Inventory Model with Different Deterioration Rates with Stock and Price Dependent Demand under Time Varying Holding Cost

Σχετικά έγγραφα
Inventory Model with Different Deterioration Rates for Imperfect Quality Items and Linear Demand

Section 8.3 Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Matrices and Determinants

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Statistical Inference I Locally most powerful tests

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

EE512: Error Control Coding

Second Order Partial Differential Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

Assalamu `alaikum wr. wb.

Example Sheet 3 Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Homework 8 Model Solution Section

Appendix S1 1. ( z) α βc. dβ β δ β

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Commutative Monoids in Intuitionistic Fuzzy Sets

C.S. 430 Assignment 6, Sample Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

The Simply Typed Lambda Calculus

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Areas and Lengths in Polar Coordinates

MSM Men who have Sex with Men HIV -

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Areas and Lengths in Polar Coordinates

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

A summation formula ramified with hypergeometric function and involving recurrence relation

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Instruction Execution Times

Homomorphism of Intuitionistic Fuzzy Groups

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ

Homework 3 Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

A Note on Intuitionistic Fuzzy. Equivalence Relation

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Strain gauge and rosettes

Reminders: linear functions

Every set of first-order formulas is equivalent to an independent set

Solutions to Exercise Sheet 5

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Homomorphism in Intuitionistic Fuzzy Automata

!" # $% &' () Downloaded from jamlu.liau.ac.ir at 20: on Tuesday August 14th #1.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή Εργασία

2 Composition. Invertible Mappings

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: Mετακύλιση τιμών βασικών προϊόντων και τροφίμων στην περίπτωση του Νομού Αιτωλοακαρνανίας

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Other Test Constructions: Likelihood Ratio & Bayes Tests

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

On a four-dimensional hyperbolic manifold with finite volume

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Second Order RLC Filters

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

1 String with massive end-points

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Exercises to Statistics of Material Fatigue No. 5

CE 530 Molecular Simulation

Math 6 SL Probability Distributions Practice Test Mark Scheme

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Numerical Analysis FMN011

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

6.3 Forecasting ARMA processes

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»


Uniform Convergence of Fourier Series Michael Taylor

Section 7.6 Double and Half Angle Formulas

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

TMA4115 Matematikk 3

Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

w o = R 1 p. (1) R = p =. = 1

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

D Alembert s Solution to the Wave Equation

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

PARTIAL NOTES for 6.1 Trigonometric Identities

CYPRUS UNIVERSITY OF TECHNOLOGY Faculty of Geotechnical Sciences and Environmental Management Department of Environmental Science and Technology

Concrete Mathematics Exercises from 30 September 2016

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Transcript:

International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 39-83X, (Print) 39-8 Volume 4, Issue (November 05), PP.0- Inventory Model with Different Deterioration Rates with Stock and Price Dependent Demand under ime Varying Holding Cost Raman Patel, S.R. Sheikh Department of Statistics, Veer Narmad South Gujarat University, Surat, INDIA Department of Statistics, V.B. Shah Institute of Management, Amroli, Surat, INDIA Abstract:- An inventory model for deteriorating items with stock and price dependent demand is developed. Holding cost is considered as function of time. Shortages are not allowed. Numerical examples are provided to illustrate the model and sensitivity analysis is also carried out for parameters. Keywords:- Inventory model, Deterioration, Price dependent demand, Stock dependent demand, ime varying holding cost I. INRODUCION Deteriorating items inventory model have been studies by many authors in past. Certain products such as medicine, volatile liquids, food stuff decrease under deterioration during their normal storage period. Ghare and Schrader [963] first developed an EOQ model with constant rate of deterioration. he model was extended by Covert and Philip [973] by considering variable rate of deterioration. Shah and Jaiswal [977] further extended the model by considering shortages. he related work are found in (Nahmias [98], Raffat [99], Goyal and Giri [00], Ouyang et al. [006], Wu et al. [00]). Aggarwal and Goel [984] discussed an inventory model with weibull rate of decay with selling price dependent demand. Patra et al. [00] developed a deterministic inventory model when deterioration rate was time proportional. Demand rate was taken as a nonlinear function of selling price, deterioration rate, inventory holding cost and ordering cost were all functions of time. ripathy and Mishra [00] dealt with development of an inventory model when the deterioration rate follows Weibull two parameter distribution, demand rate is a function of selling price and holding cost is time dependent. Patel and Parekh [04] developed an inventory model with stock dependent demand under shortages and variable selling price. Inventory models for non-instantaneous deteriorating items have been an object of study for a long time. Generally the products are such that there is no deterioration initially. After certain time deterioration starts and again after certain time the rate of deterioration increases with time. Here we have used such a concept and developed the deteriorating items inventory models. In this paper we have developed an inventory model with stock and price dependent demand with different deterioration rates for the cycle time under time varying holding cost. Shortages are not allowed. Numerical example is provided to illustrate the model. Sensitivity analysis of the optimal solutions for major parameters is also carried out. II. ASSUMPIONS AND NOAIONS NOAIONS: he following notations are used for the development of the model: D(t) : Demand rate is a linear function of price and inventory level (a bi(t) - ρp, a>0, 0<b<, ρ>0) A : Replenishment cost per order c : Purchasing cost per unit p : Selling price per unit : Length of inventory cycle I(t) : Inventory level at any instant of time t, 0 t Q : Order quantity θ : Deterioration rate during t, 0< θ < θt : Deterioration rate during, t, 0< θ < π : otal relevant profit per unit time. ASSUMPIONS: he following assumptions are considered for the development of two warehouse model. he demand of the product is declining as a function of price and inventory level. Replenishment rate is infinite and instantaneous. Page

Lead time is zero. Shortages are not allowed. III. HE MAHEMAICAL MODEL AND ANALYSIS Let I(t) be the inventory at time t (0 t ) as shown in figure. Q S 0 Figure he differential equations which describes the instantaneous states of I(t) over the period (0, ) is given by di(t) = - (a bi(t) - ρp), dt di(t) θi(t) = - (a bi(t) - ρp), dt 0t () t () di(t) θti(t) = - (a bi(t) - ρp), t (3) dt with initial conditions I(0) = Q, I( ) = S and I() = 0. Solutions of these equations are given by I(t) = Q( - bt) - (at bt -ρpt - ρbpt - abt ρbpt ), (4) a - t - ρp - t a θb - t - ρp θb - t I(t) = S θb - t (5) - a θb t - t ρp θb t - t - abθt - t ρpbθt - t 3 3 3 3 a - t - ρp - t ab - t - ρpb - t aθ - t - ρpθ - t 6 6 3 3 3 3 I(t) = - abt - t bρpt - t - abθt - t ρbpθt - t - aθt - t. (6) 6 6 ρpθt - t ρbpθt - t - abθt - t (by neglecting higher powers of θ) From equation (4), putting t =, we have S Q = a b - bρp - ab ρbp. (7) - b - b From equations (5) and (6), putting t =, we have a - ρp a θb - ρp θb I( ) = - a θb ρp θb - abθ bρθp (8) S θb Page

3 3 3 3 a - ρp ab - - ρbp aθ - - ρθp - 6 6 3 3 3 3 I( ) = - ab bρp - abθ ρbθp. (9) 6 6 - aθ ρθp ρbθp - abθ So from equations (8) and (9), we get S = θb 3 3 3 3 a - ρp ab - ρbp aθ - ρθp 6 6 3 3 3 3 - ab bρp - abθ ρbθp - aθ 6 6 (0) ρθp ρbθp - abθ - a ρp. - a θb ρp θb a θb - ρp θb abθ - bρθp Putting value of S from equation (0) into equation (7), we have Q = - b θb 3 3 3 3 a - ρp ab - ρbp aθ - ρθp - ab 6 6 3 3 3 3 bρp - abθ ρbθp - aθ ρθp 6 6 ρbθp - abθ - a ρp - a θb ρp θb a θb - ρp θb abθ - bρθp a b bρp - ab. () - b Using () in (4), we have (-bt) I(t) = - b θb 3 3 3 3 a - ρp ab - ρbp aθ - ρθp - ab 6 6 3 3 3 3 bρp - abθ ρbθp - aθ ρθp 6 6 ρbθp - abθ - a ρp - a θb ρp θb a θb - ρp θb abθ - bρθp (-bt) a b bρp - ab - at bt - ρpt ρbpt abt () - b 3 Page

