Eulerian Simulation of Large Deformations

Σχετικά έγγραφα
The Simply Typed Lambda Calculus

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Treatment of Boundary Conditions. Advanced CFD 03

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

High order interpolation function for surface contact problem

D Alembert s Solution to the Wave Equation

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Lifting Entry (continued)

( y) Partial Differential Equations

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Module 5. February 14, h 0min

Linearized Lifting Surface Theory Thin-Wing Theory

Homework 8 Model Solution Section

Ηλεκτρονικοί Υπολογιστές IV

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Oscillatory Gap Damping

On the Galois Group of Linear Difference-Differential Equations

Section 8.3 Trigonometric Equations

NonEquilibrium Thermodynamics of Flowing Systems: 2

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Spherical Coordinates

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

Numerical Analysis FMN011

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Homework 3 Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Concrete Mathematics Exercises from 30 September 2016

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Forced Pendulum Numerical approach

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Differential equations

Γραµµικός Προγραµµατισµός (ΓΠ)

2 Composition. Invertible Mappings

Model Description. 1.1 Governing equations. The vertical coordinate (eta) is defined by: p re f. z s p T 0 p T. p p T p s p T. η s

Α Ρ Ι Θ Μ Ο Σ : 6.913

Parametrized Surfaces

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Geodesic Equations for the Wormhole Metric

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Reminders: linear functions

Higher Derivative Gravity Theories

PARTIAL NOTES for 6.1 Trigonometric Identities

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Matrices and Determinants

3+1 Splitting of the Generalized Harmonic Equations

Abstract Storage Devices

6.3 Forecasting ARMA processes

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lecture 21: Scattering and FGR

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Other Test Constructions: Likelihood Ratio & Bayes Tests

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

From the finite to the transfinite: Λµ-terms and streams

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2C.4 Page 1 of 9

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Monetary Policy Design in the Basic New Keynesian Model

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

L p approach to free boundary problems of the Navier-Stokes equation

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Ρευστομηχανική. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

EE 570: Location and Navigation

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

Keyframing can be tedious - especially to get realism Using physics to define the animation, Subset of procedural animation Provide the physical

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

4.6 Autoregressive Moving Average Model ARMA(1,1)

Keyframing can be tedious - especially to get realism Using physics to define the animation, Subset of procedural animation Provide the physical

DuPont Suva 95 Refrigerant

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

From a car-following model with reaction time to a macroscopic convection-diffusion traffic flow model

Variational Wavefunction for the Helium Atom

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Section 7.6 Double and Half Angle Formulas

Srednicki Chapter 55

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Dark matter from Dark Energy-Baryonic Matter Couplings

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Transcript:

Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018

Some Applications 1 Biomechanical Engineering 2 / 11

Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11

Some Applications 1 Biomechanical Engineering 2 Muscle Animation 3 Structural Engineering 2 / 11

A very general problem T 1 T 2 Solid 1 Solid 2 Fluid 3 / 11

A very general problem T 1 T 2 Solid 1 Solid 2 Fluid 3 / 11

A very general problem T 1 T 2 Solid 1 Solid 2 Fluid 1 Fluid variables: level set φ, pressure p, velocity v, (density ρ) 3 / 11

A very general problem T 1 T 2 Solid 1 Solid 2 Fluid 1 Fluid variables: level set φ, pressure p, velocity v, (density ρ) 2 Solid variables: velocity v, reference map ξ 3 / 11

A more specific problem Eulerian Solid Simulation with Contact D. I. Levin, J. Litven, G. L. Jones, S. Sueda, D. K. Pai, Siggraph 2011 4 / 11

A more specific problem Eulerian Solid Simulation with Contact D. I. Levin, J. Litven, G. L. Jones, S. Sueda, D. K. Pai, Siggraph 2011 Solid 1 Solid 2 4 / 11

A more specific problem Eulerian Solid Simulation with Contact D. I. Levin, J. Litven, G. L. Jones, S. Sueda, D. K. Pai, Siggraph 2011 Solid 1 Solid 2 No clamped boundaries. 4 / 11

A more specific problem Eulerian Solid Simulation with Contact D. I. Levin, J. Litven, G. L. Jones, S. Sueda, D. K. Pai, Siggraph 2011 Solid 1 Solid 2 No clamped boundaries. Frictionless contact. 4 / 11

