Pricing of Options on two Currencies Libor Rates

Σχετικά έγγραφα
Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

α & β spatial orbitals in

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

LECTURE 4 : ARMA PROCESSES

Example Sheet 3 Solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

EE512: Error Control Coding

8.324 Relativistic Quantum Field Theory II

Homework 8 Model Solution Section

2 Composition. Invertible Mappings

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Matrices and Determinants

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

1 Complete Set of Grassmann States

Notes on the Open Economy

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ST5224: Advanced Statistical Theory II

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Finite Field Problems: Solutions

Statistical Inference I Locally most powerful tests

6.3 Forecasting ARMA processes

A Class of Orthohomological Triangles

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

4.6 Autoregressive Moving Average Model ARMA(1,1)

Solution Series 9. i=1 x i and i=1 x i.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Second Order Partial Differential Equations

w o = R 1 p. (1) R = p =. = 1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Section 8.3 Trigonometric Equations

Homework 3 Solutions

d log w F = 1(i = k) + d log A k b Ψe k + b Ψ α d log w

5.4 The Poisson Distribution.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Lecture 8: Quantitative Option Strategies

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Solutions to Exercise Sheet 5

C.S. 430 Assignment 6, Sample Solutions

An Inventory of Continuous Distributions

Answer sheet: Third Midterm for Math 2339

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Every set of first-order formulas is equivalent to an independent set

Fractional Colorings and Zykov Products of graphs

Parametrized Surfaces

Homomorphism of Intuitionistic Fuzzy Groups

On the Galois Group of Linear Difference-Differential Equations

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Inverse trigonometric functions & General Solution of Trigonometric Equations

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik


( y) Partial Differential Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Concrete Mathematics Exercises from 30 September 2016

8.323 Relativistic Quantum Field Theory I

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Numerical Analysis FMN011

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Uniform Convergence of Fourier Series Michael Taylor

Lecture 34 Bootstrap confidence intervals

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Probability and Random Processes (Part II)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

[1] P Q. Fig. 3.1

Higher Derivative Gravity Theories

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

Congruence Classes of Invertible Matrices of Order 3 over F 2

Space-Time Symmetries

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Math 6 SL Probability Distributions Practice Test Mark Scheme

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

The challenges of non-stable predicates

Μηχανική Μάθηση Hypothesis Testing

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Srednicki Chapter 55

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

By R.L. Snyder (Revised March 24, 2005)

Capacitors - Capacitance, Charge and Potential Difference

Transcript:

Prcng o Optons on two Currences Lbor Rates Fabo Mercuro Fnancal Models, Banca IMI Abstract In ths document we show how to prce optons on two Lbor rates belongng to two derent currences the ormer s domestc, the latter oregn). To ths end, we explctly derve the dynamcs o the oregn rate under the domestc orward measure assocated to the rate maturty. We then consder the undamental case o an opton wrtten on the spread between the two Lbor rates and derve closed orm ormulas or both the up-ront and the n-arrears cases. Explct ormulas are also derved or optons on the product o the two rates as well as or trgger swaps.. Assumptons and Dentons Gven a domestc market and a oregn market, let us assume that the term structures o dscount actors that are observed n the domestc and oregn markets at tme t are respectvely gven by T P t, T ) and T P t, T ) or T t. Let us denote by X t) the exchange rate at tme t between the currences n the two markets, n that unt o the oregn currency equals X t) unts o the domestc currency. Gven the uture tmes T and T, =,..., n, the domestc and oregn orward rates at tme t or the nterval T, T ] are, respectvely, F t) = F t; T, T ) = P t, T ) P t, T ) τ P t, T ) F t) = F t; T, T ) = P t, T ) P t, T ) τ P t, T ) where τ s the year racton between tmes T and T, whch s assumed to be the same n both markets. Denotng by F X t, T ) the orward exchange rate at tme t or maturty T, F X t, T ) = X t) P t, T ) P t, T ),

