Theory of Cosmological Perturbations

Σχετικά έγγραφα
Theory of Cosmological Perturbations

Cosmological Perturbations from Inflation

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Higher Derivative Gravity Theories

Cosmological Space-Times

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Dark matter from Dark Energy-Baryonic Matter Couplings

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Space-Time Symmetries

Srednicki Chapter 55

Second Order Partial Differential Equations

6.4 Superposition of Linear Plane Progressive Waves

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Symmetric Stress-Energy Tensor

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

The Simply Typed Lambda Calculus

EE512: Error Control Coding

Geodesic Equations for the Wormhole Metric

1 String with massive end-points

Finite Field Problems: Solutions

[Note] Geodesic equation for scalar, vector and tensor perturbations

Homework 8 Model Solution Section

Section 8.3 Trigonometric Equations

Differential equations

Reminders: linear functions

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Concrete Mathematics Exercises from 30 September 2016

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

4.6 Autoregressive Moving Average Model ARMA(1,1)

Areas and Lengths in Polar Coordinates

Solutions to Exercise Sheet 5

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

D Alembert s Solution to the Wave Equation

derivation of the Laplacian from rectangular to spherical coordinates

Dr. D. Dinev, Department of Structural Mechanics, UACEG

PARTIAL NOTES for 6.1 Trigonometric Identities

CRASH COURSE IN PRECALCULUS

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Every set of first-order formulas is equivalent to an independent set

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Areas and Lengths in Polar Coordinates

Statistical Inference I Locally most powerful tests

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Example Sheet 3 Solutions

4.4 Superposition of Linear Plane Progressive Waves

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Approximation of distance between locations on earth given by latitude and longitude

Forced Pendulum Numerical approach

( ) 2 and compare to M.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

C.S. 430 Assignment 6, Sample Solutions

6.3 Forecasting ARMA processes

Exam to General Relativity (Winter term 2011/2012) Prof. V. F. Mukhanov, LMU München Solution! Problem: 1a 1b 1c 1d 1e

Non-Gaussianity from Lifshitz Scalar

Hartree-Fock Theory. Solving electronic structure problem on computers

Cosmological dynamics and perturbations in Light mass Galileon models

Problem Set 3: Solutions

Dual null formulation (and its Quasi-Spherical version)

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

3+1 Splitting of the Generalized Harmonic Equations

Numerical Analysis FMN011

Lifting Entry (continued)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

What happens when two or more waves overlap in a certain region of space at the same time?

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ST5224: Advanced Statistical Theory II

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

8.324 Relativistic Quantum Field Theory II

Matrices and Determinants

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Cosmology with non-minimal derivative coupling

Tutorial problem set 6,

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Tridiagonal matrices. Gérard MEURANT. October, 2008

From the finite to the transfinite: Λµ-terms and streams

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Second Order RLC Filters

CE 530 Molecular Simulation


Other Test Constructions: Likelihood Ratio & Bayes Tests

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Congruence Classes of Invertible Matrices of Order 3 over F 2

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

NonEquilibrium Thermodynamics of Flowing Systems: 2

Instruction Execution Times

Relativistic particle dynamics and deformed symmetry

Transcript:

1 heory of Cosmological Perturbations Part I gauge-invariant formalism Misao Sasaki PDF files available at http://www2.yukawa.kyoto-u.ac.jp/~misao/pdf/cp/

1. Formulation Background spacetime Friedmann-Lematre-Robertson-Walker metric K = ±1, 0): ds 2 = dt 2 + a 2 t)dσ 2 K ; dσ 2 K = γ ij dx i dx j = dχ 2 + sinh2 K χ) K dω 2 2) 2 Conformal time coordinate: dη = dt a ds 2 = a 2 η) ) dη 2 + dσk 2 Energy momentum tensor in the perfect fluid form: µν = ρu µ u ν + pg µν + u µ u ν ) ; u ν dx ν = dt = adη. Friedmann equation: G 0 0 = R 0 0 1 2 R = 8πG 0 0) ȧ ) 2 + K a a = 8πG ρ, ρ + 3ȧρ + p) = 0 2 3 a ) a 2 + K = 8πG a 3 ρ a2, ρ + 3 a ρ + p) = 0 a Hereafter, we use the symbols: H = ȧ a, H = a a ȧ = da ) dt a = da ). dη

3 Spatial harmonics scalar harmonics + k 2 ) Y k = 0 γ ij D i D j ). k 2 K) for K 0 k 2 : continuous) k 2 = nn + 2)K for K > 0 n = 0, 1, 2, ) examples K = 0: or Y k = e ik x ; k 2 = k 2, Y k = j l kχ)y lm Ω) ; k = k, l, m). K = 1: Y k = f kl χ)y lm Ω) ; k = k, l, m). f kl χ) = 1 sinh χ P l 1/2 ip 1/2 cosh χ) ; p k 2 1.