A more specific problem Eulerian Solid Simulation with Contact D. I. Levin, J. Litven, G. L. Jones, S. Sueda, D. K. Pai, Siggraph 2011 Solid 1 Solid 2 No clamped boundaries. Frictionless contact. Large deformations. 4 / 11

A more specific problem Eulerian Solid Simulation with Contact D. I. Levin, J. Litven, G. L. Jones, S. Sueda, D. K. Pai, Siggraph 2011 Solid 1 Solid 2 No clamped boundaries. Frictionless contact. Large deformations. This presentation: formulation in 1-D. 4 / 11

Equations [ ] [ ρ ρv + T ] t ρv ρvv T σ = [ ] 0 ρg Conservation of mass and momentum. 5 / 11

Equations [ ] [ ρ ρv + T ] t ρv ρvv T σ = [ ] 0 ρg Conservation of mass and momentum. Fluids: σ = σ( v). 5 / 11

Equations ρ ρv + t ρξ ρv T 0 ρvv T σ = ρg ρξv T 0 Conservation of mass and momentum. Fluids: σ = σ( v). Solids: σ = σ(f = ( ξ) 1 ). 5 / 11

Equations ρ ρv + t ρξ ρv T 0 ρvv T σ = ρg ρξv T 0 Conservation of mass and momentum. Fluids: σ = σ( v). Solids: σ = σ(f = ( ξ) 1 ). No need to solve for ρ anymore, ρ det(f ) = ρ 0 5 / 11

Equations ρv t + (v )v = σ + ρg ξ t + (v )ξ = 0 ρ = ρ 0 det( ξ) Conservation of mass and momentum. Fluids: σ = σ( v). Solids: σ = σ(f = ( ξ) 1 ). No need to solve for ρ anymore, ρ det(f ) = ρ 0 5 / 11

Equations ρv t + (v )v = σ + ρg ξ t + (v )ξ = 0 ρ = ρ 0 det( ξ) Conservation of mass and momentum. Fluids: σ = σ( v). Solids: σ = σ(f = ( ξ) 1 ). No need to solve for ρ anymore, ρ det(f ) = ρ 0 Let s use a very simple stress model: σ = κ( F T F 1), κ = 10. 5 / 11

Equations ρv t + (v )v = σ + ρg ξ t + (v )ξ = 0 ρ = ρ 0 det( ξ) Conservation of mass and momentum. Fluids: σ = σ( v). Solids: σ = σ(f = ( ξ) 1 ). No need to solve for ρ anymore, ρ det(f ) = ρ 0 Let s use a very simple stress model: σ = κ( F T F 1), κ = 10. In 1-D: σ = κ( 1 ξ x 1) 5 / 11

Discretization e: i i+1 i+2 v: i i+1 i+2 i+3 Grid 6 / 11

Discretization e: i i+1 i+2 v: v i i+1 i+2 i+3 velocity 6 / 11

Discretization e: i i+1 i+2 v: i i+1 i+2 i+3 reference map ξ 6 / 11

Discretization e: i Ω i+1 i+2 i v: i i+1 i+2 i+3 control volume 6 / 11

Discretization e: Ω i i i+1 i+2 v: i i+1 i+2 i+3 { ρv t = ρvv x + σ x + ρg ξ t = vξ x 6 / 11

Discretization e: Ω i i i+1 i+2 v: i i+1 i+2 i+3 { Ω i (ρv t = ρvv x + σ x + ρg) ξ t = vξ x 6 / 11

Discretization e: Ω i i i+1 i+2 v: { i i+1 i+2 i+3 dv m i i dt dξ i dt = m i (vv x ) i + (σ i+1/2 σ i 1/2 ) + m i g + O( x) = (vξ x ) i 6 / 11

Discretization e: Ω i i i+1 i+2 v: { i i+1 i+2 i+3 dv m i i dt dξ i dt = m i (vv x ) i + (σ i+1/2 σ i 1/2 ) + m i g + O( x) = (vξ x ) i m i : subsampling, bisection, non-linear solve, etc. 6 / 11

Discretization e: Ω i i i+1 i+2 v: { i i+1 i+2 i+3 dv m i i dt dξ i dt = m i (vv x ) i + (σ i+1/2 σ i 1/2 ) + m i g + O( x) = (vξ x ) i m i : subsampling, bisection, non-linear solve, etc. (vv x ) i = max(v i, 0) v i v i 1 x + min(v i, 0) v i+1 v i x 6 / 11

