Phytochemical Studies and Antioxidant Activities of Artocarpus scortechinii King

Σχετικά έγγραφα
Chemical Constituents and Antioxidant Activity of Teucrium barbeyanum Aschers.

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Supporting Information. Experimental section

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Phenylpropanoids, Sesquiterpenoids and Flavonoids from Pimpinella tragium Vill. subsp. lithophila (Schischkin) Tutin

Supporting Information

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supplementary information

Electronic Supplementary Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Supporting Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Divergent synthesis of various iminocyclitols from D-ribose

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Antioxidant Activities of Chemical Constituents Isolated from Echinops orientalis Trauv.

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

[11].,, , 316 6, ,., 15.5%, 9.8%, 2006., IDF,, ,500, 2,830.,, ,200.,,, β, [12]. 90% 2,,,,, [13-15].,, [13,

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Supporting Information for Substituent Effects on the Properties of Borafluorenes

difluoroboranyls derived from amides carrying donor group Supporting Information

Supporting Information

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Supporting Information for

Supporting Information

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supporting Information

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

SUPPLEMENTARY MATERIAL

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting information

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Supplementary!Information!

The Free Internet Journal for Organic Chemistry

Supplementary Information

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Supporting Information. Experimental section

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

SUPPORTING INFORMATION

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α- Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR

SUPPORTING INFORMATION

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting Information

Supplementary Material for Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores

Supporting Information

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Design and Solid Phase Synthesis of New DOTA Conjugated (+)-Biotin Dimers Planned to Develop Molecular Weight-Tuned Avidin Oligomers

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Available online at shd.org.rs/jscs/

Selective mono reduction of bisphosphine

Supporting Information

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

CorV CVAC. CorV TU317. 1

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

Electronic Supplementary Information

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Supporting Information

Transcript:

Supporting Information Rec. Nat. Prod. 10:3 (20) 299-303 Phytochemical Studies and Antioxidant Activities of Artocarpus scortechinii King Norzafneza Mohd Arriffin 1, Shajarahtunnur Jamil* 1, Norazah Basar 1, Shamsul Khamis 2, Siti Awanis Abdullah 1 and Siti Mariam Abdul Lathiff 1 1 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 1310 Johor Bahru, Johor, Malaysia 2 Department of Landscape Architecture, Faculty of Design and Architecture, Universiti Putra Malaysia, 300 UPM Serdang, Selangor Darul Ehsan, Malaysia Table of Contents Page Experimental Details 3 Antioxidant Activities 3 DPPH Assay 3 ABTS Assay 3 FRAP Assay 3 Statistical Analysis of Data S1: IR spectrum of,5-dihydroxy-,-(2,2-dimethylpyrano)-2'-methoxy--γ,γdimethylallylflavone (1) S2: 1 H NMR spectrum of,5-dihydroxy-,-(2,2-dimethylpyrano)-2'-methoxy- -γ,γ-dimethylallylflavone (1) S3: 1 H NMR spectrum of,5-dihydroxy-,-(2,2-dimethylpyrano)-2'-methoxy- -γ,γ-dimethylallylflavone (1) (Expansion) S: 13 C NMR spectrum of,5-dihydroxy-,-(2,2-dimethylpyrano)-2'-methoxy- -γ,γ-dimethylallylflavone (1) S5: EIMS spectrum of,5-dihydroxy-,-(2,2-dimethylpyrano)-2'-methoxy- - γ,γ-dimethylallylflavone (1) 5 5 1

