Latent variable models Variational approximations.
|
|
- Οφέλια Σωστράτη Καλογιάννης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable : real vale var meoalty CS 750 Mache Learg
2 Cooperatve vector qatzer Moel: Latet var : Beroll trbto parameter: Obervable varable : ormal trbto parameter: W Σ W Σ We ame Σ I W CS 750 Mache Learg : bary var : real vale var Jot for oe tace of a : / / ep W W Cooperatve vector qatzer Or obectve: Lear the parameter of the moel W Oe ca e the ata lelhoo or lelhoo a optmze.. Learg f a are obervable Log lelhoo: : bary var : real vale var Solto: ce a eay W W c CS 750 Mache Learg
3 CS 750 Mache Learg Cooperatve vector qatzer : real vale var : bary var } { Log lelhoo of ata: Learg f oly are obervable Solto: oe ot let beeft from the ecompoto M: e to or ch cae Or obectve: Lear the parameter of the moel Oe ca e the ata lelhoo or lelhoo a optmze.. W CS 750 Mache Learg M Let be a et of all varable th he or mg vale Average both e th for ' ' ' ' ' ' ' ' Log-lelhoo of ata Log-lelhoo of ata
4 M algorthm Algorthm geeral formlato Italze parameter Repeat Set '. pectato tep '. Mamzato tep arg ma ' ' tl o or mall mprovemet ' roblem: poteror probablte ' efe over CS 750 Mache Learg oteror ' ' M algorthm for or moel ' ach ata pot reqre to calclate probablte If larger the th a bottleec!!! CS 750 Mache Learg
5 CS 750 Mache Learg Varatoal appromato Let be a et of all varable th he or mg vale ervato Average both e th KL Log-lelhoo of ata Log-lelhoo of ata CS 750 Mache Learg Varatoal appromato KL Appromato: mamze arameter: } { } { [ ]. } { KL Why? Mamzato of phe p the loer bo o the -lelhoo
6 Varatoal appromato Comparo: M e tre poteror ' Varatoal M e a rrogate poteror M: ' ' Varatoal M: KL CS 750 Mache Learg Varatoal M Let be a et of all varable th he or mg vale tep: Optmze M tep Optmze th repect to hle eepg fe th repect to hle eepg ote: f the poteror the the varatoal M rece to the taar M CS 750 Mache Learg
7 Varatoal M So hat the eal? Why hol e e the varatoal M? ope: If e chooe ell the optmzato of both a ll become eay A ell behave choce for the mea fel appromato CS 750 Mache Learg Ampto: Mea el Appromato the mea fel appromato. Varable the trbto are epeet varable. completely factorze: or or CV moel e varable are bary orce.... CS 750 Mache Learg
