Bridges of Low-E observables with Leptogenesis in mu-tau Reflection Symmetry

Σχετικά έγγραφα
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

α & β spatial orbitals in

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

Solar Neutrinos: Fluxes

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

EE101: Resonance in RLC circuits

derivation of the Laplacian from rectangular to spherical coordinates

Second Order Partial Differential Equations

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Statistical Inference I Locally most powerful tests

Lecture 34 Bootstrap confidence intervals

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Hadronic Tau Decays at BaBar

Capacitors - Capacitance, Charge and Potential Difference

Section 8.3 Trigonometric Equations

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

EE512: Error Control Coding

Homework 8 Model Solution Section

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Approximation of distance between locations on earth given by latitude and longitude

Space-Time Symmetries

Inverse trigonometric functions & General Solution of Trigonometric Equations

Three coupled amplitudes for the πη, K K and πη channels without data

AdS black disk model for small-x DIS

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Forced Pendulum Numerical approach

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Phasor Diagram of an RC Circuit V R

Right Rear Door. Let's now finish the door hinge saga with the right rear door

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Numerical Analysis FMN011

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Calculating the propagation delay of coaxial cable

LIGHT UNFLAVORED MESONS (S = C = B = 0)

8.324 Relativistic Quantum Field Theory II

Example Sheet 3 Solutions

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Lecture 21: Scattering and FGR

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Section 9.2 Polar Equations and Graphs

Instruction Execution Times

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Homework 3 Solutions

Second Order RLC Filters

4.6 Autoregressive Moving Average Model ARMA(1,1)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Lifting Entry (continued)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Section 7.6 Double and Half Angle Formulas

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

6.003: Signals and Systems. Modulation

Other Test Constructions: Likelihood Ratio & Bayes Tests

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΔΕΙΚΤΩΝ ΠΟΙΟΤΗΤΑΣ ΕΔΑΦΟΥΣ

C.S. 430 Assignment 6, Sample Solutions

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

ST5224: Advanced Statistical Theory II

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

«Έντυπο και ψηφιακό βιβλίο στη σύγχρονη εποχή: τάσεις στην παγκόσμια βιομηχανία».

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

8.323 Relativistic Quantum Field Theory I

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

What is SUSY? Supersymmetry is a boson-fermion symmetry that is aimed to unify all forces in Nature including gravity within a singe framework

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

2.153 Adaptive Control Lecture 7 Adaptive PID Control

Dr. D. Dinev, Department of Structural Mechanics, UACEG

þÿ ³¹µ¹½ º±¹ ±ÃÆ»µ¹± ÃÄ ÇÎÁ

CRASH COURSE IN PRECALCULUS

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

UV fixed-point structure of the 3d Thirring model

Lecture 2. Soundness and completeness of propositional logic

Fractional Colorings and Zykov Products of graphs

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

«ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΣΕΞΟΥΑΛΙΚΗ» ΠΑΝΕΥΡΩΠΑΪΚΗ ΕΡΕΥΝΑ ΤΗΣ GAMIAN- EUROPE

Lecture 26: Circular domains

Transcript:

rdges of Low-E observables wth Leptogeness n mu-tau Reflecton Symmetry Y.H.Ahn (Academa Snca) Wth S.K.Kang, C.S.Km, T.P.Nguyen (hep-ph 0811.1458) Consequences of mu-tau reflecton Symmetry Connecton CP-volaton n neutrno oscllaton to Leptogeness va RG runnng Numercal Results and Summary Sngapore/008 1

Present Knowledges Δ m = 7.6 10 ev, sn θ = 0.3 ; + 0.7 5 + 0.08 1 0.5 1 0.06 + 0.4 3 + 0.17 31 0.4 θ3 0.16 = 34.45 from Δ m =.4 10 ev, sn = 0.50 ; θ = 45.0 from Atm -Large Mxng Angle + 0.043 sn θ = 0.007 1 13 3 σ (Malton et al : New J. Phys. 6, 1) θ Nothng s known about all 3 CPV phases, CP ϕ, 1 ϕ Cosmologcal lmt(ncludng the WMAP 3-years results) Upper bound on masses m < 0.14 ev (95% C.L) Starts to Dsfavor the degenerate spectrum of neutrnos (JCAP10,104, astro-ph/0604335) η = 6. 10 10 Sngapore/008

