Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

Σχετικά έγγραφα
Concomitants of generalized order statistics from bivariate Lomax distribution

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Matrices and Determinants

A summation formula ramified with hypergeometric function and involving recurrence relation

A Class of Orthohomological Triangles

α & β spatial orbitals in

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

C.S. 430 Assignment 6, Sample Solutions

ST5224: Advanced Statistical Theory II

Solution Series 9. i=1 x i and i=1 x i.

Commutative Monoids in Intuitionistic Fuzzy Sets

EE512: Error Control Coding

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

An Inventory of Continuous Distributions

Statistical Inference I Locally most powerful tests

LECTURE 4 : ARMA PROCESSES

Homomorphism of Intuitionistic Fuzzy Groups

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Second Order Partial Differential Equations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Homework 8 Model Solution Section

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

The one-dimensional periodic Schrödinger equation

8.324 Relativistic Quantum Field Theory II

Other Test Constructions: Likelihood Ratio & Bayes Tests

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

SPECIAL FUNCTIONS and POLYNOMIALS

Math221: HW# 1 solutions

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

The k-α-exponential Function

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

2 Composition. Invertible Mappings

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Some Theorems on Multiple. A-Function Transform

4.6 Autoregressive Moving Average Model ARMA(1,1)

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Example Sheet 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Trigonometry 1.TRIGONOMETRIC RATIOS

Solutions to Exercise Sheet 5

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

On the k-bessel Functions

derivation of the Laplacian from rectangular to spherical coordinates

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Constant Elasticity of Substitution in Applied General Equilibrium

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

On Generating Relations of Some Triple. Hypergeometric Functions

Finite Field Problems: Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Generalized Linear Model [GLM]

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

2 Lagrangian and Green functions in d dimensions

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Areas and Lengths in Polar Coordinates

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

1 Complete Set of Grassmann States

6.3 Forecasting ARMA processes

Section 8.3 Trigonometric Equations

The Simply Typed Lambda Calculus

SOLVING CUBICS AND QUARTICS BY RADICALS

Modelling Lifetime Dependence for Older Ages using a Multivariate Pareto Distribution

Partial Differential Equations in Biology The boundary element method. March 26, 2013

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Quadratic Expressions

IIT JEE (2013) (Trigonomtery 1) Solutions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Areas and Lengths in Polar Coordinates

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Differentiation exercise show differential equation

A Note on Intuitionistic Fuzzy. Equivalence Relation

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Exam Statistics 6 th September 2017 Solution

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

( y) Partial Differential Equations

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Technical Report: A Unified Framework for Analysis of Path Selection Based Decode-and-Forward (DF) Cooperation in Wireless Systems

Transcript:

Journal of Statstcal Theory and Applcatons, Vol. 4, No. 3 September 5, 4-56 Concomtants of Dual Generalzed Order Statstcs from Bvarate Burr III Dstrbuton Haseeb Athar, Nayabuddn and Zuber Akhter Department of Statstcs & Operatons Research Algarh Muslm Unversty, Algarh -, Inda haseebathar@hotmal.com Receved 3 Aprl 4; Accepted March 5 In ths paper probablty densty functon of sngle concomtant and ont probablty densty functon of two concomtants of dual generalzed order statstcs from bvarate Burr III dstrbuton are obtaned and expressons for sngle and product moments are derved. Further, results are deduced for the order statstcs and lower record values. Keywords: Dual generalzed order statstcs; order statstcs; lower record values; concomtants; bvarate Burr III dstrbuton. Mathematcs Subect Classfcaton: 6G3.. Introducton The probablty densty functon pd f of bvarate Burr III dstrbuton [Rodrguez, 98] s gven as f x,y c c + α k x k + α k y k + + α x k + α y k c+, x,y >, k, k,c, α, α >. and the correspondng dstrbuton functon d f s Fx,y + α x k + α y k c, x,y >, k, k,c, α, α >.. The condtonal pd f of Y gven X s f y x c + α k y k+ + α x k c+ + α x k + α y k, y >..3 c+ The margnal pd f of X s f x c α k x k + { + α x k, x >..4 } c+ The margnal d f of X s Correspondng author 4