S: IR spectrum of cudraflavone C (2) S: 1 H NMR spectrum of cudraflavone C (2) S: 1 H NMR spectrum of cudraflavone C (2) (Expansion) S9: 13 C NMR spectrum of cudraflavone C (2) S10: EIMS spectrum of cudraflavone C (2) S11: IR spectrum of artocarpin (3) S12: 1 H NMR spectrum of artocarpin (3) S13: 1 H NMR spectrum of artocarpin (3) (Expansion) S1: 13 C NMR and DEPT spectrum of artocarpin (3) S15: EIMS spectrum of artocarpin (3) S1: IR spectrum of cycloartobiloxanthone () S: 1 H NMR spectrum of cycloartobiloxanthone () S1: 1 H NMR spectrum of cycloartobiloxanthone () (Expansion) S19: 13 C and DEPT spectra of cycloartobiloxanthone () S20: EIMS spectrum of cycloartobiloxanthone () S21: IR spectrum of artonin E (5) S22: 1 H NMR spectrum of artonin E (5) S23: 13 C NMR spectrum of artonin E (5) S2: EIMS spectrum of artonin E (5) S25: IR spectrum of oxyresveratrol () S2: 1 H NMR of oxyresveratrol () S2: 13 C NMR spectrum of oxyresveratrol () S2: EIMS spectrum of oxyresveratrol () S29: IR spectrum of macakurzin C () S30: 1 H NMR of macakurzin C () S31: 13 C NMR of macakurzin C () S32: EIMS spectrum of macakurzin C () S33: IR spectrum of flemichapparin A () S3: 1 H NMR of flemichapparin A () S35: 1 H NMR of flemichapparin A () (Expansion) S3: 13 C NMR spectrum of flemichapparin A () S3: EIMS spectrum of flemichapparin A () S3: IR spectrum of luteolin (9) 9 9 10 11 11 12 12 13 1 1 15 15 1 1 19 20 20 21 22 23 23 2 25 2 2 2 2 2 2

S39: 1 H NMR of luteolin (9) 29 S0: 1 H NMR of luteolin (9) (Expansion) 29 S1: 13 C NMR of luteolin (9) 30 S2: EIMS spectrum of luteolin (9) 30 S3: IR spectrum of apigenin (10) 31 S: 1 H NMR of apigenin (10) 32 S5: 13 C NMR of apigenin (10) 32 S: EIMS spectrum of luteolin (10) 33 References 33 Experimental Details Antioxidant Activities 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay: The DPPH assay was conducted according to method by Fu et al. with minor modification [1]. 100 µl of DPPH stock solution (0.1 mm) was mixed with sample 100 µl and incubated for 30 minutes in the dark at room temperature. The absorbance was measured using EPCH microplate reader at 5 nm. The sample was replaced with methanol for blank sample. Percentage inhibition was calculated using the following formula: Percentage inhibition = [(Absorbance blank DPPH Absorbance sample)/ Absorbance blank DPPH] 100% 2,2'-Azino-bis(3-ethylbenzthiazoline--sulphonic acid) (ABTS) assay: The ABTS assay was carried out based on method described by Zou et al. with minor modification [2]. ABTS and potassium persulfate were dissolved in distilled water to obtain concentration mm and.9 mm respectively. Equal amount of these two solutions were mixed and let stand for 12 to 1 hours at room temperature before use. The ABTS radical was added with distilled water to absorbance of 0. at 3 nm. 10 µl of sample was added to 9-well plates together with 190 µl of ABTS solutions. The absorbance was recorded after 30 minutes incubation in the dark at room temperature. The percentage of antioxidant activity was calculated using the following formula: Scavenging concentration = [Abs (ABTS) Abs (ABTS+Sample)/Abs (ABTS)] 100% Ferric reducing antioxidant potential (FRAP) assay: Experiment was carried out according to Channarong et al. with minor modification [3]. FRAP reagent was freshly prepared, consist of stock solution with ratio 10:1:1 of 300 mm acetate buffer, 10 mm TPTZ in 0 mm HCl and 20 mm FeCl 3.H 2 solution. 5 µl of sample, 15 µl of methanol and 150 µl of FRAP reagent were added to the 9-well plates. The absorbance at 53 nm was read after 10 minutes of incubation at 3 C. FeS.H 2 solution (0.1 mm 1.0 mm) was used to build up calibration curves of standard antioxidants. 3