4 vector harmonics index k omitted) scalar type: Y i = k 1 D i Y, vector transverse) type: D i Y 1)i = 0, ) + k 2 Y 1)i = 0 ; + k 2 2K) ) Y i = 0. k 2 = nn + 2) 1)K for K > 0 n = 1, 2, ), k 2 2K) for K 0. tensor harmonics scalar traceless) type: Y ij = k 2 D i D j + 1 ) 3 γ ij Y, + k 2 6K ) Y ij = 0. vector traceless) type with index σ, k): σ = 1, 2): Y 1) ij = 1 ) D i Y 1) j + D j Y 1) i, + k 2 4K ) Y 1) ij = 0. 2k tensor transverse-traceless) type with index σ, k): σ = 1, 2): D j Y 2) ij = Y 2)i i = 0, ) + k 2 Y 2) ij = 0 ; k 2 = nn + 2) 2)K for K > 0 n = 2, 3, ), k 2 3K) for K 0.

Perturbation variables scalar type perturbations metric: g 00 = a 2 1 + 2Aη)Y ), g 0j = a 2 BY j = a 2B ) k D jy, 5 matter: g ij = a 2 [1 + 2H L Y )γ ij + 2H Y ij ] [ ] = a 2 1 1 + 2RY )γ ij + 2H k 2D id j Y ; R H L + 1 3 H. µ ν = ρũ µ ũ ν + τ µ ν ; τ µ µ = pδ µ ν + ũ µ ũ ν ) + π µ ν π µ µ = π µ νu ν u µ = 0), ρ = ρ1 + δ Y ), ṽ i ũi u = v Y i = v ) 0 k Di Y ũ j = av B)Y j u 0 = a) ũ0 = u 0 1 AY ), ũ 0 = u 0 1 + AY ) from ũ µ ũ µ = 1 ) τ i j = p [ ] δj1 i + π L Y ) + π Y i j

geometrical meaning 3 + 1)-decomposition: 6 ds 2 = a 2 η)dŝ 2 ; dŝ 2 = Ñ 2 dη 2 + γ ij dx i + Ñ i dη)dx j + Ñ j dη). ~i N dη xi=const. ~ Ndη η + dη =const. η =const. extrinsic curvature: ñ µ dx µ = Ñdη hypersurface normal : Ñ = 1 + AY lapse function, Ñ i = BY i shift vector. ˆK ij = H kb)y ij = kσ g Y ij σ g 1 k H B shear of η =const. hypersurface.

expansion : 7 θ =3H1 + K g Y ) = 3 a H1 + K gy ) ; K g = A + H R 1 k ) 3 σ g. θdτprop = θ1 + AY ) a dη = 3H + 3R kσ g )Y ) dη. 3-curvature: In particular, δ s ˆRi jmn = D m δ s Γ i jn D n δ s Γ i jm ; δ s Γ i jm = 1 2 γil D m δγ lj + D j δγ lm D l δγ jm ), s ˆR = 6K + 4k 2 3K) δγ ij = 2H L γ ij + 2H Y ij. H L + 1 ) 3 H Y = 6K + 4k 2 3K)RY. R intrinsic curvature perturbation potential).

Gauge transformation properties 8 x x µ x µ = x µ + ξ { µ η = η + Y, x i = x i + LY i. his induces a gauge transformation, x ξ x x=x+ ξ x ḡ µν = g µν ξ µ;ν + ξ ν;µ ) [ ] in general, Q{A} = Q {A} L ξ Q {A}. {A} spacetime indices)

metric: ) H = a a 9 Ā = A H lapse ) B = B + L + k H L = H L k σ g = σ g k 3 L H R = R H H = H + kl σ g = 1 ) k H B shear R = H L + 1 ) 3 H curvature matter: δ = δ + 31 + w)h v = v + L w p ) ρ v B) = v B) k ) π L = π L + 3c 2 1 + w w c w H 2w p ρ π = π ~ Ndη ~i N dη xi=const. v i dη u µ η + dη =const. η =const. v i ~ + N i )d η =v-b )Y idη Blue quantities depend only on the choice of time-slicing.