Based on the assumptions and descriptions of the model, the total annual relevant profit include the following elements: (i) Ordering cost (OC) = A (3) 0 (ii) HC = (xyt)i(t)dt = (xyt)i(t)dt (xyt)i(t)dt (xyt)i(t)dt 0 3 3 5 5 6 = x a - ρp ab - ρbp aθ - ρθp y abθ - ρbp 6 6 6 a (θb) 3 3 3 3 a - ρp ab - ρbp aθ - ρθp 6 6 3 3 3 3 - ab bρp - abθ ρbθp - aθ 6 6 x ρθp ρbθp - abθ - a ρp - a θb ρp θb a θb - ρp θb abθ - bρθp (θb) a(θb) - ρp(θb) a θb - x 3 3 3 3 a - ρp ab - ρbp aθ - ρθp 6 6 θb a(θb) - ρp(θb) a θb 3 3 3 3 bρp - ab - abθ ρbθp - aθ ρθp 6 6 - x ρbθp - abθ - a ρp - a θb ρp θb a θb - ρp θb abθ - bρθp θb a(θb) - ρp(θb) 4 Page

x - ρbp ρθp ρbθp ab - aθ - abθ 4 4 3-3 3 3 y -a ρp ρbθp - ab ρbp - abθ 6 6 - x aθ - ρθp y - ρbp ρθp ρbθp ab - aθ - abθ 4 3 3 4 4 5 5 5 - x abθ - ρbθp y aθ - ρθp 5 3 3 3 3 x - a ρp ρbθp - ab ρbp - abθ 6 6 3 3 y a - ρp ab - ρbp aθ - ρθ 6 6 4 - x abθ - ρbθp y a θb - ρp θb 4 4 x aθb - ρp θb -a θb a - ρp ab - ρbp aθ - ρθp 6 6 3 3 3 3 - ab bρp - abθ ρbθp - aθ - 6 6 3 y ρθp ρbθp - abθ - a ρp - a θb ρp θb a θb - ρp θb abθ - bρθp -θ - b - a θb ρp θb - abθ ρbθp ρp 3 3 3 3 3 -a θb a - ρp ab - ρbp aθ - ρθp 6 6 - ab bρp - abθ ρbθp - aθ 6 6 - x ρθp ρbθp - abθ - a ρp - a θb ρp θb a θb - ρp θb abθ - bρθp -θ -b - a θb ρp θb - abθ ρbθp ρp 3 3 3 3 3 3 3 3 5 Page

a θb a - ρp ab - ρbp aθ - ρθp 6 6 - ab bρp - abθ ρbθp - aθ 6 6 - y ρθp ρbθp - abθ - a ρp - a θb ρp θb a θb - ρp θb abθ - bρθp θb a θb - ρp θb x - ρbp ρθp ρbθp ab - aθ - abθ 4 4 3 5 5 5 x abθ - ρbθp y aθ - ρθp 3 3 3 5 3 3 y -a ρp ρbθp - ab ρbp - abθ 6 6 3 3 3 3 3 3 3 3 4 x aθ - ρθp y - ρbp ρθp ρbθp ab - aθ - abθ 4 3 3 4 4 - b θb 3 3 3 3 a -ρp ab - ρbp aθ - ρθp -ab bρp 6 6 3 3 3 3 x - abθ ρbθp - aθ ρθp ρbθp - abθ -a 6 6 4 4 ρp - a θb ρp θb a θb -ρp θb abθ -bρθp a b ρbp - ab - b 4 5 4 y- b- ρbp ab yabθ - ρbθp x abθ - ρbθp y a θb - ρpθb x a θb - ρp θb 4 5 4 3 -a θb 3 3 3 3 a - ρp ab - ρbp aθ - ρθp - ab bρp 6 6 3 3 3 3 - abθ ρbθp - aθ ρθp ρbθp - abθ y 6 6 - a ρp - a θ b ρpθb a θb -ρpθb abθ - bρθp - θ -b - a θb ρpθb - abθ ρbθp ρp 3 6 Page