Statistical Analysis of Data: Three replicates of each sample were used for statistical analysis with values reported as mean ± SD. Standard curves were generated and calculation of the 50% inhibitory concentration (IC 50 ) values was performed using GraphPad Prism for Windows (Version 5.02) software. The test was carried out using SPSS (version 1) software to study the comparison between treatment of samples and untreated control. A value of p < 0.05 was considered significantly different.,5-dihydroxy-,-(2,2-dimethylpyrano)-2'-methoxy--γ,γ-dimethylallylflavone (1) : Pale yellow solid (. mg, 1.%). R f 0.3 (n-hex:etac = 1:1); IR (ATR) υ max cm -1 : 3393 (), 293 (sp 3 CH), 19 (C=), 122 and 151 (C=C aromatic), and 120 (C-); 1 H NMR (CD 3 CCD 3, 00 MHz) ppm: δ 13. (1H, s, 5-),.3 (1H, d, J =. Hz, H-'),. (1H, s, H-3),.3 (1H, dd,, J = 1. Hz and.2 Hz, H-10),.5 (1H, dd, J =. Hz and 2. Hz, H-5'),.0 (1H, d, J = 1. Hz, H-9),.5 (1H, d, J = 2. Hz, H-),.2 (1H, d, J = 9.2 Hz, H-1), 5. (1H, d, J = 9.2 Hz, H-15),.00 (3H, s, CH 3 ), 2.5 ( 1H, m, H-11), 1.9 (3H, s, H-), 1.0 (3H, s, H-1), 1.09 ( H, s, H-12 and H-13); 13 C NMR (CD 3 CCD 3, 100 MHz) ppm: δ.5 (C-), 13.2 (C-), 12. (C-2'), 15.9 (C-a), 155. (C-2), 155.3 (C-5), 11. (C- 10), 13.0 (C-1), 125. (C-'), 121.2 (C-15), 115. (C-9), 109.9 (C-5'), 109.5 (C-), 109.2 (C-), 10.5 (C-1'), 105.1 (C-a), 10.0 (C-), 90.2 (C-3), 9.5 (C-1), 55. (-CH 3 ), 33.1 (C-11), 2.9 (C-1), 22.2 (C-12 and C-13),. (C-); EIMS m/z (% rel. int.): 3 [M] +, C 2 H 2. sp 3 CH 12 13 1 15 1 1 11 9 10 a 5 a 1' 2' 2 3 ' 5' CH 3 S1: IR spectrum of,5-dihydroxy-,-(2,2-dimethylpyrano)-2'-methoxy--γ,γ-dimethylallylflavone (1)

1.03 1.025 1.0 1.0 1.031 1.052 1.00 1.0.29.50.219.22.51.5.55.5.05.0.3.2.5..95.00.13.1.0.5.9 5. 5.9 5.2 5.99 5.503 5.50 1.000 1.021 1.03 1.00 1.052 1.025 1.0 1.0 1.031 1.0 3.050 1.090 3.01 3.02.02 13. 1.9 1.90 2.0 2.23 2.0 2.55 2.5 2.2 2. 2.9.009 5. 5.9 5.2 5.99 5.503 5.50.219.22.51.5.55.5.05.0.3.2.5..95.00.13.1.0.5.9.29.50 9.01 H-12/13 H- 2'-CH 3 H-11 H-1 5- - 1 13 12 11 10 9 5 3 2 1 ppm S2: 1 H NMR spectrum of,5-dihydroxy-,-(2,2-dimethylpyrano)-2'-methoxy--γ,γdimethylallylflavone (1) H-10 H-5' H-9 H-' H-3 H- H-1 H-15.0....2.0....2.0 5. 5. 5. ppm S3: 1 H NMR spectrum of,5-dihydroxy-,-(2,2-dimethylpyrano)-2'-methoxy--γ,γdimethylallylflavone (1) (Expansion) 5

. 155.33 155.5 15.20 15.993 12.1 13.13 13.01 11.1 10.019 105.109 10.510 109.20 109.5 109.9 115.955 121.22 125.350 90.19 9.505 55.5 33.051.5 22.1 2.950 12 13 1 15 1 1 11 9 10 a 5 a 1' 2' 2 3 ' 5' CH 3 10 3 1 CH 3 210 200 190 10 0 10 150 10 130 120 110 100 90 0 0 0 50 0 30 20 10 ppm S: 13 C NMR spectrum of,5-dihydroxy-,-(2,2-dimethylpyrano)-2'-methoxy--γ-γ-dimethylallflavone (1) 12 13 1 15 1 1 11 9 10 a 5 a 1' 2' 2 3 ' 5' CH 3 m/z 3 [M] + C 2 H 2 S5: EIMS spectrum of,5-dihydroxy-,-(2,2-dimethylpyrano)-2'-methoxy--γ-γ-dimethylallflavone (1)