Haseeb Athar, Nayabuddn and Zuber Akhter Fx + α x k c, x >..5 Order statstcs, record values and several other model of ordered random varables can be vewed as specal case of generalzed order statstcs gos[kamps, 995]. Burkschat 3 ntroduced the concept of dual generalzed order statstcs dgos to enable a common approach to descendng ordered rv s lke reverse order statstcs and lower record values. Let X be a contnuous random varables wth d f Fx and the pd f f x, x α,β. Further, Let n N, k, m m,m,...,m n _ R n, M r n r m such that γ r k + n r + M r for all r,,...,n. Then X d r,n, m,k r,,...,n are called dgos f ther pd f s gven by [Burkschat et al. 3] k n γ n on the cone F > x x... x n > F. [ Fx ] m [Fxn f x ] k f xn.6 If m,,,...,n, k, then X d r,n,m,k reduces to the n r + th order statstcs, X n r+:n from the sample X,X,...,X n and at m, X d r,n,m,k reduces to r th, k lower record values. For more detals on order statstcs and record values, one may refer to Davd and Nagaraa 3 and Ahsanullah 4 respectvely. In vew of.6, the pd f of X d r,n,m,k s f r,n,m,k x and ont pd f of X d r,n,m,k and X d s,n,m,k, r < s n s f r,s,n,m,k x,y C r r! [Fx]γ r f xg r m Fx.7 C s r!s r! [Fx]m f x g r m Fx [h m Fy hm Fx ] s r [Fy] γ s f y, x > y.8 where C r r γ h m x m + xm+ logx, m, m and g m x h m x h m, x,. Let X,Y,,,...,n, be the n pars of ndependent random varables from some bvarate populaton wth dstrbuton functon Fx, y. If we arrange the X varates n descendng order as 4

Concomtants of Dual Generalzed Order Statstcs... X,n,m,k X,n,m,k... Xn,n,m,k then Y varates pared not necessarly n descendng order wth these dual generalzed ordered statstcs are called the concomtants of dual generalzed order statstcs and are denoted by Y [,n,m,k],y [,n,m,k],...,y [n,n,m,k]. The pd f of Y [r,n,m,k], the r th concomtant of dual generalzed order statstcs s gven as g [r,n,m,k] y and the ont pdf of Y [r,n,m,k] and Y [s,n,m,k], r < s n s g [r,s,n,m,k] y,y f y x f r,n,m,k x dx.9 x. Probablty Densty Functon of Y [r,n,m,k] f y x f y x f r,s,n,m,k x,x dx dx.. For the bvarate Burr III dstrbuton as gven n., the pd f of g [r,n,m,k] y n vew of.3,.4,.5,.7 and.9 s gven as r α k C r g [r,n,m,k] y r!m + r c c + y +k r α k x +k + α x k + α y k c+ + α x k dx.. cγ r Let t α x k, then the R.H.S. of. reduces to r α k C r r!m + r c c + y +k r Snce x v a + x µ x + y ρ dx where +t + α y k c+ +t cγr dt.. a, b F ; x a p b p x p c p c p p! s the Gauss hypergeometrc seres µ, v Γv Γµ v + ρ Γµ + ρ a µ y v ρ F ; y a.3 µ + ρ [ arg a < Π, Re v >, arg y < Π, Re ρ > Re v µ], Γλ + n λ n, λ,,,..., Γλ [Prudnkov et. al,986].5 s the Pochhammer symbol..4 4