-a θb a - ρp ab - ρbp aθ - ρθp - ab bρp 6 6 3 3 3 3 - abθ ρbθp - aθ ρθp ρbθp - abθ x 6 6 - a ρp - a θb ρpθb a θb - ρpθb abθ - bρθp -θ -b - a θb ρpθb - abθ ρbθp ρp 3 3 3 3 a θb 3 3 3 3 a - ρp ab - ρbp aθ - ρθp - ab bρp 6 6 3 3 3 3 - abθ ρbθp - aθ ρθp ρbθp - abθ y 6 6 - a ρp - a θb ρpθb a θb - ρpθb abθ - bρθp a θb a θb - ρpθb x - b - ρbpab - -b θb 3 3 3 3 a - ρp ab - ρbp aθ - ρθp - ab bρp 6 6 3 3 3 3 3 y b - abθ ρbθp - aθ ρθp ρbθp - abθ - a 6 6 ρp - a θb ρp θb a θb -ρpθb abθ -bρθp b a b ρbp - ab - - a ρp -b - -b θb 3 3 3 3 a - ρp ab - ρbp aθ - ρθp - ab bρp 6 6 3 3 3 3 x b - abθ ρbθp - aθ ρθp ρbθp - abθ - a 6 6 ρp - a θb ρp θb a θb -ρpθb abθ -bρθp b a b ρbp - ab - - a ρp -b -b θb 3 3 3 3 a - ρp ab - ρbp aθ - ρθp - ab bρp 6 6 3 3 3 3 a - abθ ρbθp - aθ ρθp ρbθp y - abθ - a 6 6 ρp - a θb ρp θb a θb -ρp θb abθ -bρθp a b ρbp - ab -b 3 7 Page

5 5 - y abθ - ρbθp - xa - ρp ab - ρbp aθ - ρθ 6 6 6 6 3 3 - x -aρp ρbθp -ab ρbp- abθ y a-ρp ab - ρbp aθ - ρθ - yabθ - ρbθp 6 6 6 6 5 (by neglecting higher powers of θ) (iii) DC = c θi(t)dt θti(t)dt 3 3 3 3 5 3 3 a - ρp a θb - ρp θb 3 3 3 3 4 4 - a θb ρp θb - abθ ρpbθ 3 3 4 4 θb ( - ) 3 3 3 3 = cθ a - - ρp - ab - ρbp aθ - ρθp - ab (- ) 6 6 3 3 bρp (- ) - abθ ρbθp - aθ - ρθp - 6 6 ρbθp - abθ - a(- ) ρp(- ) - a θb ρp θb a θb (- ) - ρp θb (- ) abθ - ρbθp θb (4) 3 3 4 4 a a θb - ρp θb - abθ ρbθp 6 6 θb (- ) 3 3 3 3 a - -ρp - ab - ρbp aθ - ρθp -ab ( - ) 6 6 -cθ 3 3 3 3 bρp ( - ) - abθ ρbθp - aθ - ρθp - 6 6 ρbθp - abθ - a( - ) ρp( - )- a θb ρp θb a θb ( - ) - ρp θb (- ) abθ - ρbθp θb 5 5 6 5 4 abθ- ρbθp aθ- ρθp - ρbp ρθp ρbθp ab- aθ- abθ 6 5 3 3 4 4 4 cθ 3 3 3 3 -aρp ρbθp -abρbp- abθ a-ρp ab - ρbp aθ - ρθp 3 6 6 6 6 5 5 6 5 4 abθ- ρbθp aθ- ρθp - ρbp ρθp ρbθp ab - aθ - abθ 6 5 3 3 4 4 4 -cθ 3 3 3 3 -aρp ρbθp -abρbp- abθ a- ρp ab - ρbp aθ - ρθp 3 6 6 6 6 (5) 8 Page

