθ + e 2 cosθ () 71 / 303

Laplace operator z e z e t e r x e 3 e 2 e 1 θ r y gradient operator Laplace operator two-dimensional = er r + e 1 t r 2 = = 2 2 = 2 r 2 + 1 r θ + e z z r 2 + 1 r r + 1 2 r 2 θ 2 r + 1 r 2 2 θ 2 + 2 z 2 () 72 / 303

Bi-harmonic equation bi-harmonic equation ( 2 r 2 + 1 r r + 1 2 ) ( 2 ψ r 2 θ 2 r 2 + 1 ψ r r + 1 2 ) ψ r 2 θ 2 = 0 stress components σ rr = 1 ψ r r + 1 2 ψ r 2 θ 2 σ tt = 2 ψ r 2 σ rt = 1 ψ r 2 θ 1 r ψ r θ = r ( 1 r ) ψ θ () 73 / 303

Circular hole in infinite plate σ y σ θ r x 2a σ rr = 1 r ( 2 r 2 + 1 r ψ r + 1 r 2 2 ψ θ 2 ; r + 1 2 ) ( 2 ψ r 2 θ 2 r 2 + 1 ψ r r + 1 2 ) ψ r 2 θ 2 = 0 σ tt = 2 ψ r 2 ; σ rt = 1 r 2 ψ θ 1 r ψ r θ = r ( 1 r ) ψ θ () 74 / 303

Load transformation σ σ θ σ rr σ rt σ rr σ rt 2a 2b equilibrium two load cases σ rr (r = b, θ) = 1 2 σ + 1 2 σcos(2θ) σ rt (r = b, θ) = 1 2 σsin(2θ) I. σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σ ; σ rt(r = b) = 0 II. σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σcos(2θ) ; σ rt(r = b) = 1 2 σsin(2θ) () 75 / 303

Load case I σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σ ; σ rt(r = b) = 0 Airy function ψ = f (r) stress components σ rr = 1 r ψ r + 1 2 ψ r 2 θ 2 = 1 df r dr ; σ tt = 2 ψ r 2 = d2 f dr 2 ; σ rt = r ( 1 r ) ψ = 0 θ bi-harmonic equation ( d 2 dr 2 + 1 r ) ( d d 2 f dr dr 2 + 1 ) df = 0 r dr () 76 / 303

Solution general solution stresses ψ(r) = Aln r + Br 2 ln r + Cr 2 + D σ rr = A + B(1 + 2 lnr) + 2C r2 σ tt = A + B(3 + 2 lnr) + 2C r2 strains (from Hooke s law for plane stress) ε rr = 1 [ ] A (1 + ν) + B{(1 3ν) + 2(1 ν)ln r} + 2C(1 ν) E r2 ε tt = 1 1 [ Ar ] E r (1 + ν) + B{(3 ν)r + 2(1 ν)r lnr} + 2C(1 ν)r compatibility ε rr = du dr = d(r ε tt) dr 2 BC s and b a A and C B = 0 σ rr = 1 a2 2σ(1 r 2 ) ; σ tt = 1 a2 2σ(1 + r 2 ) ; σ rt = 0 () 77 / 303

Load case II σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σcos(2θ) ; σ rt(r = b) = 1 2 σsin(2θ) Airy function ψ(r, θ) = g(r)cos(2θ) stress components σ rr = 1 r ψ r + 1 2 ψ r 2 θ 2 ; σ tt = 2 ψ r 2 σ rt = 1 r 2 ψ θ 1 r ψ r θ = r bi-harmonic equation ( 2 r 2 + 1 r r + 1 2 ) {( d 2 g r 2 θ 2 dr 2 + 1 dg r dr 4 ( d 2 dr 2 + 1 d r dr 4 ) ( d 2 g r 2 dr 2 + 1 dg r dr 4 r 2 g ( 1 r ψ θ ) r 2 g ) ) cos(2θ) = 0 } cos(2θ) = 0 () 78 / 303

Solution general solution g = Ar 2 + Br 4 + C 1 r 2 + D ( ψ = Ar 2 + Br 4 + C 1 ) r 2 + D cos(2θ) ( stresses σ rr = 2A + 6C r 4 + 4D ) r 2 cos(2θ) ( σ tt = 2A + 12Br 2 + 6C ) r 4 cos(2θ) ( σ rt = 2A + 6Br 2 6C r 4 2D ) r 2 sin(2θ) 4 BC s and b a A,B,C and D ( σ rr = 1 2 σ 1 + 3a4 r 4 4a2 r 2 σ tt = 1 2 σ ( 1 + 3a4 r 4 ) cos(2θ) ) cos(2θ) ( σ rt = 1 2 σ 1 3a4 r 4 + 2a2 r 2 ) sin(2θ) () 79 / 303

Stresses for total load σ rr = σ [(1 a2 2 r 2 σ tt = σ [(1 + a2 2 r 2 σ rt = σ 2 ) + (1 + 3a4 ) [1 3a4 r 4 + 2a2 r 2 r 4 4a2 r 2 (1 + 3a4 r 4 ] sin(2θ) ) cos(2θ) ) ] cos(2θ) ] () 80 / 303

Special points stress concentration factor σ rr (r = a, θ) = σ rt (r = a, θ) = σ rt (r, θ = 0) = 0 σ tt (r = a, θ = π 2 ) = 3σ σ tt (r = a, θ = 0) = σ K t is independent of hole diameter! K t = σ max σ = 3 [-] () 81 / 303

Stress gradients large hole : smaller stress gradient larger area with higher stress higher chance for critical defect in high stress area () 82 / 303

Elliptical hole y σ σ yy σ a b radius ρ x ( σ yy (x = a, y = 0) = σ 1 + 2 a ) ( = σ 1 + 2 ) a/ρ b 2σ a/ρ stress concentration factor K t = 2 a/ρ [-] () 83 / 303

back to index CRACK TIP STRESS

() 85 / 303

Complex plane x 2 r θ x 1 crack tip = singular point complex function theory complex Airy function (Westergaard, 1939) () 86 / 303

Complex variables x 2 e i r θ z e r x 1 z z = x 1 + ix 2 = re iθ ; z = x 1 ix 2 = re iθ x 1 = 1 2 (z + z) ; x 2 = 1 2i (z z) = 1 2i(z z) z = x 1 e r + x 2 e i = x 1 e r + x 2 i e r = (x 1 + ix 2 ) e r () 87 / 303

Complex functions complex function f (z) = φ + iζ = φ(x 1, x 2 ) + iζ(x 1, x 2 ) = f f ( z) = φ(x 1, x 2 ) iζ(x 1, x 2 ) = f φ = 1 2 {f + f } ; ζ = 1 2 i{f f } 2 φ = 2 ζ = 0 appendix!! () 88 / 303

Laplace operator complex function Laplacian derivatives (see App. A) g(x 1, x 2 ) = g(z, z) 2 g = 2 g x1 2 + 2 g x2 2 g = g x 1 z z + g x 1 z z = g x 1 z + g z ; 2 g x 2 1 = 2 g z 2 + 2 g z z + 2 g z 2 g = g x 2 z z + g x 2 z z = i g x 2 z i g z ; 2 g x 2 2 = 2 g z 2 + 2 g z z 2 g z 2 Laplacian 2 g = 2 g x 2 1 2 = 4 z z + 2 g x 2 2 = 4 g z z () 89 / 303

Bi-harmonic equation Airy function ψ(z, z) bi-harmonic equation 2 ( 2 ψ(z, z) ) = 0 () 90 / 303

Solution of bi-harmonic equation real part of complex function f satisfies Laplace eqn. 2 ( 2 ψ(z, z) ) = 2 (φ(z, z)) = 0 φ = f + f choice Airy function 2 ψ = 4 ψ z z = φ = f + f integration ψ = 1 2 [ zω + z Ω + ω + ω ] unknown functions : Ω ; Ω ; ω ; ω () 91 / 303

Stresses Airy function ψ = 1 2 [ zω + z Ω + ω + ω ] stress components σ ij = σ ij (z, z) = ψ,ij + δ ij ψ,kk σ 11 = ψ,11 + ψ,γγ = ψ,22 = Ω + Ω 1 2 { zω + ω + z Ω + ω } σ 22 = ψ,22 + ψ,γγ = ψ,11 = Ω + Ω + 1 2 { zω + ω + z Ω + ω } σ 12 = ψ,12 = 1 2 i { zω + ω z Ω ω } () 92 / 303

Displacement u 2 u x 2 e i e 2 θ r u 1 e r e 1 x 1 definition of complex displacement u = u 1 e 1 + u 2 e 2 = u 1 e r + u 2 e i = u 1 e r + u 2 i e r = (u 1 + iu 2 ) e r = u e r u = u 1 + iu 2 = u 1 (x 1, x 2 ) + iu 2 (x 1, x 2 ) = u(z, z) ū = u 1 iu 2 = ū(z, z) () 93 / 303

