Instanton Effects in ABJ(M) Theory

Σχετικά έγγραφα
Higher spin gauge theories and their CFT duals

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Space-Time Symmetries

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Matrices and Determinants

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Other Test Constructions: Likelihood Ratio & Bayes Tests

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Statistical Inference I Locally most powerful tests

TMA4115 Matematikk 3

Three coupled amplitudes for the πη, K K and πη channels without data

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

CRASH COURSE IN PRECALCULUS

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

12. Radon-Nikodym Theorem

Fractional Colorings and Zykov Products of graphs

C.S. 430 Assignment 6, Sample Solutions

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Gauge-Stringy Instantons

Lecture 2. Soundness and completeness of propositional logic

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Math221: HW# 1 solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

2 Composition. Invertible Mappings

The Simply Typed Lambda Calculus

If we restrict the domain of y = sin x to [ π 2, π 2

Code Breaker. TEACHER s NOTES

Areas and Lengths in Polar Coordinates

Tridiagonal matrices. Gérard MEURANT. October, 2008

Higher Derivative Gravity Theories

Non-Gaussianity from Lifshitz Scalar

Elements of Information Theory

Section 7.6 Double and Half Angle Formulas

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

( ) 2 and compare to M.

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Homework 3 Solutions

Finite Field Problems: Solutions

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Areas and Lengths in Polar Coordinates

SPECIAL FUNCTIONS and POLYNOMIALS

6. MAXIMUM LIKELIHOOD ESTIMATION

Congruence Classes of Invertible Matrices of Order 3 over F 2

Heisenberg Uniqueness pairs

Biostatistics for Health Sciences Review Sheet

Graded Refractive-Index

Every set of first-order formulas is equivalent to an independent set

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Commutative Monoids in Intuitionistic Fuzzy Sets

Lecture 10 - Representation Theory III: Theory of Weights

A Lambda Model Characterizing Computational Behaviours of Terms

4.6 Autoregressive Moving Average Model ARMA(1,1)

What happens when two or more waves overlap in a certain region of space at the same time?

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Wishart α-determinant, α-hafnian

Divergence for log concave functions

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

UV fixed-point structure of the 3d Thirring model

From the finite to the transfinite: Λµ-terms and streams

Large β 0 corrections to the energy levels and wave function at N 3 LO

PARTIAL NOTES for 6.1 Trigonometric Identities

Lifting Entry (continued)

AdS black disk model for small-x DIS

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

Distances in Sierpiński Triangle Graphs

3+1 Splitting of the Generalized Harmonic Equations

Reminders: linear functions

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Approximation of distance between locations on earth given by latitude and longitude

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Srednicki Chapter 55

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

ST5224: Advanced Statistical Theory II

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

The ε-pseudospectrum of a Matrix

Second Order Partial Differential Equations

Transcript:

Instanton Effects in ABJ(M) Theory Sanefumi Moriyama (NagoyaU KMI) [Fuji+Hirano+M 1106] [Hatsuda+M+Okuyama 1207, 1211, 1301] [HMO+Marino 1306] [HMO+Honda 1306] [Matsumoto+M 1310]

0. Introduction

Physics "Special" Background Highly Symmetric, Simple OR EVEN Solvable "General" Backgrounds By Perturbation Theory or Other Methods (Example) e βh with H=p 2 /2+q 2 /2+g q 4 /4

Perturbative String Theory Perturbative String Theories on 10D Flat Spacetime Perturbation Theory Amplitudes (Small Fluctuation) β Functions (Background EOM)...

Non Perturbatively Situation Changes Drastically! In Strong Coupling Limit, M Theory!! Most Symmetric Cases M Theory on 11D Flat Spacetime M Theory on AdS 7 4 x S M Theory on AdS 7 x S 4 Still Very Mysterious = Unsatisfied

M2 branes [Aharony Bergman Jafferis Maldacena] N=6 N6 Super Chern Simons Theory = M2 on C 4 /Z k [Witten, Pestun,...] Supersymmetric Observables : Matrix Integral Results: ABJM Matrix Model with Interesting Structure Extract As Much Physics As Possible

Contents 1. Quick Review of M Theory What did we learn two decades ago? 2. ABJ(M) Wilson Loop Fractional Branes 3. Exact Instanton Expansion String Democracy

1. Quick Review of M Theory

M is for Mother 5 Consistent tstring Theories in 10D Het E8xE8 IIA Het SO(32) IIB I