8 CS 750 Mache Learg Mea el Appromato ctoal for the mea fel: } { } { W W 3 Ame t oe ata pot a correpog : CS 750 Mache Learg Mea el Appromato ctoal. art : δ
9 CS 750 Mache Learg Mea el Appromato ctoal. art : ctoal. art 3: CS 750 Mache Learg Mea el Appromato ctoal : arameter: W Mea fel parameter: [ ] δ
10 CS 750 Mache Learg Mea el Appromato ctoal for all ata pot: arameter: W Mea fel parameter: [ ] δ CS 750 Mache Learg Varatoal M: tep Optmzato of the fctoal th repect to : 0 et g e g efe a fe pot eqato Iterate a et fe pot eqato for all ee.. a for all
11 Varatoal M: M tep Optmzato of the fctoal th repect to. Start th : or ata pot et 0 Cloe form olto CS 750 Mache Learg Varatoal M: M tep Optmzato of the fctoal th repect to. arameter : 0 v v v v v v W W K or each varable v: he eqato efe a et of lear eqato that ca be olve CS 750 Mache Learg
12 Bayea CV Moel y K ε Bayea moel: trbto over parameter K y S Ι CS 750 Mache Learg Moel Specfcato X { } S { } {... } W{ } { } oberve ata latet orce probablty of K eght matr Varace of W reco of oe CS 750 Mache Learg
13 CS 750 Mache Learg ror β α c Gamma b a Gamma Beta K K K 0 W CS 750 Mache Learg Why the Bayea moel? Very efl for Bayea Moel Selecto Ame e o ot o the mber of orce Bayea core tell ho goo the trctre Beeft of the Bayea core: mboe Occam Razor revet overft M M M M M M Margal lelhoo
14 CS 750 Mache Learg Varatoal appromato X X X X X Appromato: lelhoo of ata Where a trbto th fferet parameterzato CS 750 Mache Learg Varatoal appromato KL X Appromato: lelhoo of obervable ata Optmzato of phg p the loer bo o the lelhoo of obervable ata o to chooe? he: X KL tace
15 Varatoal Baye appromato valato of tractable Meafel appromato K Allo aalytcal evalato of CS 750 Mache Learg VB learg Lear Moel th a M le algorthm VB Optmze tmate tate of latet varable * ep VBM Optmze tmate parameter * ep CS 750 Mache Learg
16 CS 750 Mache Learg VB W W W tr tr y CS 750 Mache Learg VBM β α c Gamma b a Gamma Beta K W K Σ m W
17 CS 750 Mache Learg VBM cot ag Σ m Σ β β α α CS 750 Mache Learg VBM cot { tr c c b b a a W W W y
Latent variable models Variational approximations.
CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square
CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty
Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B
Dervao of he Fler Coeffce for he Ramp Ivara Meho a Apple o Bae Excao of a Sgle-egree-of-Freeom Sem Revo B B om Irve Emal: om@vbraoaa.com Aprl, 0 Irouco Coer he gle-egree-of-freeom em Fgure. m &&x k c &&