(iv) Inventory Model with Different Deterioration Rates With Stock and Price Dependent Demand under SR = p (abi(t) - p)dt 0 = p (abi(t) - p)dt (abi(t) - p)dt (abi(t) - p)dt 0 -b θb (- ) 3 3 3 3 a - -ρp - ab - - ρbp - aθ - - ρθp - 6 6 3 3 3 3 -ab (- )bρp (- )- abθ - ρbθp - - aθ - 6 6 ρθp - ρbθp - - abθ - -a( - ) ρp( - ) = p a b - aθb - ρp θb - a θb (- )-ρp θb (- ) abθ - ρbθp a b ρbp - ab - b (-b ) 3 3 - a - b ρp - ρbp ab 6 6 3 3 3 a - ρp a θb - ρpθb 3 3 3 3 4 4 -a θb ρpθb -abθ ρpbθ 3 3 4 4 θb ( - ) 3 3 3 3 a - - ρp- ab - ρbp aθ - ρθp - 6 6 p a b 3 3 -ab (- )bρp (- )- abθ - ρbθp - - aθ - 6 6 ρθp - ρbθp - - abθ - -a(- )ρp(- ) - aθb - ρpθb a θb (- )-ρpθb (- ) abθ - ρbθp θb -ρp 9 Page

3 3 4 4 a a θb - ρpθb - abθ ρbθp 6 6 θb ( - ) 3 3 3 3 a - -ρp- ab - - ρbp - aθ - ρθp - -ab (- ) 6 6 -p a b 3 3 bρp (- ) - abθ ρbθp - aθ - ρθp - -ρp 6 6 ρbθp - - abθ - -a(- )ρp(- )- a θb - ρpθb - a θb (- ) - ρpθb (- ) abθ - ρbθp θb 3 3 4 4 5 5 pa b a - ρp ab - ρbp aθ ρθp - abθ ρbθp - ρp 6 6 3 3 3 4 a -ρp ab - ρbp aθ 3 3 6 4 (6) 3 4 3 3 3 5 - ρθp - ab bρp - abθ 6 4 3 3 6 5 -p a b -ρp 3 5 3 4 3 4 3 5 ρbθp - aθ ρθp ρbθp - 6 5 3 4 3 4 4 3 5 3 5 - abθ 4 3 5 he total profit during a cycle, π consisted of the following: π = SR - OC - HC - DC (7) Substituting values from equations (3) to (6) in equation (7), we get total profit per unit. Putting µ = v and µ =v in equation (7), we get profit in terms of and p. Differentiating equation (7) with respect to and p and equate it to zero, we have π(,p) π(,p) i.e. = 0, = 0 (8) p provided it satisfies the condition π(,p) π(,p) π(,p) π(,p) π(,p) < 0, < 0 and - >0. (9) p p p IV. NUMERICAL EXAMPLE Considering A= Rs.00, a = 500, b=0.05, c=rs. 5, ρ= 5, θ=0.05, x = Rs. 5, y=0.05, v = 0.30, v = 0.50, in appropriate units. he optimal values of * =0.556, p* = 50.6966, Profit*= Rs. 8.9833 and optimum order quantity Q* = 8.9945. he second order conditions given in equation (9) are also satisfied. he graphical representation of the concavity of the profit function is also given. and Profit p and Profit, p and Profit Graph Graph Graph 3 0 Page