Cudraflavone A (2) : Yellow needles (5. mg, 0.03%). R f 0.5 (n-hexane: EtAc = :1), ); IR (ATR) υ max cm -1 : 303 (), 29 (sp 3 CH), 19 (C=), 122 and 151 (C=C aromatic), and 120 (C-); 1 H NMR (CD 3 CCD 3, 00 MHz) δ ppm: 13.29 (s, 5-),. (1H, d, J =. Hz, H-5'),. (1H, d, J = 10.0 Hz, H-1),. (1H, dd, J =. Hz and 2. Hz, H-),. (1H, s, H-),. (1H, d, J = 2. Hz, H- 2'),.21 (1H, d, J = 9.2 Hz, H-10), 5.9 (1H, d, J = 10.0 Hz, H-15), 5.9 (1H, d, J = 9.2 Hz, H-9), 1.9 (3H, s, H-), 1.0 (3H, s, H-1), 1. (H, s, H-12 and H-13) ; 13 C-NMR (CD 3 CCD 3, 100 MHz) δ ppm:.3 (C-), 13. (C-), 159.0 (C-5), 15.2 (C-2), 15. (C-a), 15.3 (C-), 155. (C-'), 13.9 (C-11), 12.5 (C-15), 125. (C-5'), 121.2 (C-9), 11.9 (C-1), 110.1 (C-'), 109.1 (C-), 10. (C-3), 105.2 (C-), 105.2 (C-a), 10.0 (C-2'), 9.9 (C-),. (C-1), 9. (C-10), 2. (C-12 and C-13), 2.9 (C-1),. (C-); EIMS m/z (% rel. int.): 1 ([M] +, C 25 H 22. sp 3 CH 1 1 15 1 a 5 a 2' 1' 2 ' 3 9 10 11 5' 13 Chelated C= 12 S: IR spectrum of cudraflavone A (2)

1.22 2.021 0.2 1.203 1.13 1.1 1.25 1.25.1.3.3.9.1.3..59.5.3..203.22 5.5 5.90 5.3 5. 5.0 5.9 5.500 5.503 1.000 1.22 1.25 1.25 1.1 1.203 1.13 2.021 0.2.02 3.29 3. 13.29 5.3 5. 5.0 5.9 5.500 5.503 5.5 5.90.203.22.3.9.1.3..59.5.3..1.3 1. 1.99 1.02 1.90 1.93 H- H-1 5- H-12/13 13 12 11 10 9 5 3 2 1 ppm S: 1 H NMR spectrum of cudraflavone A (2) H-5' H- H- H-2' H-10 H-15 H-1 H-9.3.2.1.0.9....5..3.2.1.0.9....5..3.2.1.0 5.9 5. 5. 5. 5.5 ppm S: 1 H NMR spectrum of cudraflavone A (2) (Expansion)

1 1 15 1 a 5 a 2' 1' 2 ' 3 9 10 11 5' 13 12 11 9 1 10 S9: 13 C NMR spectrum of cudraflavone A (2) m/z 1 [M] + C 25 H 22 S10: EIMS spectrum of cudraflavone A (2) 9

Artocarpin (3): range powder (1.2 mg, 0.23%); R f 0.3 (n-hexane: EtAc = 3:2), IR (ATR) υ max cm -1 : 335 (), 295 (sp 3 CH), 1 (C=), 115 and 1 (C=C aromatic) and 1203 (C-); 1 H-NMR (CD 3 CCD 3, 00 MHz) δ ppm: 13.9 (1H, s, 5-),. (2H, s, 2'-/-),.2 (1H, d, J =. Hz, H-'),. (1H, dd, J = 1. Hz and.2 Hz, H-15),.2 (2H, d, J = 1. Hz, H-1),.5 (1H, d, J = 2. Hz, H-),.5 (1H, s, H-),.5 (1H, dd, J =. Hz and 2. Hz, H-5'), 5.13 (1H, t, J =.2 Hz, H-10), 3.9 (3H, s, -CH 3 ), 3.1 (1H, d, J =.2 Hz, H-9), 2.5 (1H, m, H-1), 1.59 (3H, s, H-13), 1.5 (3H, s, H-12), 1.10 (H, d, J =. Hz, H- and H-1); 13 C-NMR (CD 3 CCD 3, 100 MHz) δ ppm: 12. (C-), 12.9 (C-), 11. (C-2), 10. (C-5), 15.9 (C-), 15. (C-a), 15.3 (C-2'), 11.3 (C-15), 131. (C- '), 121.1 (C-10), 121.0 (C-3), 11.1 (C-1), 112.0 (C-1'), 10.9 (C-), 10.2 (C-5'), 10. (C-a), 102.9 (C-), 9. (C-), 55. (-CH 3 ), 33.1 (C-1), 2.9 (C-12), 23. (C-9), 22.2 (C- and C-1), 1. (C- 13); EIMS m/z(% rel. int.): 3 (100) ([M] +, C 2 H 2. H 3 C 1 1 15 a 5 a H 1' 2 ' 3 2' 10 sp 3 CH 9 11 5' 13 Chelated C= 1 12 S11: IR spectrum of artocarpin (3) 10