gauge-invariant variables 4 metric variables 2 gauge variables = 2 degrees of freedom) Ψ A 1 ) σ k g + H σ g, σ g = 1 ) k H B Φ R H k σ g. R = H L + 1 ) 3 H 10 s δ + 3 H k 1 + w)σ g V v 1 k H = v B) σ g shear of 4-velocity ũ µ ) Γ π L c2 w w δ pγ = δp c 2 wδρ entropy perturbation Π π anisotropic stress perturbation. Ψ = A, Φ = R, s = δ, V = v B on σ g = 0 hypersurface. Shear-free slicing or Newton slicing

Other popular choices: 11 R c R H k v B) = Φ H k V, σ g) c = V, A c A 1 k [v B) + Hv B)] = Ψ 1 k [V + H V ] δ + 3 H k 1 + w)v B) = s + 3 H k 1 + w)v, Velocity-orthogonal or comoving slicing v B = 0) ζ R + 1 31 + w) δ = R c + 1 31 + w) Curvature perturbation on uniform density slices δ = 0) f δ + 31 + w)r = + 31 + w)r c = 31 + w)ζ Density perturbation on flat slices R = 0)

vector type perturbations 12 Ñ 1) j = B 1) Y 1) j, γ 1) ij = γ ij + 2H 1) Y 1) ij. gauge transformation: ṽ 1)j = aũ [ 1)j = v 1) Y 1)j ], τ 1)i j = p δj i + π 1) Y 1) ij. x j = x j + L 1) Y 1)j gauge-invariant variables: { B1) = B 1) + L 1), H 1) = H 1) + kl 1). v 1) = v 1) + L 1), π 1) = π 1). 2 metric variables 1 gauge variable = 1 degree of freedom) σ 1) g = 1 k H1) B 1), V 1) = v 1) B 1), Π 1) = π1). tensor type perturbations [ ] γ 2) ij = γ ij + 2H 2) Y 2) ij. τ 2)i j = p δj i + π 2) Y 2) ij Both H 2) and π 2) are gauge-invariant by themselves..

2. Einstein equations in terms of gauge-invariant variables Scalar type perturbations Einstein equations: δg µ ν = 8πGδ µ ν : δg 0 0 = 2 a 2 [ 3H 2 A + H kσ g 3H R k 2 3K)R ] Y δg 0 j = 2 a [kh A 2 kr + Kσ g ] Y j δg i j = 2 [ ) 2H + H 2 k2 A + H A + k ) σ a 2 3 3 g + 2H σ g R 2HR 1 ] 3 k2 3K)R δjy i 13 + 1 a 2 [ k 2 A + kσ g + 2Hσ g ) k 2 R ] Y i j δ 0 0 = ρ δ Y, δ 0 j = ρ + p)v B)Y j, δ i j = pγ + c 2 wρ δ)δ i jy + pπ Y ij. N.B. pγ + c 2 wρ δ = δp) he above equations depend only on the choice of time slicing. ie, they are spatially gauge-invariant.

14 spatial gauge-invariance 3 + 1)-decomposition ds 2 = g µν dx µ dx ν = n µ n µ + γ µν )dx µ dx ν = n µ dx µ ) 2 + γ µν dx µ dx ν = N 2 dt 2 + γ ij dx i + N i dt)dx j + N j dt) ; γ µν g µν + n µ n ν, n µ dx µ = Ndt. δg µν n µ n ν ) = δ NG 0 νn ν ) = δ G 0 0 NG 0 in i ) = δg 0 0 + higher order, δn µ G µν γ νj ) = δn µ G µν g νj ) = δ NG 0 j) = NδG 0 j + higher order.

Energy-momentum conservation: 15 δ 0 ν ;ν ) = 0 : δ + 3H [ c 2 w w)δ + wγ ] + k1 + w)v B) + 1 + w)3r kσ g ) = 0. δ j ν ;ν ) = 0 : v B) + H1 3c 2 w)v B) = ka + k c2 wδ + wγ 1 + w 2k 3 hese are also spatially gauge-invariant. w 1 + w 1 3Kk ) π 2. o obtain gauge-invariant equations, it is simplest to set a gauge time-slicing) condition that fixes the time slices completely. gauge-invariance complete gauge-fixing Gauge-invariant quantities are NO necessarily directly related to observables Advantage of gauge-invariant formalism is because one does not have to choose a particular gauge while dealing only with physical degrees of freedom, not because the values of the gauge-invariant variables are physical by themselves.