Discretization e: Ω i i i+1 i+2 v: { i i+1 i+2 i+3 dv m i i dt dξ i dt = m i (vv x ) i + (σ i+1/2 σ i 1/2 ) + m i g + O( x) = (vξ x ) i m i : subsampling, bisection, non-linear solve, etc. (vv x ) i = max(v i, 0) v i v i 1 x (ξ x ) i+1/2 = ξ i+1 ξ i x + min(v i, 0) v i+1 v i x 6 / 11

Discretization e: Ω i i i+1 i+2 v: { i i+1 i+2 i+3 dv m i i dt dξ i dt = m i (vv x ) i + (σ i+1/2 σ i 1/2 ) + m i g + O( x) = (vξ x ) i m i : subsampling, bisection, non-linear solve, etc. (vv x ) i = max(v i, 0) v i v i 1 x + min(v i, 0) v i+1 v i x (ξ x ) i+1/2 = ξ i+1 ξ i x { σ((ξ x ) σ i+1/2 = i+1/2 ) x i+1/2 inside solid 0 otherwise 6 / 11

Discretization Continued System of ODEs Mv t = R v (v, ξ) ξ t = R ξ (v, ξ) 7 / 11

Discretization Continued System of ODEs Mv t = R v (v, ξ) ξ t = R ξ (v, ξ) Explicit Euler Find M 7 / 11

Discretization Continued System of ODEs Mv t = R v (v, ξ) ξ t = R ξ (v, ξ) Explicit Euler Find M Mv (t+ t) = Mv (t) + tr v (v (t), ξ (t) ) = R v (v (t), ξ (t) ) 7 / 11

Discretization Continued System of ODEs Mv t = R v (v, ξ) ξ t = R ξ (v, ξ) Explicit Euler Find M Mv (t+ t) = Mv (t) + tr v (v (t), ξ (t) ) = R v (v (t), ξ (t) ) Extrapolate v (t+ t) to all the domain. 7 / 11

Discretization Continued System of ODEs Mv t = R v (v, ξ) ξ t = R ξ (v, ξ) Explicit Euler Find M Mv (t+ t) = Mv (t) + tr v (v (t), ξ (t) ) = R v (v (t), ξ (t) ) Extrapolate v (t+ t) to all the domain. ξ (t+ t) = ξ (t) + tr ξ (v (t+ t), ξ (t) ) 7 / 11

Squeezing an Object ρ 0 1 v(x, t = 0) = 0 ξ(x, t = 0) = 10x ρ(t=0) -1 1 squeeze ξ Solution: Link 1-0.1 0.1 x 8 / 11

Collision g n s n b Solid v s v b i i+1 i+2 i+3 Barrier 9 / 11

Collision g n s n b Solid v s v b i i+1 i+2 i+3 Barrier Constraint: g t = v b n b + v s n s 0 9 / 11

Collision g n s n b Solid v s v b i i+1 i+2 i+3 Barrier Constraint: g t = v b n b + v s n s 0 Matrix form: Jv b 9 / 11

Collision g n s n b Solid v s v b i i+1 i+2 i+3 Barrier Constraint: g t = v b n b + v s n s 0 Matrix form: Jv b Old time advance: Mv (t+ t) = R v (v (t), ξ (t) ) 9 / 11

Collision g n s n b Solid v s v b i i+1 i+2 i+3 Barrier Constraint: g t = v b n b + v s n s 0 Matrix form: Jv b Old time advance: Mv (t+ t) = R v (v (t), ξ (t) ) New time advance: v (t+ t) = arg min v ( 1 2 vt Mv + R T v v), subject to Jv b 9 / 11

Collision Example ρ(t=0) 1 v 0-2 Barrier -1 1 1.2 Barrier x v(x, t = 0) = 1 ξ(x, t = 0) = x Solution: Link Mesh dependence: Link 10 / 11

Challenges in Higher-Dimensions Finding M can be more complicated. 11 / 11

Challenges in Higher-Dimensions Finding M can be more complicated. Integrating Jv b requires surface reconstruction and collision detection. 11 / 11

Challenges in Higher-Dimensions Finding M can be more complicated. Integrating Jv b requires surface reconstruction and collision detection. Velocity extrapolation needs finding the closest point to the surface. 11 / 11

Challenges in Higher-Dimensions Finding M can be more complicated. Integrating Jv b requires surface reconstruction and collision detection. Velocity extrapolation needs finding the closest point to the surface. The advection terms (v )(.) should be discretized carefully. 11 / 11