H 3 C 1 1 15 1 a 5 a H 1' 2 ' 3 2' 10 9 12 11 5' 13 S12: 1 H NMR spectrum of artocarpin (3) H-3 H- H-' H- H-1 H-15 H-5' H-1 S13: 1 H NMR spectrum of artocarpin (3) (Expansion) 11

15 10 -CH 3 1 S1: 13 C NMR and DEPT spectrum of artocarpin (3) H 3 C 1 1 15 a 5 a H 1' 2 ' 3 2' 10 9 11 5' 13 m/z 3 [M] + C 2 H 2 1 12 S15: EIMS spectrum of artocarpin (3) 12

Cycloartobiloxanthone (): range powder ( mg, 0.0%) : R f 0.5 (n-hexane: EtAc = 3:2), IR (ATR) υ max cm -1 : 30 (), 295 (sp 3 CH), 122 (C=); 1 H-NMR (CD 3 CCD 3, 00 MHz) δ ppm: 13.1 (s, 5- ),.95 (1H, d, J = 10.0 Hz, H-1),.3 (1H, s, H-),.1 (1H, s, H-), 5.0 (1H, d, J = 10.0 Hz, H- 15), 3. (1H, dd, J =15.2 and. Hz, H-9b), 3.23 (1H, dd, J = 15.2 and. Hz, H-10), 2.0 (1H, t, J = 15.2 Hz, H-9a), 1. (3H, s, H-13), 1. (H, s, H-/1), 1.3 (3H, s, H-12); 13 C-NMR (CD 3 CCD 3, 100 MHz) δ ppm: 10.5 (C-), 11. (C-), 10. (C-2), 15. (C-5), 151.2 (C-a), 150. (C-2'), 1.2 (C-), 13.0 (C-5'), 132. (C-'), 12.9 (C-15), 115.0 (C-1), 111. (C-3), 10.5 (C-1'), 103.9 (C-a), 100.9 (C-), 99.0 (C-), 92. (C-11),. (C-1),. (C-10), 31.3 (C-12), 2.5 (C- and C-1), 22. (C-13), 19.5 (C-9); EIMS m/z (% rel. int.): 3 [M] +, C 25 H 22. sp 3 CH 1 15 2' 1 1 a 5 a H 2 3 1' ' 10 11 9 5' 13 12 Chelated C= S1 : IR spectrum of cycloartobiloxanthone () 13

1.1 1.220 1.119 1.1.002.03.933.95.155 5. 5.0 1.000 1.1 1.220 1.119 1.1 0.9 0.993 1.31 0.9.1.09.9 13.09.933.95.002.03.155 5. 5.0 1.303 1.3 1.33 1. 1.900 1.90 1.909 1.91 2.32 2.20 3.20 3.221 3.21 3.259 3.1 3.32 3.53 3.0 1 15 2' 1 1 a H 2 1' ' 5' H-13 a 5 3 10 11 9 13 12 H-/1 5- H-9a H-9b H-10 H-12 13 12 11 10 9 5 3 2 1 ppm S: 1 H NMR spectrum of cycloartobiloxanthone () H-15 H-1 H- H-.5..3.2.1.0.9....5..3.2.1.0 5.9 5. 5. 5. 5.5 5. 5.3 ppm S1: 1 H NMR spectrum of cycloartobiloxanthone () (Expansion) 1

10.535 15.33 10.19 11.2 1.1 150.1 151.5 15 13.059 132.9 12.99 12.00 12.00 12.00 111.05 115.0 115.051 115.0 115.0 99.0 100.9 103.9 10.519 10. 10. 10. 99.05 99.01 99.0 92.10.33.3.0.2.3 19.5 21.9 22.3 2.33 2.35 2.553 31.39 31.3 19.5 21.950 2.33 2.3 2.553 19. 21.93 22.30 13.10 13.3 13.39 11 1 10 9 210 200 190 10 0 10 150 10 130 120 110 100 90 0 0 0 50 0 30 20 10 ppm 210 200 190 10 0 10 150 10 130 120 110 100 90 0 0 0 50 0 30 20 10 ppm 210 200 190 10 0 10 150 10 130 120 110 100 90 0 0 0 50 0 30 20 10 ppm 210 200 190 10 0 10 150 10 130 120 110 100 90 0 0 0 50 0 30 20 10 ppm S19: 13 C NMR and DEPT spectrum of cycloartobiloxanthone () m/z 3 [M] + C 25 H 22 S20: EIMS spectrum of cycloartobiloxanthone () 15