16 Example: choose σ g = 0 Newton slicing), so that A = Ψ, R = Φ, δ = s, v B = V. δg 0 0 = 8πGδ 0 0 : δg 0 j = 8πGδ 0 j : 1 a 2 [ 3HHΨ Φ ) k 2 3K)Φ ] = 4πGρ s, 1) k a 2 [HΨ Φ ] = 4πGρ + p)v, 2) δg i j = 8πGδ i j) traceless : k2 a 2 [Ψ + Φ] = 8πpΠ. 3) δg i j = 8πGδ i j) trace : ) 1 [2H + H 2 k2 Ψ + H Ψ a 2 3 Φ 2HΦ 1 ] 3 k2 3K)Φ = 4πGp [ Γ + c 2 wρ s ]. 4) Combining Eqs. 1) and 2) [Hamiltonian and momentum constraints] gives k 2 3K Φ = 4πGρ [ a 2 s + 3 Hk ] 1 + w)v = 4πGρ. 5) Eqs. 3) and 5) algebraically determine Φ and Ψ in terms of and Π. Combining Eqs. 1), 3) and 4), one can derive 2nd order differential equation for Φ. Alternatively, one may appeal to the energy-momentum conservation laws. contracted Bianchi identities)

17 ν δ j ;ν ) = 0 on shear-free Newton) slices : V + H1 3c 2 w)v = kψ + k c2 w s + wγ 1 + w s = 3 Hk ) 1 + w)v 2k 3 w 1 + w 1 3Kk 2 ) π V + H V = kψ + k c2 w + wγ 1 + w 2k w 1 3Kk ) π 3 1 + w 2 6) Ψ = Φ 8πGρ ) a2 w 4πGρ a2 Π k 2, Φ = k 2 3K ν δ 0 ;ν ) = 0 on comoving slices : + 3H [ c 2 w w) + wγ ] + 1 + w) 3R c + kv ) = 0 ; R c = Φ H ) k V k a [HΨ 2 Φ ] = 4πGρ + p)v, V =, 3wH = 1 3Kk ) [1 + w)kv + 2H wπ 2 ] 7) Combining Eqs. 6) and 7) gives a 2nd order differential equation for.

18 + 1 + 3c 2 w 2w) ) [ H + c 2 sk 2 3K) 4πGρa 2 1 + 3w)1 w) + 6w c 2 w) ) ] + 34w 3c 2 w)k = S c [ ] S c = k 2 δp)c c 2 3K) sδρ) c 2 1 3Kk ) H wπ ρ 2 +2 [3w 2 2w + 3c 2w)H 2 + 4w c 2w)K + c2 wk 2 ] 1 3Kk ) 3 2 Master equation for equation for sound waves) Π

19 In the Newtonian, non-relativistic limit w 1, c 2 s 1), dispersion relation: + H + c 2 sk 2 4πGρ a 2) S c, + 2H c 2 + s k 2 ) 4πGρ S c a 2 a 2 ω 2 eff = c2 sk 2 a 2 4πGρ Jeans instability: for c 2 w p /ρ = p/ ρ c 2 s) ) k k gravitationally unstable for a < 4πGρ a c 2 s J or λ > λ J πc 2 s Gρ he above picture is valid only on small scales: 2π H λ

Vector type perturbations 20 δg 0 j = 8πGδ 0 j : δg i j = 8πGδ i j : σ g 1) + 2Hσ g 1) k2 2K σ 1) 2a 2 g = 8πG1 + w)ρ V 1). = 8πρa 2w k Π1). Either combining these two or directly from the momentum conservation, For Π 1) δ i µ ;µ ) = 0 : = 0 adiabatic), σ 1) g 1 a 2, V 1) V 1) + 1 3c 2 w)h V 1) = k2 2K 2k 1 ρ1 + w)a 4 1 a 1 3w 1 ρ w/1+w) a w 1 + w Π1). ) for w = const.. his is just the vorticity conservation law.

Vorticity Ω: 21 Ω µν P α µ u [α;β] P β ν ; P µν = g µν + u µ u ν. Ω ij = a k V 1) Z ij Z ij = 1 ) k D [jy 1) i], Ω ij Ω ij = k2 a 2 V 1) 2 Z ij Z ij ρ w/1+w) S Ω =const. S: area a 2 ) Shear σ: σ µν P µ α u α;β) P β ν = akv 1) σ 1) g )Y 1) ij vector type perturbations induce both shear & vorticity 0 j )-component: k2 2K 6H 2 + K) σ1) g = 1 + w)v 1). k 2 H 2 a 2 = H 2 superhorizon) : σ g 1) V 1) σij 2 Ω 2 ij, k 2 H 2 a 2 = H 2 subhorizon) : σ g 1) V 1) σij 2 Ω 2 ij.