Schematic u u(z, z) with int. const. M(z) z u z u ū z + ū z M(z), M( z) z u z + ū z = ε 11 + ε 22 σ 11, σ 22 M(z) u(z, z) () 94 / 303

Displacement derivatives u z = u x 1 x 1 z + u { x 2 u x 2 z = 1 2 + i u } x 1 x 2 { = 1 u1 2 + i u 2 + i u 1 u } 2 = 1 x 1 x 1 x 2 x 2 (ε 11 ε 22 + 2iε 12 ) 2 u z = u x 1 x 1 z + u { x 2 u x 2 z = 1 2 i u } x 1 x 2 { = 1 u1 2 + i u 2 i u 1 + u } { 2 = 1 x 1 x 1 x 2 x 2 ε 11 + ε 22 + i 2 ū z = ū x 1 x 1 z + ū { x 2 ū x 2 z = 1 2 i ū } x 1 x 2 { = 1 u1 2 i u 2 i u 1 u } 2 = 1 x 1 x 1 x 2 x 2 (ε 11 ε 22 2iε 12 ) 2 ū z = ū x 1 x 1 z + ū { x 2 ū x 2 z = 1 2 + i ū } x 1 x 2 { = 1 u1 2 i u 2 + i u 1 + u } 2 = 1 x 1 x 1 x 2 x 2 2 ( u2 u )} 1 x 1 x 2 { ( u2 ε 11 + ε 22 i u )} 1 x 1 x 2 () 95 / 303

General solution u z = 1 2 (ε 11 ε 22 + 2iε 12 ) Hooke s law (pl.strain) ] [σ 11 σ 22 + 2iσ 12 u z = 1 2 1 + ν E = 1 + ν E [z Ω + ω ] Integration u = 1 + ν E [ ] z Ω + ω + M () 96 / 303

Integration function u = 1 + ν E ū = 1 + ν E [ ] z Ω + ω + M u z = 1 + ν [ Ω + M ] E [ Ω + M ] [ zω + ω + M ] ū z = 1 + ν E u z + ū z = 1 + ν [ Ω + Ω + M + M ] E u z + ū z = ε 11 + ε 22 = 1 + ν [(1 2ν)(σ 11 + σ 22 )] E (1 + ν)(1 2ν) = 2 [ Ω + Ω ] E M + M = (3 4ν) [ Ω + Ω ] M = (3 4ν)Ω = κω u = 1 + ν E [ ] z Ω + ω κω () 97 / 303

Choice of complex functions Ω = (α + iβ)z λ+1 = (α + iβ)r λ+1 e iθ(λ+1) ω = (γ + iδ)z λ+1 = (γ + iδ)r λ+1 e iθ(λ+1) Ω = (α iβ) z λ+1 = (α iβ)r λ+1 e iθ(λ+1) Ω = (α iβ)(λ + 1) z λ = (α iβ)(λ + 1)r λ e iθλ ω = (γ iδ) z λ+1 = (γ iδ)r λ+1 e iθ(λ+1) u = 1 2µ rλ+1 [ κ(α + iβ)e iθ(λ+1) (α iβ)(λ + 1)e iθ(1 λ) (γ iδ)e iθ(λ+1)] with µ = E 2(1 + ν) displacement finite λ > 1 () 98 / 303

Displacement components u = 1 2µ rλ+1 [ κ(α + iβ)e iθ(λ+1) (α iβ)(λ + 1)e iθ(1 λ) (γ iδ)e iθ(λ+1)] e iθ = cos(θ) + i sin(θ) u = 1 2µ rλ+1 [ { i = u 1 + iu 2 κα cos(θ(λ + 1)) κβ sin(θ(λ + 1)) α(λ + 1)cos(θ(1 λ)) β(λ + 1)sin(θ(1 λ)) } γ cos(θ(λ + 1)) + δ sin(θ(λ + 1)) + { κα sin(θ(λ + 1)) + κβ cos(θ(λ + 1)) α(λ + 1)sin(θ(1 λ)) + β(λ + 1)cos(θ(1 λ)) + } ] γ sin(θ(λ + 1)) + δ cos(θ(λ + 1)) () 99 / 303

Mode I () 100 / 303

Mode I : displacement x 2 r θ x 1 displacement for Mode I u 1 (θ > 0) = u 1 (θ < 0) u 2 (θ > 0) = u 2 (θ < 0) } β = δ = 0 Ω = αz λ+1 = αr λ+1 e i(λ+1)θ ω = γz λ+1 = γr λ+1 e i(λ+1)θ () 101 / 303

Mode I : stress components σ 11 = (λ + 1) [ αz λ + α z λ { 1 2 αλ zz λ 1 + γz λ + αλz z λ 1 + γ z λ}] σ 22 = (λ + 1) [ αz λ + α z λ { + 1 2 αλ zz λ 1 + γz λ + αλz z λ 1 + γ z λ}] σ 12 = 1 2 i(λ + 1)[ αλ zz λ 1 + γz λ αλz z λ 1 γ z λ] with z = re iθ ; z = re iθ σ 11 = (λ + 1)r λ [ αe iλθ + αe iλθ {αλe i(λ 2)θ + γe iλθ + αλe i(λ 2)θ + γe iλθ}] 1 2 σ 22 = (λ + 1)r λ [ αe iλθ + αe iλθ + {αλe i(λ 2)θ + γe iλθ + αλe i(λ 2)θ + γe iλθ}] 1 2 σ 12 = 1 2 i(λ + 1)rλ [ αλe i(λ 2)θ + γe iλθ αλe i(λ 2)θ γe iλθ] () 102 / 303

with e iθ + e iθ = 2 cos(θ) ; e iθ e iθ = 2i sin(θ) σ 11 = 2(λ + 1)r λ [ α cos(λθ) + 1 2 {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 22 = 2(λ + 1)r λ [ α cos(λθ) 1 2 {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 12 = (λ + 1)r λ [αλ sin((λ 2)θ) + γ sin(λθ)] () 103 / 303

Stress boundary conditions σ 11 = 2(λ + 1)r λ [ α cos(λθ) + 1 2 {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 22 = 2(λ + 1)r λ [ α cos(λθ) 1 2 {αλ cos((λ 2)θ) + γ cos(λθ)}] σ 12 = (λ + 1)r λ [αλ sin((λ 2)θ) + γ sin(λθ)] crack surfaces are stress free σ 22 (θ = ±π) = σ 12 (θ = ±π) = 0 [ ][ ] [ ] (λ 2)cos(λπ) cos(λπ) α 0 = λ sin(λπ) sin(λπ) γ 0 [ ] (λ 2)cos(λπ) cos(λπ) det = sin(2λπ) = 0 2πλ = nπ λ sin(λπ) sin(λπ) λ = 1 2, n, with n = 0, 1, 2,.. 2 () 104 / 303

Stress field λ = 1 2 α = 2γ ; λ = 0 α = 1 2 γ λ = 1 2 α = 2γ ; λ = 1 α = γ σ 11 = 2γr 1 2 cos( 1 2 θ)[ 1 sin( 3 2 θ)sin(1 2 θ)] + σ 22 = 2γr 1 2 cos( 1 2 θ)[ 1 + sin( 3 2 θ)sin(1 2 θ)] + σ 12 = 2γr 1 2 [ cos( 1 2 θ)cos(3 2 θ)sin(1 2 θ)] + () 105 / 303

Mode I : stress intensity factor definition stress intensity factor K ( Kies ) ( ) K I = lim 2πr σ22 θ=0 = 2γ 2π [ m 1 2 N m 2 ] r 0 () 106 / 303

Mode I : crack tip solution σ 11 = σ 22 = σ 12 = K I 2πr [ cos( 1 2 θ){ 1 sin( 1 2 θ)sin(3 2 θ)}] K I 2πr [ cos( 1 2 θ){ 1 + sin( 1 2 θ)sin(3 2 θ)}] K I 2πr [ cos( 1 2 θ)sin(1 2 θ)cos(3 2 θ)] u 1 = K I r 2µ 2π u 2 = K I r 2µ 2π [ cos( 1 2 θ){ κ 1 + 2 sin 2 ( 1 2 θ)}] [ sin( 1 2 θ){ κ + 1 2 cos 2 ( 1 2 θ)}] plane stress plane strain κ = 3 ν 1 + ν κ = 3 4ν () 107 / 303

Mode II () 108 / 303

Mode II : displacement x 2 r θ x 1 displacements for Mode II u 1 (θ > 0) = u 1 (θ < 0) u 2 (θ > 0) = u 2 (θ < 0) } α = γ = 0 Ω = iβz λ+1 = iβr λ+1 e i(λ+1)θ ω = iδz λ+1 = iδr λ+1 e i(λ+1)θ () 109 / 303