Haseeb Athar, Nayabuddn and Zuber Akhter Therefore., becomes r α k C r g [r,n,m,k] y r!m + r c c + y +k r + α y k c+ cγ r + c γ r c, F ; α y k..6 c γ r + 3. Moment of Y [r,n,m,k] For the bvarate Burr III dstrbuton as gven n., the a th moment of Y [r,n,m,k] s gven as, E Y a [r,n,m,k] y a g [r,n,m,k] y dy 3. r α k C r r!m + r c c + r cγ r + c γ r c, y a y +k + α y k c+ F ; α y k dy 3. c γ r + r α k C r r!m + r c c + r cγ r + cγ r c p p y a y +k + α y k c+ α y k p dy. 3.3 p cγ r + p p! Now lettng t + α y k n 3.3, we get k α a r C r r r!m + r c c + cγ r + Snce p cγ r c p p p cγ r + p p! t c+ t p a k dt. 3.4 y x λ x y µ dx Γλ µ Γµ Γλ y µ λ, < Re µ < Re < λ 3.5 [c.f. Erdély et al., 954]. 43

Concomtants of Dual Generalzed Order Statstcs... Therefore R.H.S. of 3.4 becomes k α a r C r r!m + r c c + r cγ r + p cγ r c p p p cγ r + p p! Γc + a k p Γp + a k. 3.6 Γc + Now on applcaton of.5 and usng λ n n λ n, n,,3,..., λ, ±, ±,... [Srvastava and Karlsson,985] 3.7 n 3.6 and smplfyng, we get E Y a [r,n,m,k] k α a r C r r!m + r c c + r cγ r + p cγ r c p p a k p cγ r + p c a k p p! Γc + a k Γ a k. 3.8 Γc + We have the generalzed Gauss seres or the generalzed hypergeometrc seres. α... α p pf q,z β... β q k α k α k...α p k z k β k β k...β q k k!. 3.9 Thus applyng 3.9 n 3.8, we have E Y a [r,n,m,k] α a k C r c c + r!m + r r r cγ r + Γc + a k Γ a k Γc + cγ r c,, a k 3 F,. 3. cγ r +, c a k Notng that [prudnkov et al, 986] 44

Haseeb Athar, Nayabuddn and Zuber Akhter N,, a 3F, b, a m, m,, b b a m b + N a 3 F,. 3. b N, a, Now usng 3. n 3., we can wrte α k a c C r r!m + r r r Γc + a k Γ a k Γc + c + a k a k c,, cγ r 3 F,. 3. c, + a k, Usng relaton 3.9 n 3., we get α k a c C r r!m + r r r Γc + a k Γ a k Γc + c + a k a k, cγ r F ;. 3.3 + a k Notng that [Prudnkov et al., 986]. a b F ; Γ c Γ c a b, Re c a b >, c, ±, ±,..., 3.4 Γ c a Γ c b c Applyng 3.4 n 3.3, we get 45

Concomtants of Dual Generalzed Order Statstcs... α k a C r r!m + r r r c + a k Γc + a k Γ a k c Γc γ r + a 3.5 c k α k a C r r!m + r r r c + a k Γc + a k Γ a k Γc + k a B + n r + + m + c k m +,. 3.6 Snce, b a a b Ba + k, c Bk, c + b 3.7 a where Ba,b s the complete beta functon. Therefore, E y a [r,n,m,k] α k a C r Γc + + a m + r k Γ a k c Γc Γ k+n rm++ a c k m+ Γ k+nm++ a c k m+ 3.8 E y a k [r,n,m,k] α a Γc + + a k Γ a k c Γc r + a c k γ. 3.9 Remark 3. : If m, k n 3., we get sngle moment of concomtants of order statstcs from bvarate Burr III dstrbuton as; E y a [n r+:n] n! n r! α k a Γc + + a k Γ a k c Γc Γn r + + a c k Γn + + a c k. If we replace n r + by r, then E y a [r:n] n! r! α a Γc + + a k k Γ a k c Γc Γr + a c k Γn + + a c k and at r n, we get 46