Optons on two Lbor rates and assumng constant proportonal) volatltes, the two orward rates evolve under the domestc orward measure Q accordng to see Brgo and Mercuro, 00, Sectons 6.3 and.4) df t) = σ F t) dw t), df t) = F t) ρσ F X σ dt + σ dw t)], where W and W are two standard Brownan motons wth nstantaneous correlaton ρ, ρ s the nstantaneous correlaton between F X, T ) and F ), and σ F X s the assumed constant proportonal) volatlty o the orward exchange rate F X t, T ): df X t, T ) = σ F X F X t, T ) dw X t), where W X s a standard Brownan moton under Q, wth dw X t)dw t) = ρ dt. Let us consder a dervatve whose payo at tme T s a uncton gf T ), F T )). By ormula.) n Brgo and Mercuro 00), the no-arbtrage value at tme t o such a payo s P t, T )E { gf T ), F T )) F t }, ) where E denotes expectaton under Q and F t s the σ-eld generated by the par F, F ) up to tme t.. Spread Optons A spread opton on the two Lbor rates LT, T ) and L T, T ) s a dervatve payng o at tme T, n domestc currency, τ N ω LT, T ) L T, T ) + )] + = τ N ω F T ) F T ) + )] +, ) where N s the nomnal value, s the contract margn and ω = or a call and ω = or a put. An n-arrears spread opton pays o the same quantty at tme T. Ths s equvalent to payng o at tme T τ N ω F T ) F T ) + )] + + τ F T ) ). 3) The two payos ) and 3) can be summarzed nto τ N ω F T ) F T ) + )] + + ψτ F T ) ), 4) where ψ = or the n-arrears case and ψ = 0 otherwse. Notce that F X s a martngale under Q.

Optons on two Lbor rates Proposton.. The no-arbtrage value at tme t o the payo 4) s gven by + )] LSOt, T, T, τ, N,, ω, ψ) = τ NP t, T ) e v + ψτ hv) v) dv, π 5) where v) = ωf t)eµ y+ρ σ y v+ σ y ρ ) Φ ω ln F t) + µ hv) y + ρ σ y v + σy ρ ) σ y ρ +ωhv)φ ω ln F t) + µ hv) y + ρ σ y v {hv)>0} σ y ρ + ω) {hv) 0} hv) + F t)eµ y+ρ σ y v+ σ y ρ ) ] wth A denotng the ndcator uncton o the set A, Φ ) denotng the standard normal cumulatve dstrbuton uncton, and hv) = + F t)e µ x+ v µ x = µ y = ρσ F X σ σ y = σ τ σ y = σ τ τ = T t Proo. By ormula ), the no-arbtrage value at tme t o the payo 4) s Denng τ NP t, T )E { ω F T ) F T ) + )] + + ψτ F T ) ) F t }. 6) X := ln F T ), F t) Y := ln F T ) F t), the jont densty uncton X,Y o X, Y ) under the measure Q s bvarate normal wth mean vector and varance-covarance matrx respectvely gven by ] ] µx σx M X,Y =, V X,Y = ρ σ y ρ σ y µ y 3 σ y

Optons on two Lbor rates that s X,Y x, y) = exp π σ y ρ ) x µ x x µ x y µ y ρ σ y + y µy ρ ) σ y ). It s well known that where Y X x, y) = X x) = X,Y x, y) = Y X x, y) X x), exp σ y π ρ π exp y µy σ y ) ] x µx. ρ x µ x ρ ) ) The expectaton n 6) can thus be wrtten as + + ψτ F t)e x) + ] + ωf t)e x ωf t)ey + ω) Y X x, y) dy X x) dx The expresson between square brackets can be calculated analytcally by dstngushng two cases:. F t)e x + 0. I ω =, the expresson s equal to 0 the postve part o a negatve number s zero). I ω =, nstead, ] + = F t)e x + F t) e y Y X x, y) dy. F t)e x + > 0. = F t)e x + F t)eµ y+ρ σ x µx y σx + σ y ρ ) Set := F t)e x + and ω := ω. Then ] + + = ωf t)ey ω) Y X x, y) dy = ωf t)eµ y+ρ σ x µx y σx + σ y ρ ) Φ ω ln F t) + µ x µ F t)e x + y + ρ y + σy ρ ) σ y ρ ωf t)e x + )Φ ω ln F t) + µ x µ F t)e x + y + ρ y σ x σ y ρ by ormula B.) n Appendx B o Brgo and Mercuro 00). Fnally, to obtan 5), we smply have to set v := x µ x )/. 4 7)