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Αλγόριθμοι και πολυπλοκότητα Maximum Flow
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Maximm Flo Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Maximm Flo χ 3/5 4/6 4/7 1/9 3/5 5/11/2008 11:05 PM Maximm Flo 1 Oline and Reading
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
The Equivalence Theorem in Optimal Design
he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4 να γράψετε
Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C
0.5 0.45 0.4 0.35 0.3 Sample BKC-10 Mn BKC-10 grt Path A Path B Path C 0.12 0.1 0.08 Mg 0.25 0.06 0.2 0.15 0.04 0.1 0.05 0.02 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Core Rim 0.9 0.8 Fe 0 0 0.01 0.02
Examples of Cost and Production Functions
Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΩΝ
ΤΜΗΜΑ Α1 1η ΩΡΑ ΠΑΠΟΥΤΣΗ ΣΟΦΟΥΛΗ ΣΟΦΟΥΛΗ ΟΞΟΠΟΥΛΟΥ ΣΟΦΟΥΛΗ 2η ΩΡΑ ΝΙΚΟΛΟΠΟΥΛΟΥ ΣΠΑΝΟΣ ΣΟΦΟΥΛΗ ΓΙΑΝΝΑ ΑΚΗΣ ΣΠΑΝΟΣ 3η ΩΡΑ ΜΑΡΚΑΝΤΩΝΗΣ ΜΑΡΚΑΝΤΩΝΗΣ ΚΑΛΑΒΡΙΖΙΩΤΗΣ ΧΡΙΣΤΟ ΟΥΛΗ ΝΙΚΟΛΟΠΟΥΛΟΥ 4η ΩΡΑ ΚΑΛΑΒΡΙΖΙΩΤΗΣ
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa
Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao
ΤΡΙΤΕΚΝΟΣ ΠΙΝΑΚΑΣ ΚΛΑΔΟΥ
112 134 ΑΒΑΤΑΓΓΕΛΟΥ ΣΟΦΙΑ ΣΠΥΡΙΔΩΝΑΣ ΚΑΣΣΙΑΝΗ ΠΕ70 Δάσκαλοι ΟΧΙ Β 150 19 Κέρκυρα ΔΙΕΥΘΥΝΣΗ Π.Ε. ΚΕΡΚΥΡΑΣ 32 35 ΑΒΡΑΜΙΔΟΥ ΜΑΡΙΚΑ ΔΗΜΗΤΡΙΟΣ ΣΟΦΙΑ ΠΕ70 Δάσκαλοι ΟΧΙ Β 42 28,133 Ζάκυνθος ΔΙΕΥΘΥΝΣΗ Π.Ε. ΖΑΚΥΝΘΟΥ
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
ΟΡΙΣΤΙΚΟΣ ΠΙΝΑΚΑΣ ΩΦΕΛΟΥΜΕΝΩΝ (ΑΛΦΑΒΗΤΙΚΑ) ΑΝΑ ΔΗΜΟ ΔΟΜΗΣ
ΑΓΓΕΛΟΥ ΑΘΑΝΑΣΙΑ - ΜΑΡΙΑ 22900 74,33 ΑΓΓΕΛΟΥ ΦΙΛΙΠΠΑ - ΑΡΓΥΡΩ 20191 Α1.1 - Βρεφονηπιακός Σταθμός "Η παρεούλα μας" ΑΓΓΕΛΟΥ ΑΝΑΣΤΑΣΙΑ 83231 87,77 ΒΙΡΛΑΣ ΙΩΑΝΝΗΣ 21836 Γ - Κοινωνική Προσπάθεια (ΚΔΑΠ) (Α'
Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP
Georg.otaetter@Corell.eu USPAS Avace Accelerator Phic - ue 6 CESS & EPP CESS & EPP 56 Setupole caue oliear aic which ca be chaotic a utable. l M co i i co l i i co co i i co l l l l ta ta α l ta co i i
RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:
G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.
Φύλλο1. ΠΕΡΙΟΧΗ ΠΡΟΣΛΗΨΗΣ ΑΒΡΑΜΙΔΟΥ ΜΑΡΙΚΑ ΔΗΜΗΤΡΙΟΣ Γ Αθηνών ΑΒΡΑΜΙΔΟΥ ΣΟΦΙΑ ΔΗΜΗΤΡΙΟΣ Λασίθι ΑΓΓΕΛΗ ΑΝΔΡΟΜΑΧΗ ΒΑΣΙΛΕΙΟΣ
ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΠΑΤΡΩΝΥΜΟ ΠΕΡΙΟΧΗ ΠΡΟΣΛΗΨΗΣ ΑΒΡΑΜΙΔΟΥ ΜΑΡΙΚΑ ΔΗΜΗΤΡΙΟΣ Γ Αθηνών ΑΒΡΑΜΙΔΟΥ ΣΟΦΙΑ ΔΗΜΗΤΡΙΟΣ Λασίθι ΑΓΓΕΛΗ ΑΝΔΡΟΜΑΧΗ ΒΑΣΙΛΕΙΟΣ Α Ανατ. Αττικής ΑΓΓΕΛΟΠΟΥΛΟΥ ΚΩΝΣΤΑΝΤΙΝΑ ΠΑΝΑΓΙΩΤΗΣ Αχαία ΑΓΓΕΛΟΠΟΥΛΟΥ
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Jordan Form of a Square Matrix
Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
ΠΑΥΛΙΝΑ 609315 ΠΕ11 25,5 ΚΑΒΑΛΑΣ ΑΝΑΤ. ΑΤΤΙΚΗ
ΕΛΛΕΙΜΑΤΙΚΕΣ - ΠΛΕΟΝΑΣΜΑΤΙΚΕΣ 1 1 ΑΒΑΝΙΔΗ ΑΝΝΑ 593587 ΠΕ70 14 ΚΟΡΙΝΘΙΑ Α ΑΘΗΝΩΝ 2 ΑΒΕΡΚΙΑΔΟΥ ΠΑΤΑΡΙΝΣΚΑ ΠΑΥΛΙΝΑ 609315 ΠΕ11 25,5 ΚΑΒΑΛΑΣ ΑΝΑΤ. ΑΤΤΙΚΗ 3 ΑΒΟΥΡΗ ΑΙΚΑΤΕΡΙΝΗ 590405 ΠΕ16 36,917 ΖΑΚΥΝΘΟΣ ΣΕΡΡΕΣ
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Lecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ. 6.1. Γενικά
6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ 6.1. Γενικά Είναι γεγονός ότι ανέκαθεν ο τελικός αποδέκτης των υπολειµµάτων της κατανάλωσης και των καταλοίπων της παραγωγικής διαδικασίας υπήρξε το περιβάλλον. Στις παλιότερες κοινωνίες
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ECE145a / 218a Tuned Amplifier Design -basic gain relationships
ca note, M. Rodwe, copyrighted 009 ECE45a / 8a uned Ampifier Deign -aic ga reationhip -deign the (impe) uniatera imit it Mark Rodwe Univerity of Caifornia, anta Barara rodwe@ece.uc.edu 805-893-344, 805-893-36
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
..,..,.. ! " # $ % #! & %
..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
Gaussian related distributions
Gaussian related distributions Santiago Aja-Fernández June 19, 009 1 Gaussian related distributions 1. Gaussian: ormal PDF: MGF: Main moments:. Rayleigh: PDF: MGF: Raw moments: Main moments: px = 1 σ π
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
ΜΟΡΙΑ ΠΙΝΑΚΑ ΣΕΙΡΑ ΠΙΝΑΚΑ ΠΕΡΙΟΧΗ ΤΟΠΟΘΕΤΗΣΗΣ ΠΙΝΑΚΑΣ ΑΑ ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΠΑΤΡΩΝΥΜΟ ΚΛΑΔΟΣ ΤΡΙΤΕΚΝΟ Σ ΔΙΕΥΘΥΝΣΗ ΕΚΠ/ΣΗΣ
1 ΜΑΡΑΜΗ ΕΥΑΓΓΕΛΟ ΝΙΚΟΛΑΟ ΠΕ16.01 ΟΧΙ Β 1 38,715 Α Θεσσαλονίκης ΔΙΕΥΘΥΝΗ Π.Ε. ΘΕΑΛΟΝΙΚΗ Α 2 ΚΟΛΛΙΑ ΩΤΗΡΙΑ ΠΑΝΑΓΙΩΤΗ ΠΕ16.01 ΟΧΙ Β 2 17,29 Β Αθηνών ΔΙΕΥΘΥΝΗ Π.Ε. ΑΘΗΝΑ Β 3 ΔΕΠΟΤΗ ΩΤΗΡΙΟ ΚΩΝΤΑΝΤΙΝΟ ΠΕ16.01
ECON 381 SC ASSIGNMENT 2
ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Kaon Weak Matrix Elements in 2+1 Flavor DWF QCD
Kaon Weak Matrix Element in 2 Flavor DWF QCD Renormalization an Phyical Vale Sh Li (for the RBC an UKQCD Collaboration) The XXV International Sympoim on Lattice Fiel Theory Regenbrg 7/27 Sh Li (for RBC