Haseeb Athar, Nayabuddn and Zuber Akhter E y a n [n:n] n c + a k α k a Γc + + a k Γ a k. 3. Γc It may be noted that for the order statstcs, the k th moments of Y [r:n] s µ [r:n] k n n y r r n r µ [:] k y. 3. Therefore, E y a [r:n] n r n r r c + a k α k a Γc + + a k Γ a k Γc 3. as obtaned by Begum and Khan,998. Remark 3. : Set m n 3., to get moment of k th lower record value from bvarate Burr III dstrbuton as; E y a [r,n,,k] α a k Γc + + a k Γ a k c Γc + a c k k r. 3.3 4. Jont Probablty Densty Functon of Y [r,n,m,k] and Y [s,n,m,k] For the bvarate Burr III dstrbuton as gven n., the ont pd f of Y [r,n,m,k] and Y [s,n,m,k] n vew of.3,.4,.5,.8 and. s gven as g [r,s,n,m,k] y,y C s r!s r!m + s c c + α k α k y +k y +k r s r + r s r where, x +k + α x k cs r+ m+ c + α x k + α y k Ix,y dx 4. c+ x Ix,y α k x +k + α x k cγ s Settng t + α x k, then the R.H.S. of 4. reduces to + α x k + α y k dx. 4. c+ 47

Concomtants of Dual Generalzed Order Statstcs... Ix,y λ β +α x k t α + t λ β dt 4.3 where α cγ s c, β c + and λ α y k Note that [Prudnkov et al., 986]. + z a p p a p z p. 4.4 p! Now n vew of 4.4, 4.3 after smplfcaton yelds Ix,y λ β l l β l λ l + α x k α l α l. 4.5 Now puttng the value of Ix,y from 4.5 n 4., we obtan g [r,s,n,m,k] y,y c c + α k α k C s r!s r!m + s y +k y +k r s r + r s r λ β l l α l β l λ l x +k + α x k cs r+ m+ c+cγ s c l Settng t + α x k n 4.6, and after smplfcaton we get + α x k + α y k dx. 4.6 c+ g [r,s,n,m,k] y,y C s r!s r!m + s c c + α k y +k y +k r s r + r s r λ β δ β l β l λ l α + l p β p δ p θ α + l + p p! 4.7 where δ α y k and θ cs r + m + c. 48

Haseeb Athar, Nayabuddn and Zuber Akhter By settng d α and g θ α n 4.7, we get c c + α k C s r!s r!m + s r s r + r s r y +k y +k λ β δ β l β l λ l d + l p β p δ p g + p + l p!. 4.8 Now after puttng the value of λ and δ n 4.8, we have c c + α k C s r!s r!m + s r s r + r s r y +k y +k α y k β α y k β l Notng that [Srvastava and Karlsson, 985]. l α y k β l d + l p β p p α y k g + p + l p! 4.9 λ + m λ λ + m λ m 4. λ + m + n λ λ + m+n λ m+n. 4. Usng relaton 4. and 4. n 4.9, t becomes c c + C s r!s r!m + s r s r + r s r dg α k y +k α k y α y k β α y k +k β l p p α y k g p+l β l d l β p g + p+l d + l We have the Kampede Feret s seres [Srvastava and Karlsson, 985] F p:q;k l:m;n a p : b q ; c k ; x,y α l β m γ n p! l α y k. 4. r s Therefore after usng 4.3, we fnally get p a r+s q b r k c s x r l α r+s m β r n γ s r! y s s!. 4.3 49