Constructon mass matrx m In the flavor bass (,, ) e μ Data m = U Dag.( m, m, m ) U 1 3 T U U μ3 3 e3 U μ U 1 = U Orthorgonalty of wth and : U = U for all = 1,,3 μ 3 1 u1 u u3 U = υ1 υ υ3 wth u = real υ1 υ υ 3 If ths matrx s PMNS, Standard acton s nvarant under μ ξ ξ c c μ m = m m = m ( ξ : phase factors), e eμ μμ Sngapore/008 3

Constructon mass matrx m 1 0 0 Sm S m wth μ - nterchange operator : S 0 1 0 μ Reflecton Symmetry (Harrson-Scott, 00; Grmus-Lavoura, 003) eff = eff = 0 0 1 Consder the Lagrangan of the lepton sector from whch the Seesaw-mech. works L m 1 c = LYN φ LYllRφ N M R N + hc.. Take a bass where charged lepton Yukawa couplng matrx s dagonal M : 3 3 symmetrc matrx n flavor space R Y = Dag.( f, f, f ) where n general f : complex e μ α Sngapore/008 4

y mposng the CP transpormaton & L μ- symmetry m μ = = S S * LM R SMRS f (real) & f f Y Y e CP-nvarance of M = m = Sm S eff eff Re-basng: R M a be be φ 1 1 1 1 T T φ R M R R, R Y φ M 3 a3 be 3 b3 φ 1 1 M = V V = M Y = V = a be be φ e φ 3 3 m m m ee eμ e T 1 eff = υ R = 0 eμ μμ mμ me mμ m m Y M Y m m m Sngapore/008 5

Consequences of μ- reflecton symmetry snθ cos = 0 & CP-volaton s Maxmal θ 3 13 π = 4 CP Maxmal Atmospherc mxng CP π = ϕ 1, = 0 or π (Maj. CP-volatng phases) CP n Oscllaton : J CP = 1 sn θ1 sn θ3 sn θ13 cos θ13 sn C 8 1 θ 4 sn θ for θ 1 13 1 13 P μ - reflecton symmetry ndcates that the CP-asymmetry P( ) P( ) s maxmal μ e 13 μ e As long as θ 0, Non-vanshng would be a sgnal of CP-volaton J CP Sngapore/008 6

CPV responsble for AU H All com λ ω λχ κωcos φ1 ωcos φ13 b3 λχ κω cos φ1 χ κ κ cos φ3 YY = + Δ + Δ ωcos Δφ13 κcos Δφ3 pts. of YY are real and + + Δ Δ μ - reflected Y Leptogeness s Not possble (v een n flavored-leptogeness at M 1 1<10 GeV) μ - Impose the μ- reflecton symmetry for the neutrno sectors at the GUT scale. Assumpton: Two heavy Mj. s are exact degenerate n mass and M1 = M M 3 Effects of the parameter a3 and φ3 on low energy neutrno phenomenology and leptogeness are neglgbly small take a = 0 and φ = 0 at the GUT scale 3 3 Sngapore/008 7

d T ln( Q/ Λ) RGE: MR = q (YY )MR M R(YY ), t, q 1() SM(SSM) dt + = = 16π Re-basng M = V M V = Dag.( M, M, M ) Y = V Y T T R R R R 1 3 R Snce M changes wth the evoluton of the scale, the untary matrx depends on the scale, too d V = V A wth A = A R R R VR dt d Dagonal Part: M = qm ( YY ), A = 0 dt Mk + M j M j Mk Off-dagonal Part: Ajk = q Re[( YY ) jk ] + q Im[( YY ) jk ], M M M + M wth j k k j j k RGE: d 3 9 3? Y (Y Y ) T = Y T g Y g Y Y A Y SM dt 4 4 + d 3 Y Y T? T = 3 g g 1 + (Y Y + 3 Y Y ) + A Y SSM dt 5 Sngapore/008 8

For an exact degeneracy n mass M = M Sngularty! To remove ths sngularty at the degeneracy scale Λ Impose = 0 Re[( YY ) 1( 1) ( 0)] Can always be satsfed by performng c s 0 α α H1 wth R( α) = s c 0 tan α = α α H11 H 0 0 1 H 11 0 H 13 T At the GUT scale: H ( 0) YY ( 0) = RYY R = 0 H H 3 H 13 H 3 H 33 Re[ H 1( 1) ( 0)] = 0 No sngularty Im[ H 1(1) ( 0)] = 0 μ - symmetry 1 Y = RY where H H α H α H α H H α H α = cos + sn + sn, = cos + sn 11 11 1 13 13 3 H H α H α H α H H α H α = cos sn + sn, = cos sn 1 11 3 3 13 Sngapore/008 Real! 9