Mode II : stress intensity factor definition stress intensity factor K ( Kies ) ( ) K II = lim 2πr σ12 θ=0 r 0 [ m 1 2 N m 2 ] () 110 / 303

Mode II : crack tip solution σ 11 = K II 2πr [ sin( 1 2 θ){ 2 + cos( 1 2 θ)cos(3 2 θ)}] σ 22 = K II 2πr [ sin( 1 2 θ)cos(1 2 θ)cos(3 2 θ)] σ 12 = K II 2πr [ cos( 1 2 θ){ 1 sin( 1 2 θ)sin(3 2 θ)}] u 1 = K II r 2µ 2π u 2 = K II r 2µ 2π [ sin( 1 2 θ){ κ + 1 + 2 cos 2 ( 1 2 θ)}] [ cos( 1 2 θ){ κ 1 2 sin 2 ( 1 2 θ)}] plane stress plane strain κ = 3 ν 1 + ν κ = 3 4ν () 111 / 303

Mode III () 112 / 303

Laplace equation ε 31 = 1 2 u 3,1 ; ε 32 = 1 2 u 3,2 Hooke s law σ 31 = 2µε 31 = µu 3,1 ; σ 32 = 2µε 32 = µu 3,2 equilibrium σ 31,1 + σ 32,2 = µu 3,11 + µu 3,22 = 0 2 u 3 = 0 () 113 / 303

Mode III : displacement general solution u 3 = f + f specific choice f = (A + ib)z λ+1 f = (A ib) z λ+1 () 114 / 303

Mode III : stress components σ 31 = 2(λ + 1)r λ {Acos(λθ) B sin(λθ)} σ 32 = 2(λ + 1)r λ {Asin(λθ) + B cos(λθ)} σ 32 (θ = ±π) = 0 [ ] [ ] [ ] sin(λπ) cos(λπ) A 0 = sin(λπ) cos(λπ) B 0 [ ] sin(λπ) cos(λπ) det = sin(2πλ) = 0 2πλ = nπ sin(λπ) cos(λπ) λ = 1 2, n,.. with n = 0, 1, 2,.. 2 crack tip solution λ = 1 2 A = 0 σ 31 = Br 1 2 {sin( 1 2 θ)} ; σ 32 = Br 1 2 {cos( 1 2 θ)} () 115 / 303

Mode III : Stress intensity factor definition stress intensity factor ( ) K III = lim 2πr σ32 θ=0 r 0 () 116 / 303

Mode III : crack tip solution stress components σ 31 = K III 2πr [ sin( 1 2 θ)] σ 32 = K III 2πr [ cos( 1 2 θ)] displacement u 3 = 2K III µ r [ sin( 1 2π 2 θ)] () 117 / 303

Crack tip stress (mode I, II, III) σ τ τ σ τ τ Mode I Mode II Mode III σ ij = K I 2πr f Iij (θ) ; σ ij = K II 2πr f IIij (θ) ; σ ij = K III 2πr f IIIij (θ) crack intensity factors (SIF) K I = β I σ πa ; K II = β II τ πa ; K III = β III τ πa () 118 / 303

K-zone D K-zone : D I II D II D I () 119 / 303

SIF for specified cases 2a σ τ 2a K I = σ ( πa sec πa W K II = τ πa ) 1/2 small a W W W () 120 / 303

SIF for specified cases σ K I = σ [ a 1.12 π 0.41 a W + a W ( a ) 2 ( a ) 3 18.7 38.48 + W W ( a ) ] 4 53.85 W 1.12σ πa small a W () 121 / 303

SIF for specified cases a W a σ K I = σ [ a 1.12 π + 0.76 a W ( a ) 2 ( a ) ] 3 8.48 + 27.36 W W 1.12σ πa () 122 / 303

SIF for specified cases W 2a σ K I /σ 2.5 2 1.5 1 full 1st term 0.5 0 0 0.1 0.2 0.3 0.4 a/w a W σ K I /σ 2.5 2 1.5 1 full 1st term 0.5 0 0 0.1 0.2 0.3 0.4 a/w plots are made with Kfac.m. () 123 / 303

SIF for specified cases P K I = [ PS ( a ) 1 2 2.9 BW 3/2 W W a P/2 S P/2 ( a ) 3 ( 2 a ) 5 2 4.6 + 21.8 W W ] ( a ) 7 ( 2 a ) 9 2 37.6 + 37.7 W W () 124 / 303

SIF for specified cases a P W K I = [ P ( a ) 1 2 29.6 BW 1/2 W ( a ) 3 ( 2 a ) 5 2 185.5 + 655.7 W W ] ( a ) 7 ( 2 a ) 9 2 1017 + 638.9 W W P () 125 / 303

SIF for specified cases 2a p K I = p πa p per unit thickness W () 126 / 303

SIF for specified cases P W a P/2 S P/2 K I /P 100 80 60 40 20 full 1st term P a W P K I /P 0 0 0.1 0.2 0.3 0.4 a/w 200 150 100 50 full 1st term 0 0 0.1 0.2 0.3 0.4 a/w plots are made with Kfac.m. () 127 / 303

K-based crack growth criteria K I = K Ic ; K II = K IIc ; K III = K IIIc K Ic = Fracture Toughness calculate K I, K II, K III - analytically - literature - relation K G - numerically (EEM, BEM) experimental determination of K Ic, K IIc, K IIIc - normalized experiments (exmpl. ASTM E399) KIc 2 - correlation with C v ( KAN p. 18 : E = mcn v ) () 128 / 303

Relation G K I y σ yy x a a crack length a σ yy (θ = 0, r = x a) = σ a 2(x a) ; u y = 0 crack length a + a σ yy (θ = π, r = a + a x) = 0 (1 + ν)(κ + 1) σ a + a u y = E 2 a + a x plane stress : κ = 3 ν 1 + ν ; plane strain : κ = 3 4ν () 129 / 303

Relation G K I (continued) accumulation of elastic energy U = 2B energy release rate G = 1 B lim a 0 a+ a a ( U a ) 1 2 σ yy dx u y = B a+ a a σ yy u y dx = B f ( a) a (1 + ν)(κ + 1) = lim f ( a) = σ 2 (1 + ν)(κ + 1) aπ = KI 2 a 0 4E 4E plane stress G = K I 2 E plane strain G = (1 ν 2 ) K I 2 E () 130 / 303

Multi mode load G = 1 E ( c1 KI 2 + c 2 KII 2 + c 3 KIII 2 ) plane stress G = 1 E (K 2 I + K 2 II) plane strain G = (1 ν2 ) (KI 2 + K 2 E II) + (1 + ν) KIII 2 E () 131 / 303

The critical SIF value σ K I 2a B K Ic σ B c B K Ic = σ c πa B c = 2.5 ( ) 2 KIc σ y () 132 / 303

K Ic values Material σ v [MPa] K Ic [MPa m ] steel, 300 maraging 1669 93.4 steel, 350 maraging 2241 38.5 steel, D6AC 1496 66.0 steel, AISI 4340 1827 47.3 steel, A533B reactor 345 197.8 steel, carbon 241 219.8 Al 2014-T4 448 28.6 Al 2024-T3 393 34.1 Al 7075-T651 545 29.7 Al 7079-T651 469 33.0 Ti 6Al-4V 1103 38.5 Ti 6Al-6V-2Sn 1083 37.4 Ti 4Al-4Mo-2Sn-0.5Si 945 70.3 () 133 / 303

back to index MULTI-MODE LOADING

Multi-mode crack loading Mode I Mode II Mode I + II Mode I + II () 135 / 303

Multi-mode crack loading crack tip stresses s ij Mode I s ij = K I 2πr f Iij (θ) Mode II s ij = K II 2πr f IIij (θ) Mode I + II s ij = K I 2πr f Iij (θ) + K II 2πr f IIij (θ) () 136 / 303

Stress component transformation (b) p e 2 e 2 θ n e 1 e 1 = cos(θ) e 1 + sin(θ) e 2 = c e 1 + s e 2 e 2 = sin(θ) e 1 + cos(θ) e 2 = s e 1 + c e 2 e 1 stress vector and normal unity vector p = p 1 e 1 + p 2 e 2 = p1 e 1 + p 2 e [ ] [ ] [ ] p1 c s p = 1 p 2 s c p2 2 [ p 1 p 2 ] [ c s = s c ] [ p1 p 2 ] = T p p p = T T p idem : ñ = T T ñ () 137 / 303

Transformation stress matrix p = σñ T p = σtñ p = T T σt ñ = σ ñ σ = T T σt σ = T σ T T [ σ 11 σ 12 σ 21 σ 22 ] [ ][ ] [ ] c s σ11 σ = 12 c s s c σ 21 σ 22 s c [ ][ ] c s cσ11 + sσ = 12 sσ 11 + cσ 12 s c cσ 21 + sσ 22 sσ 21 + cσ 22 c 2 σ 11 + 2csσ 12 + s 2 σ 22 = csσ 11 + (c 2 s 2 )σ 12 + csσ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 s 2 σ 11 2csσ 12 + c 2 σ 22 () 138 / 303