Artonin E (5): range powder (5.3 mg, 0.0%) R f 0.3 (n-hex:etac = 3:2); IR (ATR) υ max cm -1 : 3393 (), 293 (sp 3 CH), 19 (C=), 122 and 151 (C=C aromatic), and 120 (C-), (CD 3 CCD 3, 00 MHz) δ ppm: 13.2 (s, 5-),.9 (1H, s, H-'),.3 (1H, d, J = 10.0 Hz, H-1),.1 (1H, s, H-),. (1H, s, H-), 5.9 (1H, d, J = 10.0 Hz, H-15), 5.1 (1H, t, J =.2 Hz, H-10), 3.15 (2H, d, J =.2 Hz H- 9), 1.59 (3H, s, H-13), 1. (3H, s, H-12), 1. (H, s, H- and 1); 13 C-NMR (CD 3 CCD 3, 100 MHz) δ ppm: 12. (C-), 11. (C-5), 11.1 (C-2), 159.0 (C-), 152.3 (C-a), 1. (C-), 13.1 (C-5'), 131. (C-11), 12.1 (C-15), 121.5 (C-10), 120. (C-3), 11.1 (C-ʹ), 11.5 (C-1), 110.5 (C-1'), 10. (C-a), 103. (C-), 100. (C-), 9. (C-),. (C-1), 2.3 (C- and C-1), 2.9 (C-12), 23. (C-9), 1. (C-13). EIMS m/z (% rel. int.): 3 [M] +, C 25 H 2. sp 3 CH Chelated C= 1 15 1 5 1 a a H 1' 5' 2 ' 3 2' 10 9 11 12 13 S21 : IR spectrum of artonin E (5) 1

12.00 159.0 11.9 1.01 1.9 13.229 9.09 100.2 103.0 10. 11.55 11.19 120.9 121.02 12.121 131.1. 23. 2.91 1. 1.000 1.2 1.13 0.25 1.22 1.50 1.01 2.91.03 5.11 3.1 13.2 3.15 3. 5.12 5.132 5.135 5.12 5.1 5.19 5.153 5.15 5.13 5. 5.0 5. 5.92.15.1.09.12.13.3.3.9 1.0 1. 1.590 1.593 5-1 15 1 5 1 a a H 1' 5' 2 ' 3 2' 10 9 13 11 12 H-1 H- H- H-13 H-12 H-' H-15 H-10 H-9 H-/1 13 12 11 10 9 5 3 2 1 ppm S22 : 1 H NMR spectrum of artonin E (5) 5' ' 1 13 1 15 1 5 1 a a H 1' 5' 2 ' 3 2' 10 9 11 12 13 210 200 190 10 0 10 150 10 130 120 110 100 90 0 0 0 50 0 30 20 10 0 ppm S23 : 13 C NMR spectrum of artonin E (5)

m/z 3 [M] + C 25 H 2 S2: EIMS spectrum of artonin E (5) 1

xyresveratrol () Yellow solid; (2. mg, 0.5%). R f 0.3 (n-hexane:et 2 = 2:3); IR (ATR) υ max cm -1 : 3209 (), 2921 (sp 3 CH), 159 (C=C aromatic); 1 H NMR (CD 3 CCD 3, 00 MHz) δ ppm :.3 (1H, d, J =. Hz, H-),.35 (1H, d, J =1. Hz, H-β),.91 (1H, d, J = 1. Hz, H-α ),.53 (1H, d, J = 2.0 Hz, H-2' and H- '),.5 (1H, d, J = 2. Hz, H-3),.39 (1H, dd, J =., 2. Hz, H-5),.2 (1H, t, J = 2.0 Hz, H-); 13 C-NMR (CD 3 CCD 3, 100 MHz) δ ppm : 15. (C-,5'), 15.2 (C-2), 15.0 (C-), 10. (C-1'), 12. (C-), 125.5 (C-α), 123.5 (C-β), 11. (C1), 10. (C-5), 10. (C-2' and C-'), 102. (C-3), 101. (C-). EIMS m/z (% rel. int.): 2 [M] +, C 1 H 12. sp 3 CH H ' 5' α 1' 2' 5 1 β 2 3 S25: IR spectrum of oxyresveratrol () 19