22 ensor type gravitational wave) perturbations For K = 0, Π 2) δg i j = 8πGδ i j : H 2) Ḧ 2) + 2H H 2) + k 2 + 2K)H 2) = 8πG p a 2 Π 2) + 3H Ḣ2) + k2 + 2K H 2) a 2 = 8πG p Π 2) = 0, this is the same as the field equation for a massless minimal scalar: φ + 3H φ + k2 a 2 φ = 0. On superhorizon scales k 2 H 2 a 2 = H 2 ), const. H 2) η dη a 2 growing mode decaying mode tensor perturbation a homogeneous, anisotropic universe On subhorizon scales k 2 H 2 a 2 = H 2 ), H 2) 1 a eikη ρ GW Ḣ2) 2 1 a 4

3. Adiabatic perturbations on superhorizon scales Spatially flat universe K = 0) is a good approximation in the early universe. hen, ρ a 3 ) + 1 + 3c 2 w)hρ a 3 ) + [c 2sk 2 32 ] 1 + w)h2 ρ a 3 ) = ρ a 3 S c. 23 Here, c 2 w p /ρ, c 2 s p/ ρ) comoving δp) c = c 2 sδρ) c + entropy perturbation Also, all cosmologically relevant scales exceed Hubble horizon. ln L phys λ = 2πa k a, H 1 ρ { 1/2 a 3/2 for dust w = 0) a 2 for radiation w = 1/3) λ for a 0 H 1 k = const. L ~ a) L = 1/H ~ a2 in rad-dom universe) ln a

24 For S c = 0 adiabatic perturbation), one particular solution in the limit c 2 sk 2 0 is ρ a 3 H 1 a H a = 1 decaying mode 2 H a 3 Using the Wronskian for 2 independent solutions, the other solution is found as ρ a 3 H a η 0 1 H a 2 1 + w)a 2 dη η 0 t 1 + w)a 2 dη = 1 1 + w)adt growing mode H a 3 0 η 2 for w = const. ) u, v = 2 independent solutions of f + Af + Bf = 0 f = ρa 3 ) : W u v uv ; W = u v uv = Au v uv ) = AW η [ ρ + p) W exp[ Adη] A = 1 + 3c 2 w)h = ρ + p W v = u 2 v uv u ) η v = W u = v 2 v v dη 2 ]) + 2H

Conservation of growing mode amplitude Let us set = C 1 k 2 H a 2 η 0 1 + w)a 2 dη his gives, from the Hamiltonian and momentum constraints, Φ = 3 2 H 2 k = 3 2 2 C H 1 a 2 η 0 1 + w)a 2 dη, H k V = 2 1 3 1 + w)h Φ + H Φ) 25 R c = Φ H k V = C 1. he growing mode amplitude of R c stays constant on superhorizon scales. he condition for the linear perturbation theory to be valid is R c = C 1 1. linear theory is applicable up to t = 0 singularity if only the growing mode is present.

For the decaying mode, where = C 2 k 2 H a 2, R c = C 2 ηf η η f = R c = H c2 s + wγ c 1 + w c 2 sk 2 1 + w)a 2dη Γ c δp) c c 2 sδρ) c ρ { for w 1/3 0 finite) for w < 1/3 ) = 0 26 Decaying mode amplitude for R c is not constant. he standard lore that R c = const. on superhorizon scales is not strictly correct. It is correct only if the decaying mode can be ignored. c 2 s his depends on how behaves in time.) 1 + w)a2

27 Growing mode solution for several other variables assuming w =const.) ) a η 2/3w+1) 2, H = 3w + 1)η ζ = R c + 31 + w) C 1 ζ = R on uniform density slice) is also constant. his is true not only for GR but also for any metric theory. Wands et al. 2000) 3w + 1)2 1 + w) 23w + 5) σ g ) c = V 3w + 1 3w + 5 C 1 kη, Ψ = Φ C 1 kη) 2, A c = R c H = c2 s 1 + w 3w + 1)2 w 23w + 5) C 1 kη) 2, 31 + w) 3w + 5 C 61 + w) 1, s 2Φ 3w + 5 C 1 Φ curvature perturbation on Newton slices) or Ψ Newton potential) stays constant for w =const., but varies in time when w changes. In particular, during inflation when w 1, the amplitude of Φ stays very small, but it grows significantly at the end of inflation. Inflation hides quasi-)nonlinear perturbations C 1 1) in Newton slicing.