Cartesian to cylindrical transformation σ yy σ xy e t e r σ xx e 2 r θ e r = c e 1 + s e 2 e t = s e 1 + c e 2 e 1 σ rt σ rr σ tt [ ] σrr σ rt = σ tr σ tt [ c ][ s σxx σ xy s c = ] [ c s σ xy σ yy s c c 2 σ xx + 2csσ xy + s 2 σ yy csσ xx + (c 2 s 2 )σ xy + csσ yy csσ xx + (c 2 s 2 )σ xy + csσ yy s 2 σ xx 2csσ xy + c 2 σ yy ] () 139 / 303

Crack tip stresses : Cartesian σ yyσxy σ xx = σ xx K I 2πr f Ixx (θ) + K II 2πr f IIxx (θ) f Ixx (θ) = cos( θ 2 )[ 1 sin( θ 2 )sin(3θ 2 )] f IIxx (θ) = sin( θ 2 )[ 2 + cos( θ 2 )cos(3θ 2 )] f Iyy (θ) = cos( θ 2 )[ 1 + sin( θ 2 )sin(3θ 2 )] f IIyy (θ) = sin( θ 2 )cos( θ 2 )cos(3θ 2 ) f Ixy (θ) = sin( θ 2 )cos( θ 2 )cos(3θ 2 ) f IIxy (θ) = cos( θ 2 )[ 1 sin( θ 2 )sin(3θ 2 )] σ yy = σ xy = K I 2πr f Iyy (θ) + K II 2πr f IIyy (θ) K I 2πr f Ixy (θ) + K II 2πr f IIxy (θ) () 140 / 303

Crack tip stresses : cylindrical σ rr σ rt σ rr = θ σ tt K I 2πr f Irr (θ) + K II 2πr f IIrr (θ) f Irr (θ) = [ 5 4 cos( θ 2 ) 1 4 cos(3θ 2 )] f IIrr (θ) = [ 5 4 sin( θ 2 ) + 3 4 sin(3θ 2 )] f Itt (θ) = [ 3 4 cos( θ 2 ) + 1 4 cos(3θ 2 )] f IItt (θ) = [ 3 4 sin( θ 2 ) 3 4 sin(3θ 2 )] f Irt (θ) = [ 1 4 sin( θ 2 ) + 1 4 sin(3θ 2 )] f IIrt (θ) = [ 1 4 cos( θ 2 ) + 3 4 cos(3θ 2 )] σ tt = σ rt = K I 2πr f Itt (θ) + K II 2πr f IItt (θ) K I 2πr f Irt (θ) + K II 2πr f IIrt (θ) () 141 / 303

Multi-mode load 2a σ 22σ12 σ 11 σ 12 σ 22 2a σ 12 σ 11 [ σ 11 σ 12 σ 21 σ 22 ] = e 2 e 2 e 1 θ e 1 σ 12 σ 22 c 2 σ 11 + 2csσ 12 + s 2 σ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 csσ 11 + (c 2 s 2 )σ 12 + csσ 22 s 2 σ 11 2csσ 12 + c 2 σ 22 crack tip stresses s ij = K I 2πr f Iij (θ) + K II 2πr f IIij (θ) with K I = β σ 22 πa ; KII = γ σ 12 πa σ 11 does not do anything () 142 / 303

Example multi-mode load σ σ 12 σ 22 σ 11 2a kσ 2a σ 12 θ σ 11 = c2 σ 11 + 2csσ 12 + s 2 σ 22 = c 2 kσ + s 2 σ σ 22 = s2 σ 11 2csσ 12 + c 2 σ 22 = s 2 kσ + c 2 σ σ 12 = csσ 11 + (c 2 s 2 )σ 12 + csσ 22 = cs(1 k)σ crack tip stresses s ij = K I 2πr f Iij (θ) + K II 2πr f IIij (θ) stress intensity factors K I = β I σ 22 πa = βi (s 2 k + c 2 )σ πa K II = β II σ 12 πa = βii cs(1 k)σ πa () 143 / 303

Example multi-mode load σ t 2a σ a p R t θ σ 22 σ 12 σ 11 σ t = pr = σ ; σ a = pr t 2t = 1 2 σ k = 1 2 σ 22 = s 2 1 2 σ + c2 σ ; σ 12 = cs(1 1 2 )σ = 1 2 cs σ K I = σ 22 πa = ( 1 2 s2 + c 2 )σ πa = ( 1 2 s2 + c 2 ) pr t πa K II = σ 12 πa = 1 2 cs σ = 1 2 cs pr t πa () 144 / 303

back to index CRACK GROWTH DIRECTION

Crack growth direction criteria for crack growth direction : maximum tangential stress (MTS) criterion strain energy density (SED) criterion requirement : crack tip stresses in cylindrical coordinates () 146 / 303

Maximum tangential stress criterion Erdogan & Sih (1963) σ rr σ rt θ σ tt Hypothesis : crack growth towards local maximum of σ tt σ tt θ = 0 and 2 σ tt θ 2 < 0 θ c σ tt (θ = θ c ) = σ tt (θ = 0) = K Ic 2πr crack growth () 147 / 303

Maximum tangential stress criterion 3 2 σ tt θ = 0 K I K II [ 1 2πr 4 sin( θ 2 ) 1 4 sin(3θ 2 )] [ + 3 2 1 2πr 4 cos( θ 2 ) 3 4 cos(3θ 2 )] = 0 K I sin(θ) + K II {3 cos(θ) 1} = 0 2 σ tt θ 2 < 0 3 4 K I [ 1 2πr 4 cos( θ 2 ) 3 4 cos(3θ 2 )] [ + 3 1 4 2πr 4 sin( θ 2 ) + 9 4 sin(3θ 2 )] < 0 K II σ tt (θ = θ c ) = K Ic 2πr 1 K I 4 K II [ 3 cos( θ c K 2 ) + cos(3θc 2 )] [ + 1 4 3 sin( θ c Ic K 2 ) 3 sin(3θc 2 )] = 1 Ic () 148 / 303

Mode I load K II = 0 σ tt θ = K I sin(θ) = 0 θ c = 0 2 σ tt θ 2 < 0 θc σ tt (θ c ) = K Ic 2πr K I = K Ic () 149 / 303

Mode II load K I = 0 σ tt θ = K II(3 cos(θ c ) 1) = 0 θ c = ± arccos( 1 3 ) = ±70.6o 2 σ tt θ 2 < 0 θ c = 70.6 o θc σ tt (θ c ) = K Ic 2πr K IIc = 3 4 K Ic τ θ c τ () 150 / 303

Multi-mode load K I [ sin( θ 2 ) sin(3θ 2 )] + K II[ cos( θ 2 ) 3 cos(3θ 2 )] = 0 K I [ cos( θ 2 ) 3 cos(3θ 2 )] + K II[sin( θ 2 ) + 9 sin(3θ 2 )] < 0 K I [3 cos( θ 2 ) + cos(3θ 2 )] + K II[ 3 sin( θ 2 ) 3 sin(3θ 2 )] = 4K Ic K I f 1 K II f 2 = 0 K I f 2 + K II f 3 < 0 K I f 4 3K II f 1 = 4K Ic ( KI K ( Ic KI K ( Ic KI K Ic ) ( KII f 1 ) f 2 + ) f 4 3 K ( Ic KII K ( Ic KII K Ic ) f 2 = 0 ) f 3 < 0 ) f 1 = 4 () 151 / 303

Multi-mode load 0 10 20 30 θ c 40 50 60 70 0 0.2 0.4 0.6 0.8 1 K I /K Ic 0.9 0.8 0.7 0.6 K II /K Ic 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 K /K I Ic () 152 / 303

Strain energy density (SED) criterion Sih (1973) σ rr σ rt θ σ tt Hypothesis : U i = Strain Energy Density (Function) = εij 0 σ ij dε ij S = Strain Energy Density Factor = ru i = S(K I, K II, θ) crack growth towards local minimum of SED S θ = 0 and 2 S θ 2 > 0 θ c S(θ = θ c ) = S(θ = 0, pl.strain) = S c crack growth () 153 / 303