Concomtants of Dual Generalzed Order Statstcs... g [r,s,n,m,k] y,y c c + C s r!s r!m + s r s r + r s r dg α k y +k α k y α y k β +k α y k F :; β :; g + ; d + ; g; β; d; β; ; α y k, α y k. 4.4 5. Product Moments of two concomtants Y [r,n,m,k] and Y [s,n,m,k] For Burr type III dstrbuton, the product Moments of two concomtants Y [r,n,m,k] and Y [s,n,m,k] s gven as E Y a [r,n,m,k] Y b [s,n,m,k] In vew of 4.4 and 5., we have y a y b g [r,s,n,m,k] y,y dy dy. 5. E Y a [r,n,m,k] Y b [s,n,m,k] A y a y b α k y +k α k y α y k β α y k +k β F :; :; g ; β ; d; β; ; g + ; d + ; α y k, α y k dy dy 5. where, Thus, A c c + C s r!s r!m + s r s r + r s r dg. 5.3 E Y a [r,n,m,k] Y b [s,n,m,k] A y a y b α k y +k α k y α y k β α y k +k β l p p α y k g p+l β l d l β p g + p+l d + l p! l α y k dy dy. 5.4 By Srvastava and Karlsson 985, we have 5

Haseeb Athar, Nayabuddn and Zuber Akhter λ m+n λ m λ + m n. 5.5 On applyng 5.5 n 5.4, we get A y b α k y +k α y k β l g l g + l β l d l l α y k d + l { y a α k y +k β p g + l p α y k β p A y b α k y +k α y k β l α y k g + + l p g l g + l β l d l p! p d + l y a α k y +k β; g + l α y k F β g + l + Now lettng α y k z n 5.7, we have dy } dy 5.6 l α y k ; α y k dy dy. 5.7 A α a k y b α k y +k α y k β l g l g + l β l d l l α y k d + l z β+ k a F β; g + l g + l + ; z dz dy 5.8 Snce a, b a, c b F ; x x a F c c ; x x. 5.9 Therefore on usng relaton 5.9 n 5., we have A α a k y b α k y +k α y k β l g l g + l β l d l l α y k d + l p β p { p g + l + p } z k a z β+p dz dy. 5. 5

Concomtants of Dual Generalzed Order Statstcs... Now usng relaton 3.5 n 5., we get A α a k g g + l Γβ + a k Γ a k Γβ y b α k y +k α y k β l l α y k β l d l d + l Now n vew of 3.4, 5. becomes β + a k ; F ; dy. 5. g + l + k α a g A Γβ + a k Γ a k { y b α k y +k } Γβ α y k dy β β l d l l l α y k d + l Usng relaton 4. n 5., we get g + β a k + l. 5. α a k A g g + β a k Γβ + a k Γ a k { Γβ y b α k y +k } α y k dy β β l d l g + β a k l l d + l α y k g + β a k l l. 5.3 Further settng z α y k n 5.3, t becomes α a+b k A g g + β a k Γβ + a k Γ a k Γβ z β+ b Set z t n 5.4, to get k 3 F d; g + β a k ; β d + ; g + β a k ; z dz. 5.4 α a+b k A g g + β a k Γβ + a k Γ a k Γβ 5

Haseeb Athar, Nayabuddn and Zuber Akhter d; g + β a t β+ k b k ; β 3 F ; t dz. 5.5 d + ; g + β a k Note that [Prudnkov et al., 986] a, a, a 3 x s 3F ; x dx b, b Γb Γb Γs Γa s Γa s Γa 3 s Γa Γa Γa 3 Γb s Γb s Now usng relatons 5.6 n 5.5, we get 5.6 α a+b k g A g + β a k b k d + β b k Γβ + a k Γ a k Γβ Γβ + b k Γ b k. 5.7 Γβ Fnally puttng the values of A, d, g and β n 5.7, we have E Y a [r,n,m,k] Y b [s,n,m,k] α a+b c c + C k s Γβ + a k Γ a k r! s r!m + s Γβ Γβ + b k Γ b k Γβ r s r r + s r [c{k + n s + m + } + b k ] [c{k + n r + m + } + a k + b k ] 5.8 α a+b k c c + C s Γβ + a k Γ a k r! s r!m + s Γβ Γβ + b k Γ b k r Γβ s r s r k b B + n s + + m + r k B + n r + + a m + + b ck m +, ck m +,. 5.9 53