.3 Optons on the Product Optons on two Lbor rates The second example we consder s that o an opton wrtten on the product o the two Lbor rates LT, T ) and L T, T ), whose payo at tme T, n domestc currency, s τ N ω LT, T )L T, T ) )] + = τ N ω F T )F T ) )] +, 8) where N s the nomnal value, s the strke prce and ω = or a call and ω = or a put. Proposton.. The no-arbtrage value at tme t o the payo 8) s gven by LPt, T, T, τ, N,, ω) = τ NP t, T ) ωf t)f t)e ρσ F X σ +ρ σ σ ]τ Φ ωφ ω ln F t)f Proo. Snce t) ω ln F t)f t) ρσ F X σ + σ + σ )] τ σ + σ ) + ρ σ σ ]τ + ρ σ σ ρσ F X σ + σ + σ )] τ σ + σ ) + ρ σ σ ]τ F T )F T ) = F t)f t)e ρσ F X σ + σ + σ ) ]τ+σ W T ) W t)]+σ W T ) W t)], we have that, under Q, ln F T )F T ] ) F t N M, V ), M = ln F t)f t)] ρσ F X σ + σ + σ ) ]τ, V = σ + σ ) + ρ σ σ ]τ. To obtan 9), we smply have to remember ) and apply ormula B.) n Appendx B o Brgo and Mercuro 00)..4 Trgger swaps The nal example we consder s that o a swap where, n one leg, derent payments are trggered by derent levels o ether the domestc or the oregn Lbor rates. In ormulas, a leg o the trgger swap pays o at tme T, n domestc currency, ether af τ N T ) + bf T ) + c ) {ωf T ) ω}] + ψτ F T ) ), 0) or, n case the payment s trggered by the oregn rate, af τ N T ) + bf T ) + c ) ] {ωf T ) ω} + ψτ F T ) ), ) 5 9)

Optons on two Lbor rates where N s the nomnal value, a, b, c are real constants speced by the contract, ω s ether or, ψ = or the n-arrears case and ψ = 0 otherwse. Proposton.3. The no-arbtrage value at tme t o the payo 0) s gven by TSDt, T, T, τ, N,, ω, ψ) = τ NP t, T ) a + cψτ )F t)φ ω ln F t) + ) σ σ + aψτ F t)e σ Φ ω ln F t) + ) 3 σ + cφ ω ln F t) ) σ σ σ + bf t)e ρσ F X σ Φ ω ln F t) + ρ σ σ ] ) σ σ +bψτ F t)f t)e ρσ F X σ +ρ σ σ ]τ Φ ω ln F t) + ρ σ σ + σ ] τ σ τ The no-arbtrage value at tme t o the payo ) s nstead gven by TSFt, T, T, τ, N,, ω, ψ) = τ NP t, T ) cφ ω ln F t) ] ρσ F X + σ σ σ + a + cψτ )F t)φ ω ln F t) ρσ F X + σ ρ ] σ σ σ + aψτ F t)e σ Φ ω ln F t) ρσ F X + σ ρ ] σ σ σ + bf t)e ρσ F X σ Φ ω ln F t) + ] ρσ F X + σ σ σ +bψτ F t)f t)e ρσ F X σ +ρ σ σ ]τ Φ ω ln F t) + ρσ F X + σ + ρ ] σ σ σ. )]. ) 3) Proo. The proo s qute smlar n sprt to that o Proposton. and s thereore omtted. The only derence s that here the outer ntegral, n both cases, can be explctly calculated, too. Reerences ] D. Brgo and F. Mercuro 00). Interest Rate Models: Theory and Practce. Sprnger Fnance, Hedelberg. 6