SED U i = 1 2E (σ2 xx + σ2 yy + σ2 zz ) ν E (σ xxσ yy + σ yy σ zz + σ zz σ xx ) + 1 2G (σ2 xy + σ2 yz + σ2 zx ) σ xx = σ yy = σ xy = K I 2πr cos( θ 2 )[ 1 sin( θ 2 )sin(3θ 2 )] K II 2πr sin( θ 2 )[ 2 + cos( θ 2 )cos(3θ 2 )] K I 2πr cos( θ 2 )[ 1 + sin( θ 2 )sin(3θ 2 )] + K II 2πr sin( θ 2 )cos( θ 2 )cos(3θ 2 ) K I 2πr sin( θ 2 )cos( θ 2 )cos(3θ 2 ) + K II 2πr cos( θ 2 )[ 1 sin( θ 2 )sin(3θ 2 )] () 154 / 303

SED factor S = ru i = S(K I, K II, θ) = a 11 k 2 I + 2a 12 k I k II + a 22 k 2 II with a 11 = 1 16G (1 + cos(θ))(κ cos(θ)) a 12 = 1 16G sin(θ){2 cos(θ) (κ 1)} a 22 = 1 16G {(κ + 1)(1 cos(θ)) + (1 + cos(θ))(3 cos(θ) 1)} k i = K i / π S θ = 0 ki 2 16G {2 sin(θ)cos(θ) (κ 1)sin(θ)} + k Ik II 16G {2 4 sin2 (θ) (κ 1)cos(θ)} + kii 2 { 6 sin(θ)cos(θ) + (κ 1)sin(θ)} = 0 16G 2 S θ 2 > 0 k 2 I 16G {2 4 sin2 (θ) (κ 1)cos(θ)} + k Ik II { 8 sin(θ)cos(θ) + (κ 1)sin(θ)} + 16G kii 2 16G { 6 + 12 sin2 (θ) + (κ 1)cos(θ)} > 0 () 155 / 303

Mode I load S = a 11 ki 2 = σ2 a {1 + cos(θ)}{κ cos(θ)} 16G S = sin(θ){2 cos(θ) (κ 1)} = 0 θ θ c = 0 or arccos ( 1 2 (κ 1)) 2 S θ 2 = 2 cos(2θ) (κ 1)cos(θ) > 0 θ c = 0 S(θ c ) = σ2 a 16G {2}{κ 1} = σ2 a (κ 1) 8G S c = S(θ c, pl.strain) = (1 + ν)(1 2ν) 2πE K 2 Ic () 156 / 303

Mode II load S = a 22 kii 2 = τ2 a [(κ + 1){1 cos(θ)} + {1 + cos(θ)}{3 cos(θ) 1}] 16G S = sin(θ)[ 6 cos(θ) + (κ 1)] = 0 θ 2 S θ 2 = 6 cos2 (θ) + (κ 1)cos(θ) > 0 S(θ c ) = τ2 a 16G { 1 12 ( κ2 + 14κ 1)} θ c = ± arccos ( 1 6 (κ 1)) S(θ c ) = S c τ c = 1 a 192GSc κ 2 + 14κ 1 () 157 / 303

Multi-mode load; plane strain 10 0 10 ν=0.0.75 ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν=0.495 20 30 θ c 40 50 60 70 80 90 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 K /K I Ic 1 0.9 0.8 0.7 K II /K Ic 0.6 0.5 0.4 ν=0.0.75 ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν=0.495 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 K /K I Ic () 158 / 303

Multi-mode load; plane stress 10 0 10 ν=0.0.75 ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν=0.495 20 30 θ c 40 50 60 70 80 90 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 K /K I Ic 1 0.9 0.8 0.7 0.6 K II /K Ic 0.5 0.4 0.3 0.2 ν=0.0.75 ν=0.1 ν=0.2 ν=0.3 ν=0.4 ν=0.495 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 K /K I Ic () 159 / 303

Multi-mode load; plane strain k I = σ a sin 2 (β) ; k II = σ a sin(β)cos(β) S = σ 2 a sin 2 (β) { a 11 sin 2 (β) + 2a 12 sin(β)cos(β) + a 22 cos 2 (β) } S θ = (κ 1)sin(θ c 2β) 2 sin{2(θ c β)} sin(2θ c ) = 0 2 S θ 2 = (κ 1)cos(θ c 2β) 4 cos{2(θ c β)} 2 cos(2θ c ) > 0 σ β 2a σ θc 90 θ c 80 70 ν = 0.5 60 50 40 ν = 0 30 20 ν = 0.1 10 0 0 10 20 30 40 50 60 70 80 90 β From Gdoutos () 160 / 303

back to index DYNAMIC FRACTURE MECHANICS

Dynamic fracture mechanics impact load (quasi)static load fast fracture - kinetic approach - static approach () 162 / 303

Crack growth rate Mott (1948) du e da du i da = du a da + du d da + du k da σ y 2a a thickness B x du e da = 0 ; du d da = 0 U a = 4aBγ du a da = 4γB σ U i = 2πa 2 B 1 σ 2 2 E du i da = 2πaBσ2 E () 163 / 303

Kinetic energy U k = 1 2 ρb Ω ( u 2 x + u 2 y)dxdy material velocity u x u y = du y dt ( ) 2 U k = 1 duy 2 ρs2 B dxdy Ω da ds assumption da = 0 ( ) 2 du k da = 1 d duy 2 ρs2 B dxdy Ω da da u y = 2 2 σ E a2 ax du ( k σ ) 2 da = ρs2 B a E Ω = du y da du y da = 2 σ E da dt = du y da s 2a x a2 ax 1 x 2 (x 2a) ( σ ) 2 a 3 (a x) 2 dxdy = ρs 2 B a k(a) E () 164 / 303

Energy balance 2πaσ 2 E s = ( E ρ ( = 4γ + ρs 2 σ ) 2 ak E ) 1 ( ) 2 2π 1 ( 2 1 2γE ) 1 2 k πaσ 2 ( ds ) da 0!! 2π k 0.38 ; a c = 2γE E πσ 2 ; c = ρ ( s = 0.38 c 1 a c a a a c ) 1 2 s 0.38 c () 165 / 303

Experimental crack growth rates steel copper aluminum glass rubber E [GPa] 210 120 70 70 20 ρ [kg/m 2 ] 7800 8900 2700 2500 900 ν 0.29 0.34 0.34 0.25 0.5 c [m/sec] 5190 3670 5090 5300 46 s [m/sec] 1500 2000 s/c 0.29 0.38 0.2 < s c < 0.4 () 166 / 303

Elastic wave speeds C 0 = elongational wave speed = C 1 = dilatational wave speed = C 2 = shear wave speed = E ρ κ + 1 κ 1 µ ρ µ ρ C R = Rayleigh velocity = 0.54 C 0 á 0.62 C 0 () 167 / 303

Corrections ( Dulancy & Brace (1960) s = 0.38 C 0 1 a ) c a ( Freund (1972) s = C R 1 a ) c a () 168 / 303

Crack tip stress Yoffe (1951) : σ Dij = K D 2πr f ij (θ, r, s, E, ν) () 169 / 303

Crack branching Yoffe (1951) σ Dij = K ID 2πr f ij (θ, r, s, E, ν) 0.9 σ Dtt (θ) max σ Dtt (θ = 0) 1 0.6 0 s c R 0.87 σ tt π π 2 θ crack branching volgens MTS Source: Gdoutos (1993) p.245 () 170 / 303

Fast fracture and crack arrest K D K Dc (s, T) crack growth K D < min 0<s<C R K Dc (s, T) = K A crack arrest () 171 / 303

Experiments Source: KAN1985 p.210 High Speed Photography : 10 6 frames/sec Robertson : CA Temperature (CAT) test (KAN1985 p.258) () 172 / 303

back to index PLASTIC CRACK TIP ZONE

() 174 / 303

Von Mises and Tresca yield criteria Von Mises Tresca W d = W d c (σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2 = 2σ 2 y τ max = τ maxc σ max σ min = σ y yield surface in principal stress space () 175 / 303

Principal stresses at the crack tip plane stress state σ zz = σ zx = σ zy = 0 σ = σ xx σ xy 0 σ xy σ yy 0 0 0 0 characteristic equation det(σ σi) = 0 σ [ σ 2 σ(σ xx + σ yy ) + (σ xx σ yy σ 2 xy )] = 0 σ 1 = 1 2 (σ xx + σ yy ) + { 1 4 (σ xx σ yy ) 2 + σ 2 xy σ 2 = 1 2 (σ xx + σ yy ) { 1 4 (σ xx σ yy ) 2 + σ 2 xy σ 3 = 0 } 1/2 } 1/2 plane strain state σ 3 = ν(σ 1 + σ 2 ) () 176 / 303

Principal stresses at crack tip crack tip stresses σ ij = K I 2πr f Iij (θ) σ 1(+),2( ) = K I [ cos( θ 2πr 2 )± ] { 1 4 2 cos( θ 2 )sin( θ 2 )sin(3θ 2 )} 2 { + sin( θ 2 )cos( θ 2 )cos(3θ 2 )} 2 σ 1 = σ 2 = K I 2πr cos( θ 2 ){1 + sin( θ 2 )} K I 2πr cos( θ 2 ){1 sin( θ 2 )} σ 3 = 0 or σ 3 = 2νK I 2πr cos( θ 2 ) () 177 / 303

Principal stresses at crack tip plane stress σ 1 > σ 2 > σ 3 plane strain σ 1 > σ 2 > σ 3 or σ 1 > σ 3 > σ 2 1000 ν = 0.25 1000 ν = 0.35 800 800 600 600 σ σ 400 200 0 0 20 40 60 80 100 θ 400 200 0 0 20 40 60 80 100 θ 1000 ν = 0.45 1000 ν = 0.5 800 800 600 600 σ σ 400 200 0 0 20 40 60 80 100 θ 400 200 0 0 20 40 60 80 100 θ () 178 / 303

Von Mises plastic zone (σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2 = 2σ 2 y plane stress σ 3 = 0 (σ 1 σ 2 ) 2 + σ 2 2 + σ2 1 = 2σ2 y KI 2 cos 2 ( θ 2πr 2 )[ 6 sin 2 ( θ 2 ) + 2] = 2σ 2 y y r y = K I 2 2πσ 2 y cos 2 ( θ 2 )[ 1 + 3 sin 2 ( θ 2 )] = K I 2 [ 1 + cos(θ) + 3 4πσ 2 2 sin2 (θ) ] y plane strain σ 3 = ν(σ 1 + σ 2 ) (ν 2 ν + 1)(σ 2 1 + σ 2 2) + (2ν 2 2ν 1)σ 1 σ 2 = σ 2 y KI 2 cos 2 ( θ 2πr 2 )[ 6 sin 2 ( θ 2 ) + 2(1 2ν)2] = 2σ 2 y y r y = K I 2 4πσ 2 y [ (1 2ν) 2 {1 + cos(θ)} + 3 2 sin2 (θ) ] () 179 / 303

Von Mises plastic zone 1 Von Mises plastic zones pl.stress pl.strain 0.5 0 0.5 1 0.5 0 0.5 1 1.5 Plot made with plazone.m. () 180 / 303

Tresca plastic zone σ max σ min = σ y plane stress {σ max, σ min } = {σ 1, σ 3 } K I 2πry [ cos( θ 2 ) + cos( θ 2 )sin( θ 2 ) ] = σ y r y = K I 2 [ cos( θ 2πσ 2 2 ) + cos( θ 2 )sin( θ 2 ) ] 2 y plane strain I σ 1 > σ 2 > σ 3 {σ max, σ min } = {σ 1, σ 3 } r y = K I 2 [ (1 2ν)cos( θ 2πσ 2 2 ) + cos( θ 2 )sin( θ 2 ) ] 2 y plane strain II σ 1 > σ 3 > σ 2 {σ max, σ min } = {σ 1, σ 2 } r y = K I 2 2πσ 2 sin 2 (θ) y () 181 / 303

Tresca plastic zone 1 0.5 Tresca plastic zones pl.stress pl.strain sig3 = min pl.strain sig2 = min 0 0.5 1 0.5 0 0.5 1 1.5 Plot made with plazone.m. () 182 / 303

Influence of the plate thickness B c > 25 3π ( KIc σ y ) 2 > 2.5 ( ) 2 KIc σ y () 183 / 303

Shear planes Source: Gdoutos p.60/61/62; Kanninen p.176 () 184 / 303

Plastic zone in the crack plane () 185 / 303

Irwin plastic zone correction σ xx σ xx σ yy σ yy σ y σ y a r y r a r y r p r θ = 0 σ xx = σ yy = K I 2πr yield σ xx = σ yy = σ y r y = 1 ( ) 2 KI 2π σ y equilibrium not satisfied correction required shaded area equal () 186 / 303

Irwin plastic zone correction σ xx σ xx σ yy σ yy σ y σ y a r y r a r y r p r σ y r p = ry 0 σ yy (r)dr = K I 2π ry 0 r 1 2 dr = 2K I 2π ry r p = 2K I ry r p = 1 ( KI 2π σ y π σ y ) 2 = 2 r y () 187 / 303

Dugdale-Barenblatt plastic zone correction y a σ y r p σ x σ load σ load σ y K I (σ) = σ π(a + r p ) K I (σ y ) = 2σ y a + rp π ( ) a arccos a + r p singular term = 0 K I (σ) = K I (σ y ) ( ) a πσ = cos r p = πk I 2 a + r p 2σ y 8σ 2 y () 188 / 303

Plastic constraint factor 1 2 {(σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 3 σ 1 ) 2 } = [ ] 1 n m + n2 + m 2 mn σ max = σ y PCF = σ max 1 = σ y 1 n m + n2 + m 2 mn () 189 / 303

PCF at the crack tip pl.sts n = [ 1 sin( θ 2 )] / [ 1 + sin( θ 2 )] ; m = 0 pl.stn n = [ 1 sin( θ 2 )] / [ 1 + sin( θ 2 )] ; m = 2ν/ [ 1 + sin( θ 2 )] () 190 / 303

PCF at the crack tip in the crack plane pl.sts n = 1 ; m = 0 PCF = 1 pl.stn n = 1 ; m = 2ν PCF = 1 1 4ν + 4ν 2 () 191 / 303

Plastic zones in the crack plane r y r p criterion state r y or r p (K I /σ y ) 2 ( ) 2 1 KI Von Mises plane stress 0.1592 2π σ y ( ) 2 1 KI Von Mises plane strain 0.0177 18π σ y ( ) 2 1 KI Tresca plane stress 0.1592 2π σ y ( ) 2 1 KI Tresca plane strain σ 1 > σ 2 > σ 3 0.0177 18π Tresca plane strain σ 1 > σ 3 > σ 2 0 0 ( ) 2 1 KI Irwin plane stress 0.3183 π σ y ( ) 2 1 KI Irwin plane strain (pcf = 3) 0.0354 π 3σ y ( ) 2 π KI Dugdale plane stress 0.3927 8 σ y ( ) 2 π KI Dugdale plane strain (pcf = 3) 0.0436 8 3σ y σ y () 192 / 303

Small Scale Yielding LEFM & SSY correction effective crack length a eff Irwin / Dugdale-Barenblatt correction SSY : outside plastic zone : K I (a eff )-stress a eff = a + (r y r p ) K I = β I (a eff )σ πa eff () 193 / 303

back to index NONLINEAR FRACTURE MECHANICS

Nonlinear Fracture Mechanics () 195 / 303

Crack-tip opening displacement crack tip displacement u y = σ πa r [ sin( 1 2µ 2π 2 θ){ κ + 1 2 cos 2 ( 1 2 θ)}] displacement in crack plane θ = π; r = a x u y = (1 + ν)(κ + 1) E Crack Opening Displacement (COD) δ(x) = 2u y (x) = Crack Tip Opening Displacement (CTOD) (1 + ν)(κ + 1) E δ t = δ(x = a) = 0 σ 2a(a x) 2 σ 2a(a x) () 196 / 303

CTOD () 197 / 303

CTOD by Irwin σ xx σ xx σ yy σ yy σ y σ y a r y r a r y r p r effective crack length a eff = a + r y = a + 1 2π ( ) 2 KI σ y () 198 / 303

CTOD by Irwin (1 + ν)(κ + 1) δ(x) = σ 2a eff (a eff x) E (1 + ν)(κ + 1) = σ 2(a + r y )(a + r y x) E (1 + ν)(κ + 1) δ t = δ(x = a) = σ 2(a + r y )r y E (1 + ν)(κ + 1) = σ 2ar y + 2ry E 2 (1 + ν)(κ + 1) σ 2ar y E plane stress : δ t = 4 = 4 G π Eσ y π σ y [ ] 1 4(1 ν 2 ) plane strain : δ t = 3 π K 2 I K 2 I Eσ y () 199 / 303

CTOD by Dugdale y σ y σ x a r p σ effective crack length ( ) 2 KI a eff = a + r p = a + π 8 σ y () 200 / 303

CTOD by Dugdale displacement from requirement singular term = 0 : ū y (x) [ ū y (x) = (a + r { p)σ y x sin 2 } { } ] 2 (^γ γ) sin(^γ) + sin(γ) ln πe a + r p sin 2 + cos(^γ) ln (^γ + γ) sin(^γ) sin(γ) ( ) x γ = arccos ; ^γ = π σ a + r p 2 σ y Crack Tip Opening Displacement δ t = lim 2ū x a y(x) = 8σ { ( )} va π πe ln σ sec 2 σ y series expansion & σ σ y plane stress : δ t = K I 2 = G Eσ y σ y [ ] 1 plane strain : δ t = 2 (1 ν 2 ) K I 2 Eσ y () 201 / 303

CTOD crack growth criterion δ t (G, K I ) at LEFM δ t = measure for deformation at crack tip (LEFM) δ t = measure for (large) plastic deformation at crack tip (NLFM) criterion δ t = δ tc ( ε, T) δ t calculate or measure δ tc experimental determination (ex. BS 5762) () 202 / 303

J-integral n t x 2 e 2 Γ Ω V S positive e 1 x 1 J k = Γ J = J 1 = ( u i Wn k t i x k Γ ( Wn 1 t i u i x 1 ) dγ ; W = specific energy = ) dγ Epq 0 σ ij dε ij [ ] N m () 203 / 303

Integral along closed curve J k = Γ (Wδ jk σ ij u i,k ) n j dγ inside Γ no singularities Stokes (Gauss in 3D) ( ) dw ε mn δ jk σ ij,j u i,k σ ij u i,kj dω dε mn x j Ω homogeneous hyper-elastic σ mn = W ε mn linear strain ε mn = 1 2 (u m,n + u n,m ) equilibrium equations σ ij,j = 0 Ω { 1 2 σ mn(u m,nk + u n,mk ) σ ij u i,kj } dω = ) (σ mn u m,nk σ ij u i,kj dω = 0 Ω () 204 / 303

Path independence x 2 Ω n e 2 e 1 Γ+ Γ n Γ B Γ A x 1 f 1 dγ + f 1 dγ + f 1 dγ + f 1 dγ = 0 Γ A Γ B Γ Γ + no loading of crack faces : n 1 = 0 ; t i = 0 on Γ + and Γ f 1 dγ + f 1 dγ = 0 Γ A Γ B J 1A + J 1B = 0 J 1A = J 1B f 1 dγ = J 1A ; f 1 dγ = J 1B Γ A Γ B () 205 / 303

Relation J K lin. elast. material : W = 1 2 σ mnε mn = 1 4 σ mn(u m,n + u n,m ) ( ) 1 J k = 4 σ mn(u m.n + u n,m )δ jk σ ij u i,k n j dγ Mode I + II + III Γ = Γ ( 1 2 σ mnu m,n δ jk σ ij u i,k ) n j dγ σ ij = 1 2πr [K I f Iij + K II f IIij + K III f IIIij ] u i = u Ii + u IIi + u IIIi substitution and integration over Γ = circle (κ + 1)(1 + ν) J 1 = 4E J 2 = ( K 2 I + KII 2 (κ + 1)(1 + ν) K I K II 2E ) (1 + ν) + KIII 2 E () 206 / 303

Relation J G Mode I J 1 = J = (κ + 1)(1 + ν) 4E K 2 I = G plane stress κ + 1 = 3 ν 1 + ν + 1 + ν 1 + ν = 4 1 + ν J = 1 E K 2 I plane strain κ + 1 = 4 4ν J = (1 ν2 ) E K 2 I () 207 / 303

Relation J δ t plane stress Irwin J = π 4 σ yδ t Dugbale J = σ y δ t plane strain Irwin J = π 4 3σy δ t Dugbale J = 2σ y δ t () 208 / 303

Plastic constraint factor J = m σ y δ t m = 0.111 + 0.817 a W + 1.36 σ u σ y () 209 / 303

HRR crack tip stresses and strains () 210 / 303

Ramberg-Osgood material law ε = σ ( ) n σ + α ε y0 σ y0 σ y0 n strain hardening parameter (n 1) n = 1 linear elastic n ideal plastic 5 Ramberg Osgood for α = 0.01 n = 1 4 n = 3 3 σ/σ y0 2 n = 5 n = 7 1 n = 13 0 0 1 2 3 ε/ε y0 4 5 6 () 211 / 303

HRR-solution σ ij = σ y0 β r 1 n+1 σ ij (θ) ; u i = αε y0 β n 1 r n+1 ũ i (θ) [ ] J 1 n+1 with : β = (I n from num. anal.) ασ y0 ε y0 I n I n 5 2.5 0 5 10 15 plane strain plane stress n () 212 / 303

J-integral crack growth criterion LEFM : J k G (K I, K II, K III ) NLFM : Ramberg-Osgood : J determines crack tip stress criterion J = J c calculate J J Ic from experiments e.g. ASTM E813 () 213 / 303

back to index NUMERICAL FRACTURE MECHANICS

Numerical fracture mechanics Methods EEM ; BEM Calculations G K δt J Simulation crack growth () 215 / 303

Quadratic elements ξ 2 ξ 1 4 8 7 ξ 2 3 ξ 1 6 4 7 3 1 4 7 5 3 6 2 8 1 5 6 2 1 8 5 2 isoparametric coordinates : 1 ξ i 1 shape functions for each node n ψ n (ξ 1, ξ 2 ) = quadratic in ξ 1 and ξ 2 () 216 / 303

Crack tip mesh bad approximation stress field results are mesh-dependent 1/ r () 217 / 303

Special elements enriched elements crack tip field added to element displacement field structure K and f changes transition elements for compatibility hybrid elements modified variational principle () 218 / 303

Quarter point elements 4 7 3 6 8 1 5 2 p 3p 3 5 6 1 4 2 4 8 1 7 p 3 6 5 2 3p 4 1 3 2 Distorted Quadratic Quadrilateral (1/ r) Distorted Quadratic Triangle (1/ r) Collapsed Quadratic Quadrilateral (1/ r) Collapsed Distorted Linear Quadrilateral (1/r) good approximation stress field (1/ r or 1/r) bad approximation non-singular stress field standard FEM-programs can be used () 219 / 303

Crack tip rozet Quarter Point Elements : 8x Transition Elements : number is problem dependent Buffer Elements () 220 / 303

One-dimensional case ξ = 1 ξ = 0 ξ = 1 1 x 3 2 position displacement and strain x = 1 2 ξ(ξ 1)x 1 + 1 2 ξ(ξ + 1)x 2 (ξ 2 1)x 3 = 1 2 ξ(ξ + 1)L (ξ2 1)x 3 u = 1 2 ξ(ξ 1)u 1 + 1 2 ξ(ξ + 1)u 2 (ξ 2 1)u 3 du dξ = (ξ 1 2 )u 1 + (ξ + 1 2 )u 2 2ξu 3 du dx = du dξ dξ dx = du dξ /dx dξ () 221 / 303

Mid point element mid-point element : x 3 = 1 2 L ξ = 1 ξ = 0 ξ = 1 1 x 3 2 x = 1 2 ξ(ξ + 1)L (ξ2 1) 1 2 L = 1 2 (ξ + 1)L dx dξ = 1 2 L du du dx = dξ 1 2 L du dx x=0 ξ= 1 = ( 2 L ) {( 3 2 ) u1 + ( ) } 1 2 u2 + 2u 3 () 222 / 303

Quarter point element quarter-point element : x 3 = 1 4 L ξ = 1 ξ = 0 ξ = 1 1 x 3 2 x = 1 2 ξ(ξ + 1)L (ξ2 1) 1 4 L = 1 4 (ξ + 1)2 L ξ + 1 = dx dξ = 1 2 (ξ + 1)L = xl du du dx = dξ du xl dx singularity 1 x x=0 ξ= 1 = 4x L () 223 / 303

Virtual crack extension method (VCEM) u u a a + a I II fixed grips du e da = 0 G = 1 du i B da 1 U i (a + a) U i (a) B a () 224 / 303

VCEM : stiffness matrix variation B G = du i da = C 1 2ũT a ũ with C = C(a + a) C(a) G from analysis crack tip mesh only nodal point displacement : ± 0.001 element size not possible with crack tip in interface unloaded crack plane no thermal stresses () 225 / 303

Stress intensity factor calculate G I and G II with VCEM calculate K I and K II from KI 2 = E G I ; KII 2 = E G II plane stress E = E plane strain E = E/(1 ν 2 ) difficult for crack propagation study () 226 / 303

SIF : stress field ( ) K I = lim 2πr σ22 θ=0 r 0 extrapolation to crack tip ( ) ; K II = lim 2πr σ12 θ=0 r 0 p p 4 3 p p 2 1 θ r K K p1 Kp2 K p3 K p4 r 1 r 2 r 3 r 4 r questions : which elements? how much elements? which integration points? () 227 / 303

SIF : displacement field crack tip displacement y-component u y = 4(1 ν2 ) r E 2π K I g ij (θ) [ ] E 2π K I = lim r 0 4(1 ν 2 u y (θ = 0) ) r more accurate than SIF from stress field () 228 / 303

J-integral J = Γ ( ) ε u i Wn 1 t i dγ with W = σ ij dε ij x 1 0 () 229 / 303

J-integral : Direct calculation J = 2 W = y [ ( u x W σ xx x + σ yx )] u y x dy 2 E 2(1 ν 2 ) (ε2 xx + 4νε xxε yy + 2(1 ν)ε 2 xy + ε2 yy ) x [( σ xy u x x + σ yy )] u y dx x path through integration points no need for quarter point elements () 230 / 303

J-integral : Domain integration x 2 Ω e 2 Γ + n e 1 Γ Γ B n Γ A x 1 Ω q = 0 q = 1 q J = x j Ω ( ) u i σ ij Wδ 1j dω x 1 interpolation q e = Ñ T e (ξ )q () 231 / 303

De Lorenzi J-integral : VCE technique ( ) u i σ i1 Wδ 1j dω x 1 q J = x j Ω u i qp i dγ x 1 Γ s rigid region Ω elongation a of crack translation δx1 of internal nodes fixed position of boundary q = δx 1 = shift function (0 < q < 1) a q(ρq i ρü i ) u i dω + x 1 Ω qσ ij ε o ij x 1 dω () 232 / 303

Crack growth simulation Node release Moving Crack Tip Mesh Element splitting Smeared crack approach () 233 / 303

Node release node collocation technique () 234 / 303

Moving Crack Tip Mesh () 235 / 303

Element splitting () 236 / 303

Smeared crack approach e 2 e 1 e 2 e 1 n 2 σ 2 σ 1 n1 n 2 n 1 () 237 / 303

back to index FATIGUE

Teletekst Wo 3 oktober 2007 Van de 274 stalen bruggen in ons land kampen er 25 met metaalmoeheid. Dat is de uitkomst van een groot onderzoek van het ministerie van Verkeer. Bij twaalf bruggen zijn de problemen zo groot dat noodmaatregelen nodig zijn. Ook de meer dan 2000 betonnen bruggen en viaducten zijn onderzocht. De helft daarvan moet nog nader worden bekeken. Ze gaan mogelijk minder lang mee dan was berekend, maar de veiligheid komt volgens het ministerie niet in gevaar. Verkeersbeperkende maatregelen zijn dan ook niet nodig. Die werden in april wel getroffen voor het vrachtverkeer over de Hollandse Brug bij Almere. () 239 / 303

Fatigue ± 1850 (before Griffith!) : cracks at diameter-jumps in axles carriages / trains failure due to cyclic loading with small amplitude Wöhler : systematic experimental examination cyclic loading : variable mechanical loads vibrations pressurization / depressurization thermal loads (heating / cooling) random external loads () 240 / 303

Crack surface clam shell markings (beach marks) - irregular crack growth - crack growth under changing conditions striations - sliding of slip planes - plastic blunting / sharpening of crack tip - regular crack growth () 241 / 303

Experiments full-scale testing a.o. train axles airplanes laboratory testing harmonic loading constant force/moment strain/deflection SIF () 242 / 303

Train axle D = 0.75 [m] 1 rev = πd = π 0.75 2.25 [m] 1 km = 1000 m = 1000 2.25 = 4000 9 445 [c(ycles)] 1 day Maastricht - Groningen = 2.5 333 [km] = 1000 [km] 1 day Maastricht - Groningen = 445 10 3 [c] 1 year = 300 445 10 3 [c] = 1335 10 5 [c] 1.5 10 8 [c] frequency : 100 [km/h] = 445 10 2 [c/h] = 44500 3600 = 12.5 [c/sec] = 12.5 [Hz] () 243 / 303

Fatigue load (stress controlled) σ σ max σ m σ min 0 0 i i + 1 t N σ = σ max σ min ; σ a = 1 2 σ σ m = 1 2 (σ max + σ min ) ; R σ = σ min /σ max ; - frequency bending 30-80 Hz tensile electric 50-300 Hz mechanic < 50 Hz hydraulic 1-50 Hz - no influence frequency for ± 5000 [c/min] (metals) σ a = 1 R σ m 1 + R () 244 / 303

Fatigue limit (σ th ) σ σ th N σ < σ th : no increase of damage materials with fatigue limit mild steel low strength steels Ti / Al / Mg -alloys materials without fatigue limit some austenitic steels high strength steels most non-ferro alloys Al / Mg-alloys () 245 / 303

(S-N)-curve B.S. 3518 part I 1984 : S = σ max S σ th 0 0 log(n f ) reference : R = 1 and σ m = 0 σ max = 1 2 σ fatigue life : N f at σ max (= S) fatigue limit : σ th (= σ fat ) N f = (±10 9 ) fatigue strength : σ e = σ max when N f 50 10 6 steels : σ th 1 2 σ b () 246 / 303

(S a -N)-curve B.S. 3518 part I 1984 : S a = 1 2 σ = σ a S a σ th 0 0 log(n f ) reference : R = 1 and σ m = 0 σ a = σ max (S a N) curve = (S N) curve () 247 / 303

Examples 600 550 500 450 steelt1 400 σ max [MPa] 350 300 250 steel1020 200 150 100 Mgalloy Al2024T4 10 4 10 5 10 6 10 7 10 8 10 9 N f () 248 / 303

Influence of average stress σ a σ m σ th 0 0 log(n f ) () 249 / 303

Correction for average stress Gerber (1874) Goodman (1899) Soderberg (1939) σ a σ a = 1 σ a ( ) 2 σm σ u = 1 σ m σ a σ u σ a = 1 σ m σ a σ y0 σ u : tensile strength σ y0 : initial yield stress () 250 / 303

(P-S-N)-curve 550 500 450 400 σ max [MPa] 350 300 90% prob.failure 250 50% prob.failure 200 150 10% prob.failure 100 10 4 10 5 10 6 10 7 10 8 N f () 251 / 303

High/low cycle fatigue S a σ m = 0 0 0 LCF 4 5 HCF log(n f ) high cycle fatigue N f > ±50000 low stresses LEFM + SSY stress-life curve Basquin relation K max = βσ max πa ; Kmin = βσ min πa ; K = β σ πa () 252 / 303

High/low cycle fatigue S a σ m = 0 0 0 LCF 4 5 HCF log(n f ) low cycle fatigue N f < ±50000 high stresses EPFM strain-life curve Manson-Coffin relation () 253 / 303

Basquin relation 1 2 σ = σ a = σ f (2N f ) b σn b f = constant σ f = fatigue strength coefficient σ b (monotonic tension) b = fatigue strength exponent (Basquin exponent) log ( ) σ 2 log(2n f ) () 254 / 303

Manson-Coffin relation 1 2 εp = ε f (2N f ) c ε p N c f = constant ε f = fatigue ductility coefficient ε b (monotonic tension) c = fatigue ductility exponent ( log ) ε p 2 ( 0.5 < c < 0.7) log(2n f ) () 255 / 303

Total strain-life curve log( ε 2 ) log(n f ) ε 2 = εe 2 + εp 2 = 1 E σ f (2N f ) b + ε f (2N f ) c () 256 / 303

Influence factors load spectrum stress concentrations stress gradients material properties surface quality environment () 257 / 303

Load spectrum sign / magnitude / rate / history multi-axial lower f.limit than uni-axial () 258 / 303

Stress concentrations ρ σ th (notched) = 1 K f σ th (unnotched) ; 1 < K f < K t K f : fatigue strength reduction factor (effective stress concentration factor) K f = 1 + q(ρ)(k t 1) Peterson : q = 1 1 + a ρ 1 Neuber : q = 1 + b ρ with with q(ρ) = notch sensitivity factor a = material parameter b = grain size parameter () 259 / 303

Stress gradients full-scale experiments necessary () 260 / 303

Material properties grain size/structure : small grains higher f.limit at low temp. large grains higher f.limit at high temp. (less grain boundaries less creep) texture inhomogeneities and flaws residual stresses fibers and particles () 261 / 303

Surface quality 10µm surface extrusions & intrusions notch + inclusion of O 2 etc. bulk defect internal surfaces internal grain boundaries / triple points (high T) voids manufacturing minimize residual tensile stresses surface finish minimize defects (roughness) surface treatment (mech/temp) residual pressure stresses coating environmental protection high σ y0 more resistance to slip band formation () 262 / 303

Environment temperature creep - fatigue low temperature : ships / liquefied gas storage elevated temperature (T > 0.5T m ) : turbine blades creep mechanism : diffusion / dislocation movement / migration of vacancies / grain boundary sliding grain boundary voids / wedge cracks chemical influence corrosion-fatigue () 263 / 303

Crack growth a I II III a c a c σ a f a 1 a i N i N f N I : N < N i - N i = fatigue crack initiation life - a i = initial fatigue crack II : N i < N < N f - slow stable crack propagation - a 1 = non-destr. inspection detection limit III : N f < N - global instability - towards catastrophic failure - a = a c : failure N r N f = 1 N N f N r = rest life () 264 / 303

Crack growth models ( ) 2 da K striation spacing 6 dn E (Bates, Clark (1969)) da dn f (σ, a) σm a n ; m 2 7 ; n 1 2 da dn δ t ( K)2 Eσ y (BRO263) da da K dn dn K E Source: HER1976a p515 da Paris law : dn = C( K)m () 265 / 303