8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Σχετικά έγγραφα
Multi-dimensional Central Limit Theorem

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows

Multi-dimensional Central Limit Theorem

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

α + α+ α! (=+9 [1] ι «Analyze-Regression-Linear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η " ι ιηη, ι!" ι ηιι. 1 SPSS ι η η ι ιηη ι η

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

α & β spatial orbitals in

Generalized Linear Model [GLM]

Exam Statistics 6 th September 2017 Solution

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

1 Complete Set of Grassmann States

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

8.324 Relativistic Quantum Field Theory II

2 Composition. Invertible Mappings

ΓΕΝΙΚΕΥΜΕΝΑ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Homework 3 Solutions

Numerical Analysis FMN011

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

LECTURE 4 : ARMA PROCESSES

Section 9.2 Polar Equations and Graphs

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Estimators when the Correlation Coefficient. is Negative

Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια. Γραμμικά Μοντέλα. Λύσεις Ασκήσεων

Statistical Inference I Locally most powerful tests

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

6.3 Forecasting ARMA processes

6. MAXIMUM LIKELIHOOD ESTIMATION

Instruction Execution Times

4.6 Autoregressive Moving Average Model ARMA(1,1)

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

[1] P Q. Fig. 3.1

The challenges of non-stable predicates

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Notes on the Open Economy

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

C.S. 430 Assignment 6, Sample Solutions

Areas and Lengths in Polar Coordinates

An Inventory of Continuous Distributions

ΥΨΗΛΟΥ ΣΗΜΕΙΟΥ ΚΑΤΑΡΡΕΥΣΗΣ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ PENALIZED TRIMMED SQUARES

Example Sheet 3 Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

The Simply Typed Lambda Calculus

Section 8.3 Trigonometric Equations

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Finite Field Problems: Solutions

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Approximation of distance between locations on earth given by latitude and longitude

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Repeated measures Επαναληπτικές μετρήσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

Μηχανική Μάθηση Hypothesis Testing

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

EE512: Error Control Coding

Homework for 1/27 Due 2/5

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Areas and Lengths in Polar Coordinates

x y max(x))

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math221: HW# 1 solutions

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Section 7.6 Double and Half Angle Formulas

Solution Series 9. i=1 x i and i=1 x i.

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

the total number of electrons passing through the lamp.

Αναερόβια Φυσική Κατάσταση

Galatia SIL Keyboard Information

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Partial Differential Equations in Biology The boundary element method. March 26, 2013

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

5.4 The Poisson Distribution.

PARTIAL NOTES for 6.1 Trigonometric Identities

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

Lecture 2. Soundness and completeness of propositional logic

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

IIT JEE (2013) (Trigonomtery 1) Solutions

Απλή Παλινδρόμηση και Συσχέτιση

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Phasor Diagram of an RC Circuit V R

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

EE101: Resonance in RLC circuits

Transcript:

8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty

E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1

Fgure 8.1 Heteroskedastc Errors

Ee e e e ( ) = 0 var( ) =σ cov(, j) = 0 var( y ) = var( e) = h( x ) yˆ = 83.4 + 10.1x eˆ = y 83.4 10.1x

Fgure 8. Least Squares Estmated Expendture Functon and Observed Data Ponts

The exstence of heteroskedastcty mples: The least squares estmator s stll a lnear and unbased estmator, but t s no longer best. There s another estmator wth a smaller varance. The standard errors usually computed for the least squares estmator are ncorrect. Confdence ntervals and hypothess tests that use these standard errors may be msleadng.

y =β 1+β x + e var( e) =σ var( b ) = N = 1 σ ( x x) y =β 1+β x + e var( e) =σ

var( b ) N ( ) N x x σ = 1 = wσ = N = 1 ( x x) = 1 var( b ) N ( ) ˆ N x x e = 1 ˆ = we = N = 1 ( x x) = 1

yˆ = 83.4 + 10.1x (7.46) (1.81) (Whte se) (43.41) (.09) (ncorrect se) Whte: b ± t se( b ) = 10.1±.04 1.81 = [6.55, 13.87] c Incorrect: b ± t se( b ) = 10.1±.04.09 = [5.97, 14.45] c

y =β +β x + e 1 ( ) = 0 var( ) =σ cov(, j) = 0 Ee e e e

( e ) = σ =σ var x y 1 x e =β 1 +β + x x x x y 1 x e y = x1 = x = = x e = x x x x

y = β x +β x + e 1 1 var( e ) = var e 1 1 = var( e) = σ x =σ x x x

To obtan the best lnear unbased estmator for a model wth heteroskedastcty of the type specfed n equaton (8.11): 1. Calculate the transformed varables gven n (8.13).. Use least squares to estmate the transformed model gven n (8.14).

The generalzed least squares estmator s as a weghted least squares estmator. Mnmzng the sum of squared transformed errors that s gven by: N N N 1/ e = = ( x e) = 1 = 1 x = 1 When s small, the data contan more nformaton about the regresson functon and the observatons are weghted heavly. When e x x s large, the data contan less nformaton and the observatons are weghted lghtly.

yˆ = 78.68 + 10.45x (se) (3.79) (1.39) β 垐 ± se( β ) = 10.451 ±.04 1.386 = [7.65,13.6] t c

var( e) = σ =σ x γ ln( σ ) = ln( σ ) +γln( x) ( x ) σ = exp ln( σ ) +γln( ) = exp( α +α z ) 1

σ = exp( α +α z + L+α z ) 1 s S ln( ) σ =α +α 1 z y = E( y ) + e =β +β x + e 1

ˆ ln( e ) = ln( σ ) + v =α 1+α z + v ˆ ln( σ ) =.9378 +.39 z σ = α 垐 +α ˆ exp( 1 1z) y 1 x e =β 1 +β + σ σ σ σ

e 1 1 var = var( ) 1 e = σ = σ σ σ y 1 x y = x 1 = x = σ垐? σ σ y = β x +β x + e 1 1

y = β+β x + L+β x + e 1 k K L var( e) =σ = exp( α 1+α z + +αszs)

The steps for obtanng a feasble generalzed least squares estmator β, β, K, βk for 1 are: 1. Estmate (8.5) by least squares and compute the squares of the least squares resduals ˆ. e α1, α, K, αs. Estmate by applyng least squares to the equaton ˆ ln e = α+α 1 z + L+α S z S + v

3. Compute varance estmates 1 S S. 4. Compute the transformed observatons defned by (8.3), ncludng f K >. 5. Apply least squares to (8.4), or to an extended verson of (8.4) K > f. x,, 3 K xk yˆ = 76.05 + 10.63x (se) (9.71) (.97) σ = α 垐 +α z + L+α? ˆ exp( ) z

WAGE = 9.914 + 1.34 EDUC +.133EXPER + 1.54METRO (se) (1.08) (.070) (.015) (.431) WAGE =β 1+β EDUC +β 3EXPER + e = 1,, K, N M M M M M M WAGE =β 1+β EDUC +β 3EXPER + e = 1,, K, N R R R R R R b M 1 = 9.914 + 1.54 = 8.39

var( e ) = σ var( e ) =σ M M R R 垐 M 31.84 R 15.43 σ = σ = b = 9.05 b = 1.8 b =.1346 M1 M M3 b = 6.166 b =.956 b =.160 R1 R R3

WAGE M 1 EDUC M EXPER M e M =β M 1 +β +β 3 + σm σm σm σm σm = 1,, K, NM WAGE R 1 EDUC R EXPER R e R =β R1 +β +β 3 + σr σr σr σr σr = 1,, K, NR

Feasble generalzed least squares: ˆ M ˆ R 1. Obtan estmated σ and σ by applyng least squares separately to the metropoltan and rural observatons. σ ˆ M when METRO = 1. σ ˆ = σ ˆ R when METRO = 0 3. Apply least squares to the transformed model WAGE 1 EDUC EXPER METRO e =β R1 +β +β 3 +δ + σ垐垐垐 σ σ σ σ σ

WAGE = 9.398 + 1.196 EDUC +.13EXPER + 1.539METRO (se) (1.0) (.069) (.015) (.346)

Remark: To mplement the generalzed least squares estmators descrbed n ths Secton for three alternatve heteroskedastc specfcatons, an assumpton about the form of the heteroskedastcty s requred. Usng least squares wth Whte standard errors avods the need to make an assumpton about the form of heteroskedastcty, but does not realze the potental effcency gans from generalzed least squares.

8.4.1 Resdual Plots Estmate the model usng least squares and plot the least squares resduals. Wth more than one explanatory varable, plot the least squares resduals aganst each explanatory varable, or aganst yˆ, to see f those resduals vary n a systematc way relatve to the specfed varable.

8.4. The Goldfeld-Quandt Test σˆ σ F = F σ σ M M R R ˆ M M R R ( N K, N K ) H : σ =σ aganst H : σ σ 0 M R 0 M R F ˆ M 31.84 ˆ R 15.43 = σ = = σ.09

8.4. The Goldfeld-Quandt Test σ ˆ = 3574.8 1 σ ˆ = 1,91.9 F ˆ 1,91.9 = σ = = σˆ 3574.8 1 3.61

8.4.3 Testng the Varance Functon y = E( y ) + e =β +β x + L+β x + e 1 K K L var( y) =σ = E( e ) = h( α 1+α z + +αszs) h( α +α z + L+α z ) = exp( α +α z + L+α z ) 1 S S 1 S S 1 ( ) h( α+α z ) = exp ln( σ ) +γln( x )

8.4.3 Testng the Varance Functon h( α +α z + L+α z ) =α +α z + L+α z 1 S S 1 S S h( α +α z + L+α z ) = h( α ) 1 S S 1 H : α =α = L =α = 0 0 3 S H : not all the α n H are zero 1 s 0

8.4.3 Testng the Varance Functon var( y) =σ = E( e ) =α 1+α z + L+αSzS e = E( e ) + v =α +α z + L+α z + v 1 S S e = α+α z + L+α z + v ˆ 1 S S χ = N R χ ( S 1)

8.4.3a The Whte Test E( y ) = β+β x +βx 1 3 3 z = x z = x z = x z = x 3 3 4 5 3

8.4.3b Testng the Food Expendture Example SST = 4,610,749, 441 SSE = 3,759,556,169 R SSE = 1 =.1846 SST χ = N R = 40.1846 = 7.38 χ = N R = 40.18888 = 7.555 p-value =.03

Prncples of Econometrcs, 3rd Edton Slde 8-38

Prncples of Econometrcs, 3rd Edton Slde 8-39

y = β+β x + e 1 Ee e e e j ( ) = 0 var( ) =σ cov(, j) = 0 ( ) b = β + we (8A.1) w = x x ( x ) x Prncples of Econometrcs, 3rd Edton Slde 8-40

( ) ( ) ( ) = β + E b E E we ( ) = β + we e =β Prncples of Econometrcs, 3rd Edton Slde 8-41

var ( b ) ( ) = var we ( ) ( ) = w var e + ww cov e, e = w σ j j j (8A.) ( x x) σ = ( x x) Prncples of Econometrcs, 3rd Edton Slde 8-4

var( b ) σ ( x x) (8A.3) Prncples of Econometrcs, 3rd Edton Slde 8-43

e = α+α z + L+α z + v ˆ 1 S S (8B.1) F = ( SST SSE)/( S 1) SSE /( N S) (8B.) ( ) N N 垐 and? = 1 = 1 SST = e e SSE = v Prncples of Econometrcs, 3rd Edton Slde 8-44

SST SSE χ = ( S 1) F = χ SSE /( N S ) ( S 1) (8B.3) var( e ) var( v) = = SSE N S (8B.4) χ = SST SSE var( e ) (8B.5) Prncples of Econometrcs, 3rd Edton Slde 8-45

χ = SST SSE ˆ 4 σ e (8B.6) e 1 var var( ) var( ) = e = e = σ 4 σe σe 4 e 1 var( e ) = ( e e ) = N 垐 N = 1 SST N (8B.7) Prncples of Econometrcs, 3rd Edton Slde 8-46

χ = SST SSE SST / N = N 1 SSE SST (8B.8) = N R Prncples of Econometrcs, 3rd Edton Slde 8-47