ΟΡΙΣΤΙΚΟΣ ΠΙΝΑΚΑΣ ΩΦΕΛΟΥΜΕΝΩΝ (ΑΛΦΑΒΗΤΙΚΑ) ΑΝΑ ΔΗΜΟ ΔΟΜΗΣ
ΑΕΡΑΚΗ ΚΛΕΟΠΑΤΡΑ 15879 28,69 ΓΙΑΝΝΕΛΟΥ ΜΑΡΙΑ - ΕΥΑΓΓΕΛΙΑ 30475 Α2 - Δομή Παιδικού Σταθμού - Γκανογιάννη 78, Γουδή ΑΛΒΑΝΟΠΟΥΛΟΥ ΕΛΕΝΗ 15765 60,69 ΚΑΤΣΗ ΣΤΑΥΡΟΥΛΑ - ΜΕΛΙΝΑ 30524 Α2 - Δομή Παιδικού Σταθμού
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
ΠΑΤΡΩΝΥΜΟ / ΟΝΟΜΑ ΣΥΖΥΓΟΥ 1 ΑΓΟΡΑΣΤΟΥ ΜΑΡΙΑ ΤΟΥ ΔΗΜΗΤΡΙΟΥ 2 ΑΘΑΝΑΣΙΑΔΗΣ ΙΩΑΝΝΗΣ ΤΟΥ ΠΑΥΛΟΥ 3 ΑΚΤΣΟΓΛΟΥ ΣΩΚΡΑΤΗΣ ΤΟΥ ΓΕΩΡΓΙΟΥ
Υποψήφιοι ημοτικοί Σύμβουλοι: ΠΑΤΡΩΝΥΜΟ / ΣΥΖΥΓΟΥ 1 ΑΓΟΡΑΣΤΟΥ ΜΑΡΙΑ ΤΟΥ ΔΗΜΗΤΡΙΟΥ 2 ΑΘΑΝΑΣΙΑΔΗΣ ΙΩΑΝΝΗΣ ΤΟΥ ΠΑΥΛΟΥ 3 ΑΚΤΣΟΓΛΟΥ ΣΩΚΡΑΤΗΣ ΤΟΥ ΓΕΩΡΓΙΟΥ 4 ΑΛΦΑΤΖΗΣ ΙΩΑΝΝΗΣ ΤΟΥ ΓΕΩΡΓΙΟΥ 5 ΑΜΟΡΓΙΑΝΟΣ ΝΙΚΟΛΑΟΣ
Modbus basic setup notes for IO-Link AL1xxx Master Block
n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that
Ed Stanek. c08ed01v6.doc A version of the grant proposal to be submitted for review in 2008.
Relatnhp between tatn ued b ew Grant Applcatn, and Regren Predctr Develpment f Gnzala wth Suggeted Change t Cmmn tatn Baed n Gnzala and Stanek ntrductn Ed Stanek We lt ntatn ued n tw prncpal dcument, wth
Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ)
Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ) Διαλύματα Εκφράσεις περιεκτικότητας α λ% w/v: Σε 100 ml Διαλύματος περιέχονται λ g διαλυμένης ουσίας β λ% w/w: Σε 100 g Διαλύματος περιέχονται λ g διαλυμένης ουσίας
t-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120
t-ditribution t X x μ = where x = ν FD ν FD t a (ν) 0 t-ditribution normal ditribution for ν>0 a/ a/ -ta ta ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ (freedom degree) Βαθμοί ελευθερίας (ν): ο αριθμός των ανεξάρτητων μετρήσεων
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
Diane Hu LDA for Audio Music April 12, 2010
Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1
VOLTERR ERE EXO O LER OE RTE EQUTO The i ler diode eutio re: [ ][ ] V The exio of eutio i: [ ] ddig eutio d V V The iut urret i ooed of the u of,. ooet, Î, tie vryig ooet. We thu let 6 The Volterr exio
τεύχος #20, Οκτώβριος#Νοέμβριος#Δεκέμβριος 2009, περιοδικό των Μεγάλων Οδηγών
τεύχος #20, Οκτώβριος#Νοέμβριος#Δεκέμβριος 2009, περιοδικό των Μεγάλων Οδηγών [ ] Ματούλα Βελιανίτη, Έφορος Κλάδου Μεγάλων Οδηγών 2004-2009 20 τεύχη κυκλοφορίας συμπληρώνει ο Τρόπος Ζωής. Ήταν πριν από
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals