Chapter 3 Prior Information

Σχετικά έγγραφα
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

rs r r â t át r st tíst Ó P ã t r r r â

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

UNIT 13: TRIGONOMETRIC SERIES

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error

Pairs of Random Variables

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

ACI sécurité informatique KAA (Key Authentification Ambient)

ON THE MEASUREMENT OF

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Couplage dans les applications interactives de grande taille

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

Richard Barrett. Helene soprano, recorder, marimba and triple harp. performing score

General theorems of Optical Imaging systems

IJAO ISSN Introduction ORIGINAL ARTICLE

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ GRADUATION PROJECT

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

ψ(x) ψ (x) =exp[iγ a Θ a ] ψ(x) =1+iΓ a Θ a ψ ±

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Boundary-Layer Flow over a Flat Plate Approximate Method

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Estimators when the Correlation Coefficient. is Negative

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

Consommation marchande et contraintes non monétaires au Canada ( )

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Assessment of otoacoustic emission probe fit at the workfloor

Langages dédiés au développement de services de communications

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.

Latent variable models Variational approximations.

Teen Physique. 131 Luke Smith Lance Manibog Donail Nikooei 4 137

Finite Field Problems: Solutions

A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

GPS, 0. 5 kg ( In tegrated Fertility Index, IF I) 1. 1 SPSS 10. IF I =

Ax = b. 7x = 21. x = 21 7 = 3.

[ ] [ ] ( ) 1 1 ( 1. ( x) Q2bi

Cursul 10 T. rezultă V(x) < 0.

❷ s é 2s é í t é Pr 3

Το άτομο του Υδρογόνου

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Alterazioni del sistema cardiovascolare nel volo spaziale

P r s r r t. tr t. r P

GREECE BULGARIA 6 th JOINT MONITORING

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

10. Circuit Diagrams and PWB Layouts

Mean-Variance Analysis

PARTIAL SUMS OF CERTAIN CLASSES OF MEROMORPHIC FUNCTIONS

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Su cient conditions for sound hashing using atruncatedpermutation

Transparency and liquidity in securities markets*

Vers un assistant à la preuve en langue naturelle

Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.

ΠΡΟΤΑΣΗ ΖΩΗΣ: «Η ΒΙΟΛΟΓΙΚΗ ΚΑΛΛΙΕΡΓΕΙΑ ΚΑΙ ΤΑ ΠΡΟΪΟΝΤΑ ΤΗΣ»

Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Multi-GPU numerical simulation of electromagnetic waves

01 A. b = 2 b = n b = n + 1

Exam Statistics 6 th September 2017 Solution

Power allocation under per-antenna power constraints in multiuser MIMO systems

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Examples of Cost and Production Functions

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Representing Relations Using Digraph

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Statistical Inference I Locally most powerful tests

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Das Pentagramma Mirificum von Gauß

Section 8.3 Trigonometric Equations

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

Expected Mean Squares For 4-Way Crossed Model With Balanced Correlated Data

{3k + a : k N a = 1,2}.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

derivation of the Laplacian from rectangular to spherical coordinates

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes


5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

ITU-R P (2009/10)

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII

16 Electromagnetic induction

Transcript:

Chatr Pror Iorato Subjtv Dtrato o th Pror Dst Svral usul aroah a b us to tr th ror st Th ar th hstogra aroah th rlatv llhoo aroah athg a gv utoal or 4 CDF trato () Th hstogra aroah Dv th aratr sa to trvals tr th subjtv robablt o ah trval a th lot a robablt hstogra () Th rlatv llhoo aroah Coar th tutv llhoos o varous ots a rtl sthg a ror st ro ths tratos () Mathg a gv utoal or Assu that ( ) s o a gv utoal or a to th hoos th st o ths gv or whh ost losl aths ror bls (4) CDF trato Subjtvl tr svral α rtls lot th ots ( z ( α )α ) sth a sooth urv jog th whr ( z ( α )) α P

ot: Th hstogra a th rlatv llhoo aroahs ar th ost usul ot: Utra or urt ol o qut oorl trg th robablt strbutos Through th stu o Basa robustss w a allvat ths robl o-oratv Prors (a) Itrouto o-oratv ror s a ror whh otas o orato about al : ( ) ( ) ( ) s so ostat ala (8) us ( ) As ( ) ( ) ( ) s ot a ror st (ror ror) I ato th othr svr rts o th o-oratv ror s th la o vara ur trasorato al :

s th aratr w ar trst Suos ( ) ( ) t Th th ror or s ( ) ( ) ( ( )) Thror th ror or s ot o-oratv (b) o-oratv ror or loato a sal robls () oato robl Th st o s o or ( ) ( ) ( s ol o ) Th st s th sa to b a loato st al : Th lt Th st o s ( ) ( z ) ( ) z ( ) For a ostat th st Y Y th Y has

( ) ( ) ( ) ( ) Furthr ot th Y has th st ( ) whh s tal to th st o ( ) strutur al (otu): ( ) Y 5 Th Y ( 5 ) ( ) 5 st ( ) ( ) ( ) Y has th Assu ( ) a ( ) ar th o-oratv rors o a rstvl t A b a st Th A ( ) ( ) A A A ( ) Q ( ) A A A Thus ( ) ( ) t () ( ) so ostat It s ovt to hoos th ostat to b ; that s () 4

5 () Sal robl Th st o s o or > Th st s th sa to b a sal st al 4: Th lt z z Th st o s t Y Y Th Y has th st uto whr Y has th st whh s tal to th st o strutur al 4: 5 Y

Th 5 Y Th st o Y s 5 5 5 Y Assu a ar th o-oratv rors o a rstvl t A b a st Th A A A A A A A Q Thus t () () It s ovt to st () Th () ot: s a ror ror s

7 ot: Th a ult usg th o-oratv ror s th uquss For al loato robl a b ossbl hos Thr ar a vart o rt hos () o-oratv rors gral sttgs t I b th t Fshr s orato Jrs (9) roos th o-oratv ror [ ] I I [ ] t s a vtor o aratr th [ ] t I K whr I M O M M al 5: Th

8 I Thus th o-oratv ror s [ ] I al : Th 4 4 I

Mau tro Prors Motvato: S artal orato s avalabl t s srabl to a ror that s as o-oratv as ossbl Dto (tro srt as): Assu { K K } s srt a lt b a robablt o Th tro o s ot b ε ( ) ot: ε ( ) ( ) [ ( )] [ ( ( ))] I ( ) th ( ) [ ( )] s to b al 7: Th al 8: Th K { } ( ) ε { K } ( ) ε ( ) ( ) 9

Th ollowg rsult a b us to th au tro as so artal ror orato [ g ] K avalabl or al as g s ( ) [ g ( )] ( ) ; as as g [ ] ( ) ( ) [ g ( )] ( ) g ; I ( ) [ g ( )] I ( ) ( z ] ( z ] [ ] P ( z ) Iortat Rsult: Th ror satsg [ g ( )] K has au tro ( ) g ( ) g ( ) whr K a b tr b quatos [ g ( )] K al 9: Th { } g ( ) 5 K

whh s gotr strbuto 5 Thror 5 Dto (tro otuous as): Assu s otuous Th tro o s ε whr s th atural oratv ror Iortat Rsult: Th ror satsg [ ] g g K has au tro g g whr K a b tr b quatos

[ g ( )] K al : ( ) Θ a assu s loato aratr Also lt ( ) Assu w ow g ( ) ( ) Thus That s Th ( ) ( ) ( ) ( ) al : ( ) R Θ a assu s loato aratr Also lt ( ) Assu w ow g ( ) ( ) Th ( )

os ot st s os ot st al : R Θ a assu s loato aratr Also lt Assu w ow Var g g Th Thus Var Thror ot: Two ults ars trg to us th au tro aroah to tr a ror: th to us a o-oratv ror th rvato o os ot st

4 Usg th Margal Dstrbuto (I) Itrouto Rall th arg st o s Θ Θ ( ) ( ) ( otuous ) ( ) ( ) ( srt ) al : ( ) ( ) ( ) Th th argal st o s ( ) ( ) ( ) ( ) ( ) ot: ( ) s sots all th rtv strbuto or t ( ) w b th argal st ur th orrt ror a ( ) b th argal st ur th wrog ror Th th statst obta ro th ata shoul b los to th sa 4

statst bas o ( ) ot o w ( ) b th o o ( ) w ( ) For al lt a w b th o o Itutvl th obsrv ata shoul b arou ot w To th orrt or ssbl ror tvl o oul rstrt th ho o th rors to so lass Th bas o so rtra th bst ror oul b ou Svral lasss o rors ar rqutl us Prors o a gv utoal or: Γ { : ( ) g ( ) Λ} whr Λ s so st a s all a hr-aratr o th ror al : Γ ( ) { : ( ) > > } s th hr-aratr Prors o a gv utoal or: Γ : K t ( ) ( ) s a st ( ) al 4: K ( ) 5

s a ow ostat Γ : ( ) ( ) ( ) < < > Prors los to a lt ror: A ror los to a ssbl ror woul also b rasoabl For al ε otaato lass s Γ { : ( ε ) ( ) εq( ) q } whr s a lass o ossbl otaatos a q ( ) s so st uto or (II) Pror slto Thr ar svral aroahs to slt a ssbl ror Th ar () th M-II aroah () th ot aroah () th sta aroah () M-II aroah t Γ b a lass o rors ur osrato M-II (au llhoo-t II) s to Γ satsg su [ ] Γ al 5:

7 K Th Th M-II tho s to a azg Thus [ ] { } a s s Thror { } a s al : { } : q q Γ ε ε Th [ ] [ ] [ ] q q q ε ε ε ε ε ε

ow M-II ror s to q whh azs q ( ) I s th lass o all ossbl strbutos a azs ( ) t ( ) δ b th strbuto wth ( ) P (all ass at ) S th q ( ) q( ) ( ) q( ) ( ) q( ) ( ) ( ) δ ( ) δ ( ) ( ε ) ( ) εδ ( ) () Mot aroah t ( ) a ( ) vara o wth rst to ( ) b th otoal a o Also lt a b th ow argal a o vara o wth rst to ( ) Th th ollowg quatos a b us to obta th ot o th ror st suh as ( ) 8 a [ ] ( ) ( Y ) : ( [ ]) Q [( ) ] [ ( )] ( ) [ ] ( QVar ( ) [ Var ( Y )] ( ( Y ) ( )) )

O sal al s ( ) ( ) al 7: ( ) ( ) ( ) Suos w ow S ( ) ( ) th Thus ( ) ( ) s th arorat ror () Dsta aroah t ( ) b th argal st stat o obta ro th ata Also lt ( ) ( ) ( ) Θ b th argal st wh th bst ror s ou Th w tr to to z 9

( ) ( otuous ) ( srt ) ot: ( ) ( ) ( ) 5 Hrarhal Prors Hrarhal ror s all a ultstag ror t th ror lass Γ whr ( ) { ( ) } : Λ s o a gv utoal or Th so stag s to osr ( ) o th hr-aratr Th so stag ror ( ) s also all a hr-ror ot: ( ) ( ) ( ) Λ

al 8: K : > < < Γ α α α γ α γ z z z IG Z IG 7 8 4 8 Q al 9: K : > Γ 7 8 7 γ Th

I t t Σ Σ 5 t strbuto wth Multvarat - 5 8 8 8 7 8 7 8 K α γ γ γ γ γ γ γ γ γ

s γ s th st o IG a or a ultvarat-t strbuto Y wth aratrs [ ] Σ t α has th st [ ] t t Σ Σ α α γ α γ K Crtss I Objtvt Bo (98): t s ossbl all to stgush btw ol assutos a th ror strbuto o th aratrs II Msus o ror strbuto Qusto: Wh rt rasoabl rors l substatall rt

aswrs a t b rght to stat that thr s a sgl aswr? Woul t ot b bttr to at that thr s st urtat wth th oluso g o th ror bls? Aswr: I rortg olusos ro Basa aalss th ror (also ata a loss) shoul b rort saratl orr to allow othrs to valuat th rasoablss o th subjtv uts III Robustss Qusto: Slght hags th ror strbuto ght aus sgat hags th so Aswr: Through robust Basa thoo a ho o robust rors or a b ru 7 ral Bas Aalss Motvato: For ε ε Th th M stat s ( ) K (hghr soal ol) I th M stat s 4

(lowr soal ol) Qusto to as: whh ol s bttr (lowr or hghr)? Aswr: ral Bas aalss s artular srabl ths (a) Itrouto stuato ral Bas tho rovs a oros btw th ol whr ar oltl urlat (hghr soal ol) a that whr all th ar assu to b qual (lowr soal ol) Thr ar two ts o ral Bas thos O s aratr ral Bas (PB) a th othr s oaratr ral Bas (PB) Paratr ral Bas: th ror ( ) s so aratr lass wth uow hraratrs oaratr ral Bas: o tall assu ol that ar ro so ror ( ) al : t ( ) ( ) ( ) 5

whr a ar uow hraratrs Two rt was to arr out ral Bas aalss ar statg th ror or ostror b ata rst th us ( ) or ( ) to arr out th staar Bas aalss g th Bas rul tr o uow ror a us th ata to stat th Bas rul (b) Paratr ral Bas or oral a al 5 (otu): Th K ( ) ( ) ( ) Th ror usg M-II tho s whr ( ) ( ) ( ) ( ) ( a { s } ) a a{ s } Th ostror strbuto or s ( ) Th th aratr stat usg Bas rul ur squar-loss uto s th ostror a

7 B B B whr B Furthr th ostror vara s B V ot: B B Morrs (98 JASA) suggst B a th th ral Bas stat s B B V B B B B B B whr a ar th stats obta st Th stat ostror strbuto s B B V ot: B B

8 Th % α HPD rbl st or s B B B B B V z V z C α α a Th % α HPD rbl st or s : α χ B B B V C al : [ ] [ ] t Y Y Y Y ε ε K Th S Th argal strbuto s th [ ] [ ] t Σ K whr Σ M O M M M O M M M

9 a zg also z t Σ Thus t t Σ Σ whr Σ M O M M S volvs a volvs w hav to us tratv sh to solv Th ostror strbuto or Y s Slar to th rvous al th ral Bas stats ar B B l C C l V C whr l l C

a [ ] Σ t t l () o-aratr ral Bas aalss al : P K ar ro a oo ror Ur squar loss th stat s th ostror a!! δ Furthr w a stat th argal strbuto b th ral

strbuto I ( ) ( ) whr I ( ) as as Thus th ral Bas stat or s δ B ( ) ( ) I ( j ) j j I ( ) j