Concomtants of Dual Generalzed Order Statstcs... On usng relaton 3.7 n 5.9, we get α a+b k c + C s Γβ + a k Γ a k r! s r!m + s Γβ Γβ + b k Γ b k Γβ k B + n r + a + b m + ck m +, r k b B + n s + m + ck m +, s r, 5. whch after smplfcaton yelds E Y a [r,n,m,k] Y b [s,n,m,k] α a+b k c + Γβ + a k Γ a k Γβ Γβ + b k Γ b k Γβ r a+b + c k γ s r+ + b c k γ. 5. Remark 5. : By settng m, k n 5.8, we get product moments of concomtant of order statstcs from bvarate Burr III dstrbuton as E Y a [n s+:n] Y b [n r+:n] α a+b c c + n! k r! s r!n s! Γβ + b k Γ b k Γβ r Γβ + a k Γ a k. Γβ s r r + s r [cn s + + + b k ] [cn r + + + a k + b k ] 5. Replace n s + by r and n r + by s n 5., we get E Y a [r:n] Y b [s:n] α a+b c c + n! Γβ + a k k Γ a k r! s r!n s! Γβ Γβ + b k Γ b k Γβ n s s r n s + s r [cr + c + b k ] [cs + c + a k + b k ] 54

Haseeb Athar, Nayabuddn and Zuber Akhter E Y a [r:n] Y b [s:n] n! r! α a+b Γc + + a k k Γ a k Γc + + b k Γ b k Γc + Γr + b ck Γs + b ck as obtaned by Begum and Khan, 998. Γs + a+b ck Γn + + a+b ck Remark 5. : If m n 5., we get product moment of concomtants of k th lower record values from bvarate Burr III dstrbuton as E Y a [r,n,,k] Y b [s,n,,k] α a+b k c + Γβ + a k Γ a k Γβ Γβ + b k Γ b k Γβ + a+b c k k r + b s r. 5.3 c k k Puttng the value of β n 5., we get E Y a [r,n,,k] Y b [s,n,,k] α a+b Γc + + a k k Γ a k Γc + Γc + + b k Γ b k Γc + + a+b c k k r + b c k k s r 5.4 Acknowledgement The authors are thankful to Professor M. Ahsanullah, Rder Unversty, Lawrencevlle, NJ, USA for hs frutful suggestons. References [] Ahsanullah, M. 4: Record Values-Theory and Applcatons. Unversty Press of Amerca, Lanham, Maryland. [] Begum, A.A. and Khan, A.H. 998: Concomtants of order statstcs from bvarates Burr III dstrbuton. Journal of Statstcal Researh, 3, 5 5. [3] Burkschat, M.; Cramer, E. and Kamps, U. 3: Dual generalzed order statstcs. Metron, LXI, 3-6. [4] Davd, H. A. and Nagaraa, H. N. 3: Order Statstcs, John Wley, New York. [5] Erdély, A., Magnus, W., Oberhetnger, F. and Trcom, F. G.954: Tables of Integral Transforms. McGraw-Hll, New York. [6] Kamps, U. 995: A concept of generalzed order statstcs. B.G. Teubner Stuttgart, Germany. [7] Prudnkov, A. P., Brychkov, Yu. A. and Marchev, O. I. 986: Integral and seres: More Specal Functons Vol.3. Gordon and Breach Scence Publsher, New York. 55

Concomtants of Dual Generalzed Order Statstcs... [8] Rodrguez, R. N. 98: Burr dstrbutons: Encyclopeda of Statstcal Scence. Vol., Kotz and Johnson, ed., 335 34. John Wley and Sons, New York. [9] Srvastava, H. M. and Karlsson 985: Multple Gaussan Hypergeometrc seres. John Wley & Sons, New York. 56