YY, Y and N b a a b b M For convenence, m0 υ, λ, χ, ω, κ, η M b b b b M M Degree of degeneracy : N 1 M 3 1 1 3 3 3 3 3 d 4H1 N = q(1 N)[ H 11 H ] = q dt sn α 1 N qb t wth = 3 3 R Re[ H 1( M)] = Re[ H 1( M)] pb3 y μ t Im[ H ( )] = Im[ H ( )] 3 y t I 1 M 1 M pb3 μ 4( λχ + κω cos Δφ1) sn α p = 1 for SM (SSM) 3 R κ ω where μ = sn α + κω cos α cos Δ φ and = κωsn Δφ I 1 μ 1 Sngapore/008 10

RG mproved Drac neutrno Yukawa matrx for SM 3 y y11 εy1 y1 εy t y1 ( εy + y1) t 3 y Y ( M) y1 + εy11 y + εy1 t y + ( εy1 y) t 0 y3 y3 for SSM ε 3 ε and y y 3 y = b λc + χs y = b κs e + ωc e y = b φ φ1 where ( ), ( ), 11 3 α α 1 3 α α 3 3 φ φ1 ( ), ( ), y = b χc λs y = b κc e ωs e 1 3 α α 3 α α 3y R ε : corrected by Degeneracy ε μ y : corrected by Y tself μ - reflected Y s broken by y Such small RG effects can trgger leptogeness. Sngapore/008 11

RG mproved the effectve neutrno mass matrx Herarchcal lght neutrno spectrum RG effects from Seesaw to EW scale on m eff as well as U PMNS are expected to be very small even n SSM case As a results of the RG effects, m m m (1 + a ) meff m0 m m m O y m m m ee eμ eμ 4 eμ μμ μ (1 + a ) + ( ) eμ(1 + a ) μ(1 + a ) μμ(1+ a ) a = y 3 y t SM t SSM Ψ Ψ e e y Re-phasng as and μ μ m e e (1 + a ) meff m0 e m a O y Φ Φ ee eμ eμ Φ 4 eμ μμ μ (1 + ) + ( ) Φ eμe (1 + a ) mμ(1 + a ) μμ(1+ a ) R G correcton term a 0 recovers μ- symmetry Sngapore/008 1

Ψ where Φ=Ω, λω cosφ + κλ cosφ ω cos φ + κ cos φ Ω= Ψ 1 1 1 cos cos + ( ) eμ μμ O η = λω + κ χ + λχκω cos Δ φ, κ + ω ++ κω cos Δφ + O( η ) eμ 4 4 1 1 μμ 1 CP θ3 CP π cos a κ + ω Φ Δ = + Φ λ χ sn π κ + ω θ3 a Δ tan Φ 4 λ + χ tanθ ( κχ + ωλ) cos Φ ( κ + ω ) 1 Sngapore/008 13

θ 13 θ 13 ( κχ + λω) ( λ + χ ) sn Φ 4 ( κ + ω ) where sn Φ ( ) λ + χ κ + ω I μ Exstence of θ 0 s very Important 13 because t may be related wth Lepton ccp (measurable va Osc.) JCP θ 13 sn λ I + θ1 χ μ { λχ( κ ω ) + κω( λ χ )cos Δφ 4 1} 4 16( κ + ω ) θ can teach us about How 13 roken μ- symmetry s responsble for the orgn of AU n our scenaro. Sngapore/008 14

Radatvely generated leptonc CP-Asymmetry ε ε ε I e μ ee ee 1() ε R R 16πh1() μ μ μ 1() 1() ε ± t + O t I με ± ε + 3πh1() ( ) μ 1 t O( t ) R μ I 3 με ε ± + + 3πh1() 3 μ 1 3 y t O( t ) R μ ε 1() I 3 με y 16π h 1() t + Ot ( ) ε ε ε I e μ ee ε ee 1() R R 48πh1() μ 3 μ μ 1() 1() ε I με 4ε 96πh1() 3 + t + O t μ 1 + t O( t ) R + μ ( ) I με ε + + + 3πh1() 9 μ 1 y t O( t ) R μ ε 1() I μ ε y 4π h 1() t + Ot ( ) Sngapore/008 15