15.021 15.229 15.2 10.9 123. 125. 12.359 11.25 10.55 101.35 102.5 10.0 1.000 1.022 1.005 2.150 0.95 1.090 0.93.15.3.31.330.92.5.533.53.33.39.0.10.50.5.23.29.25 H ' 5' α 1' 2' 5 1 β 2 3 H-2', H-' H-3 H- H- H-β H-α H-5.5..3.2.1.0.9....5..3 ppm S2: 1 H NMR spectrum of oxyresveratrol () H ' 5' α 1' 2' 5 1 β 2 3 2ˈ/ˈ 1' 1 5 0 15 10 155 150 15 10 135 130 125 120 115 110 105 100 95 ppm S2: 13 C NMR spectrum of oxyresveratrol () 20

m/z 2 [M] + C 1 H 12 S2: EIMS spectrum of oxyresveratrol () 21

Macakurzin C (): Yellow needle (3.3 mg, 0.0%); R f 0.3 (n-hexane:etac = 1:1); IR (ATR) υ max cm - 1 : 3319 (), 29 and 2 (sp 3 CH), 152 (C=) and 15 (C=C aromatic); 1 H NMR (CDCl 3, 00 MHz) δ ppm: 12.21 (1H, s, 5-),.3 (1H, s, 3-),.32 (2H, d, J =. Hz, H-2' and H-'),.5 (2H, t, J =. Hz, H- and H-5'),.55 (1H, d, J =.5 Hz, H-),.9 (1H, d, J = 10.0 Hz, H-9),.23 (1H, s, H-), 5.0 (1H, d, J = 10.0 Hz, H-10), 1.50 (H, s, H-12 and H-13); 13 C NMR (CDCl 3, 100 MHz) δ ppm: 5. (C-), 10.5 (C-), 10.0 (C-9), 151.2 (C5), 1. (C-2), 13. (C-3), 130.9 (C-1'), 130.3 (C- ), 12.9 (C-'), 12. (C- and C-5'), 12.5 (C-2' and C-'), 11. (C-'), 103. (C-), 101. (C-10), 99. (C-),.3 (C-9'), 29. (C-10'), 2.2 (C-11'); EIMS m/z (% rel. int.): 33 [M] + C 20 H 1 5 ). 12 13 9 a 5 a 2 1' 3 sp 3 CH S29: IR spectrum of macakurzin C () 22

5- S30: 1 H NMR spectrum of macakurzin C () H- H-2'/' H-10 3- H-/5' H- H-9 S31: 1 H NMR spectrum of macakurzin C () (Expansion) 23

/5' 2'/' 11' 10' 5 2 S32: 13 C NMR spectrum of macakurzin C () m/z 33 [M] + C 20 H 1 5 2

S33: EIMS spectrum of macakurzin C () Flemichapparin A (): red solid (.5 mg, 0. %); R f 0.5 (n-hexane:etac = :1); IR (ATR) υ max cm -1 : 322 (), 29 (sp 3 CH), 159, 15 (C=C aromatic); 1 H-NMR (CD 3 CCD 3, 00 MHz) δ ppm : 1.13 (1H, s, 5-),.13 (1H, d, J = 1.0 Hz, H-β),.9 (1H, d, J=1.0 Hz, H-α),.1-. (5H, m, H-2'-H- '), δ.1 (1H, d, J=10.0 Hz, H-1"),.00 (1H, s, H-), 5.52 (1H, d, J=10.0 Hz, H-2"), 1.5 (H, s, H- "/5"); 13 C NMR (CD 3 CCD 3, 100 MHz) δ ppm: 192.9 (C-1), 1. (C-3), 15.3 (C-), 15. (C-5), 12.3 (C-α), 135. (C-1'), 130.9 (C-1'), 12. (C-,C- and C-5'), 12.5 (C-2' and C-'), 12.5 (C-β), 12. (C-2"), 10. (C-1"), 102. (C-), 9. (C-),.2 (C-3"), 2.1 (C-5"), 2.0 (C-"); EIMS m/z (% rel. int.): 322 [M] +, C 20 H 1. sp 3 CH ' 5'' ' 2'' 1'' 5 3 2 1 2' 1' ' 5' S33: IR spectrum of flemichapparin A () 25