V. SENSIIVIY ANALYSIS On the basis of the data given in example above we have studied the sensitivity analysis by changing the following parameters one at a time and keeping the rest fixed. able Sensitivity Analysis Parameter % p Profit Q a 0% 0.55 60.6956 760.098 55.0084 0% 0.53 55.693 474.978 4.437-0% 0.53 45.7060 9748.3399 7.479-0% 0.530.73 763.4 06.4905 θ 0% 0.507 50.6956 3.700 6.94 0% 0.53 50.6960 6.338 7.956-0% 0.500 50.697.6565 30.0564-0% 0.546 50.6978 4.3588 3.674 x 0% 0.4488 50.770 059.396.0074 0% 0.4788 50.7058 088.06 9.6306-0% 0.560 50.6904 5.463 40.5975-0% 0.69 50.6893 89.984 56.3844 A 0% 0.569 50.769 08.907 40.847 0% 0.5398 50.7300 00.0385 35.0580-0% 0.4900 50.664 38.8670.583-0% 0.469 50.64 59.8509 5.7940 ρ 0% 0.4847 4.309 0009.8496 0.93 0% 0.4980 46.70 0968.3300 4.447-0% 0.5399 56.855 356.89 35.84-0% 0.5778 63.8 586.370 45.0437 From the table we observe that as parameter a increases/ decreases average total profit and optimum order quantity also increases/ decreases. Also, we observe that with increase and decrease in the value of θ, x and ρ, there is corresponding decrease/ increase in total profit and optimum order quantity. From the table we observe that as parameter A increases/ decreases average total profit decreases/ increases and optimum order quantity increases/ decreases. VI. CONCLUSION In this paper, we have developed an inventory model for deteriorating items with price and inventory dependent demand with different deterioration rates. Sensitivity with respect to parameters have been carried out. he results show that with the increase/ decrease in the parameter values there is corresponding increase/ decrease in the value of profit. REFERENCES []. Aggarwal, S.P. and Goel, V.P. (984): Order level inventory system with demand pattern for deteriorating items; Eco. Comp. Econ. Cybernet, Stud. Res., Vol. 3, pp. 57-69. []. Covert, R.P. and Philip, G.C. (973): An EOQ model for items with Weibull distribution deterioration; American Institute of Industrial Engineering ransactions, Vol. 5, pp. 33-38. [3]. Ghare, P.N. and Schrader, G.F. (963): A model for exponentially decaying inventories; J. Indus. Engg., Vol. 5, pp. 38-43. [4]. Goyal, S.K. and Giri, B. (00): Recent trends in modeling of deteriorating inventory; Euro. J. Oper. Res., Vol. 34, pp. -6. [5]. Nahmias, S. (98): Perishable inventory theory: a review; Operations Research, Vol. 30, pp. 680-708. [6]. Ouyang, L. Y., Wu, K.S. and Yang, C.. (006): A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments; Computers and Industrial Engineering, Vol. 5, pp. 637-65. [7]. Patel, R. and Parekh, R. (04): Deteriorating items inventory model with stock dependent demand under shortages and variable selling price, International J. Latest echnology in Engg. Mgt. Applied Sci., Vol. 3, No. 9, pp. 6-0. Page

[8]. Patra, S.K., Lenka,.K. and Ratha, P.C. (00): An order level EOQ model for deteriorating items in a single warehouse system with price depended demand in nonlinear (quadratic) form; International J. of Computational and Applied Mathematics, Vol. 5, pp. 77-88. [9]. Raafat, F. (99): Survey of literature on continuously deteriorating inventory model, Euro. J. of O.R. Soc., Vol. 4, pp. 7-37. [0]. Shah, Y.K. and Jaiswal, M.C. (977): An order level inventory model for a system with constant rate of deterioration; Opsearch; Vol. 4, pp. 74-84. []. ripathy, C.K. and Mishra, U. (00): An inventory model for Weibull deteriorating items with price dependent demand and time varying holding cost; Applied Mathematical Sciences, Vol. 4, pp. 7-79. []. Wu, K.S., Ouyang, L. Y. and Yang, C.. (006): An optimal replenishment policy for noninstantaneous deteriorating items with stock dependent demand and partial backlogging; International J. of Production Economics, Vol. 0, pp. 369-384. Page