χ λ ee = sn α + λχcos α ee = ( χ λ )cos α λχsn α = Δ μ ( κ ω )cos α κωsn αcos φ1 h1 = H 11 b3 ( κ + χ )sn α + ( ω + λ )cos α + { λχ + κωcosδφ1 sn α} h = H b ( κ + χ ) cos α + ( ω + λ ) sn α { λχ + κωcosδφ sn α} 3 1 ee R μ H ( λχ + κω cos Δφ ) = =.. 1 1 s justfed from tan α =... H11 H λ + ω χ κ From the Yukawa-Drac neutrno overall scale, b m M (174GeV) = ye 0.05eV 10 GeV υ 0 6 3 10 3 TeV Leptogeness!! ε α I and ε A lnk between θ and Leptogeness μ 13 ε ε and ε ε due to 1 and ( e μ h h O ε ) O( ε ) O( ε ) α 1 α 1 Sngapore/008 16

Wash-out Parameters m K s c e 0 1 ( χ α + λ α) m m K c c e 0 ( χ α λ α) m m K ( κ s + ω c + κωs c cos Δφ ) μ, 0 1 α α α α 1 m m K ( κ c + ω s κωs c cos Δφ ) μ, 0 α α α α 1 m Snce K can be much less than one and O( ε ) O( ε ) O( ε ) e e μ the lepton asym. for electron flavor n the WK washout regme leads to the d omnant contrbuton to the lepton asym., whch can be enough to gve rse to successful baryogeness. Sngapore/008 17

Case-I: Weak Wash-out K > 1, K > 1, K < 1 e, μ, μ, e 1 Numercally SM K 10 1, K 130 160 e 5 SSM K 10 1, K 80 (tan β = 1), 40 (tan β = 10 60) e 5 The resultng baryon-to-photon rato η can be smply approxmated as f η f 3 e 10 ε e KK Chooz angle θ 13 Sngapore/008 18

How tan β s correlated wth the mxng angle θ 13 β 0.1 h tan 1 e R I K K μ μ 1 How the baryon asymmetry η s senstve to the CP-volatng observable measurable J CP through Oscllaton f Sngapore/008 19

η ε 3y η ε π 1 M 1 ln f e e e K( K) 4 Λ K( K) SM The predcton of η s suppressed by 10 K, 8 e e.., 4 8 order of magntude compared wth η η s too small to gve successful leptogeness. f SSM The predcton of η s suppressed by 8 10 (1 tan ) + β K e Radatvely nduced ε y = y (1 + tan β) 4 4 1( ) SM for large tan β t can be hghly enhanced. Lower lmt of tan β from the CM observaton 14 3 10 h tan β tan β 60 R I t μ μ Sngapore/008 0

Case-II: Strong Wash-out K μ > e,, 1, 1 The resultng baryon-to-photon rato η can be approxmately gven by η α ε κ wth κ = f α α 10 α f K K K α α In the ST wash-out case, the resultng baryon asym. s too small to gve a successful leptogeness n the SM. SSM Numercally, κ 10 > κ 10 κ > κ 10, for tan β 3 e κ e 1 μ, μ, e 1 1 5 10 > κ 10 κ > κ 4 10, for tan β < 3 1 μ, μ, e 3 1 1 Flavor dependent washout factors almost equally contrbute to leptogeness. η f can be smply approxmated as an order of magntude f 11 η 10 (1 + tan β ) At least tan β 7 s needed for flavored leptogeness to successfully work. Sngapore/008 1

η s not senstve to θ any more, nstead of that, senstve to θ f 13 1 Sngapore/008

A correlaton between tan β and θ : 1 best-ft η tan β 1 xy SM 1 wth x η = f y f In order for the predcton of η to be consstent wth the rght amount of baryon asymmetry, tanβ 7 The best-ft value of η and the current measurements of θ favors 0.04 1 whch can be measurable n the upcomng LL neutrno oscllaton experments. J CP Sngapore/008 3

Concluson We showed that CP volaton responsble for the generaton of baryon asymmetry of our unverse can be drectly lnked wth CP volaton measurable through neutrno oscllaton as well as neutrno mxng angles θ and θ. 13 1 We expect that n addton to the reactor and long baselne neutrno experments for precse measurng neutrno mxng angles and CP volaton, the measurements for the supersymmetrc parameter tanβ at future collder experments would serve as an ndrect test of our scenaro of baryogeness based on the μ - reflecton symmetry. Sngapore/008 4