5- S3: 1 H NMR spectrum of flemichapparin A () H-β H-α H-2'/' H-//5' H-2" H-1" H- S35: 1 H NMR spectrum of flemichapparin A () (Expansion) 2

1 5 α 3" 5" " S3: 13 C NMR spectrum of flemichapparin A () m/z 322 [M] + C 20 H 1 S3: EIMS spectrum of flemichapparin A () 2

Luteolin (9): yellow solid (13 mg, 0.13%) ; R f 0.55 (n-hexane:etac = 2:3); IR (ATR) υ max cm -1 : 321 (), 295, 2925 and 232 (sp 3 CH), 153 (C=), 10 (C=C aromatic); 1 H NMR (CD 3 CCD 3, 00 MHz) δ ppm: 13.05 (1H, s, 5-),.15 (1H, d, J = 2. Hz, H-2'),.9 (1H, dd, J =. Hz and 2. Hz, H-'),.01 (1H, d, J =. Hz, H-5'),.0 (1H, s, H-3),.5 (1H, d, J = 2.0 Hz, H-),.2 (1H, d, J = 2.0 Hz, H-); 13 C-NMR (CD 3 CCD 3, 100 MHz) δ ppm: 12.1 (C-), 1.3 (C-2), 1.1 (C-5), 12.5 (C-), 15.9 (C-a), 19.5 (C-), 15. (C-), 122. (C-1'), 119.2 (C-'), 115. (C-5'), 113.2 (C-2'), 10. (C- a), 103.3 (C-3), 9. (C-5), 93. (C-). EIMS m/z (% rel. int.): 2 [M] +, C 15 H 10. sp 3 CH H a 2 ' 1' a 3 5' 2' S3: IR spectrum of luteolin (9) 2

5- S39: 1 H NMR spectrum of luteolin (9) H-2' H-' H-5' H-3 H- H- S0: 1 H NMR spectrum of luteolin (9) (Expansion) 29

2 5 a 1' ' 5' 2' a 3 5 S1: 13 C spectrum of luteolin (9) m/z 2 [M] + C 15 H 10 S2: EIMS spectrum of luteolin (9) 30

Apigenin (10): yellow solid (5 mg, 0.05%); R f 0.5 (n-hexane:etac = 1:1); IR (ATR) υ max cm -1 : 32 (), 292, 2920 and 22 (sp 3 CH), 15 (C=), 10 (C=C aromatic); 1 H NMR (CD 3 CCD 3, 00 MHz) δ ppm : 13.0 (1H, s, 5-),.9 (2H, d, J =. Hz, H-2' and H-'),.0 (2H, d, J =. Hz, H- and H-5'),.5 (1H, s, H-3 ),.5 (1H, d, J = 2.0 Hz, H-),.2 (1H, d, J = 2.0 Hz, H-); 13 C-NMR (CD 3 CCD 3, 100 MHz) δ ppm : 12.2 (C-), 1.2 (C-5), 1.0 (C-2), 12.5 (C-), 11.0 (C-9), 15.9 (C-), 12. (C-2'/'), 122. (C-1'), 115.9 (C-/5'), 10.5 (C-10), 103.2 (C-3), 9. (C-), 93. (C-); EIMS m/z (% rel. int.): 20 [M] +, C 15 H 10 5. sp 3 CH H a 2 ' 1' a 3 5' 2' S3: IR spectrum of apigenin (10) 31

H-/5' H-3 5- H- H-2'/' H- S: 1 H NMR spectrum of apigenin (10) /5' 2'/' 2 5 9 1' 10 3 S5: 13 C NMR spectrum of apigenin (10) 32

m/z 20 [M] + C 15 H 10 5 S: EIMS spectrum of apigenin (10) References [1] Fu, R., Zhang, Y., Guo, Y., Liu, F., Chen, F. (201). Determination of Phenolic Contents and Antioxidant Activities of Extracts of Jatropha curcas L. Seed Shell, A By-Product, A New Source of Natural Antioxidant, Industrial Crops and Products, 5, 25-20. [2] Zuo, Y., Chang, S. K. C., Gu, Yan. And Qian, Y. (2011). Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Mortaon) extract and its fractions, J. Agric Food Chem, 59 (), 22-22. [3] Channarong, S, Jutiviboonsuk, A. and Korsanan, S. (2012). Total Reducing Antioxidant Capacity of Thai Herbal Aromatic Powder (Ya-Hom) Measured by FRAP Assay, Thai Pharmaceutical and Health Science Journal, (3), 111-11. 33