M is for Mother 5 Consistent tstring Theories in 10D 5 Vacua of A Unique String Theory Het E8xE8 IIA Het SO(32) String Duality IIB D brane I

M is for Mother Het E8xE8 M (11D) Strong Coupling Limit IIA 10D Het SO(32) IIB I

M is for Membrane Fundamental Solitonic i M2 brane M5 brane Lessons String D2 brane String Theory NOT Just "a theory of strings" Only Consistent withbranes But, Branes also as "Composites of Strings" (from SFT viewpoints)

M is for Mystery DOF N 2 for N D branes Described by Matrix

M is for Mystery M2 brane M2 brane DOF N 3/2 /N 3 for N M2 /M5 branes

To Summarize we only knew little on To Summarize, we only knew little on "What M Theory Is" so far!

2. ABJ(M) Wilson Loop

ABJ(M) Theory [Aharony Bergman Jefferis (Maldacena)] N=6 N6Chern Simons matter matter Theory adjoint U(N 1 ) U(N 2 ) bifundamental adjoint Min(N 1,N 2 )x M2 & N 2 N 1 x fractional M2 on R 8 / Z k

Fractional brane & Wilson loop s Y k (N 1,N 2 ) Partition Function OR VEV of Half BPS Wilson Loop in Rep Y on Min(N 1,NN 2 ) x M2 & N 2 NN 1 x Fractional lm2 s Y k (N 1,N 2 ) = DA exp( S ABJ(M) [A, ]) Tr P exp A μ dx μ + = After Localization Techniques,...

ABJ(M) Matrix Model Physically,

ABJ(M) Matrix Model [Kapustin Willet Yaakov, Drukker Trancanelli, Marino Putrov] (Fresnel Integral) Character of U(N 1 N 2 )in Rep Y (Classified by Young Diagram Y) = Supersymmetric Schur Poly.

ABJ(M) Matrix Model [Kapustin Willet Yaakov, Drukker Trancanelli, Marino Putrov] (Fresnel Integral) Character of U(N 1 N 2 )in Rep Y (Classified by Young Diagram Y) = Supersymmetric Schur Poly.

Invariant Measure

Invariant Measure

Invariant Measure Chern Simons (q deform) U(N 1 ) Inv

Invariant Measure Gaussian Matrix Model H: N x N Hermitian Matrix H: N 1 x N 1 Hermitian Matrix Gauge Sym = U(N 1 )

Invariant Measure Chern Simons (q deform) U(N 1 ) Inv

Invariant Measure Chern Simons (q deform) U(N 1 N 2 ) Inv Supersymmetry U(N 1 ) Inv

Invariant Measure Chern Simons (q deform) ABJ(M) Matrix Model GaussianMatrix Model + Supersymmetry Deformation + Chern Simons Deformation U(N 1 N 2 ) Inv Supersymmetry U(N 1 ) Inv

Message ABJ(M) Matrix Model, as Fundamental as Gaussian Model or Chern Simons Model.

Grand Canonical Ensemble Without Loss of Generality, M=N 2 N 1 0, k>0 [s ( ) Y ] GC k,m(z) = N=0 s Y k (N,N+M) z N Regarding ABJ(M) Partition Function as PF of N Particle Fermi Gas System [Marino Putrov] s GC M(z) = GC k GC Y k,m [s Y ] k,m(z) / [1] k,0(z)

where and H p,q (z) = Theorem [Hatsuda Honda M Okuyama, Honda Matsumoto M] M] s GC Y k,m M(z) ( ) = det (M+r)x(M+r) H p,q( (z) E (1 + z 1 l p QP) 1 E M+q 1 z E (1 + z QP) 1 Q E lp aq M (Q) =... (P) =... (E j ) =... l p :... a q :... (M = N 2 N 1 ) (1 q M) (1 q M r)

where and H p,q (z) = Theorem [Hatsuda Honda M Okuyama, Honda Matsumoto M] M] s GC Y k,m M(z) ( ) = det (M+r)x(M+r) H p,q( (z) E (1 + z 1 l p QP) 1 E M+q 1 z E (1 + z QP) 1 Q E lp aq M (Q) ν,μ = [2cosh(ν μ)/2] 1 (P) μ,ν = [2cosh(μ ν)/2] 1 (E = e (j+1/2)ν j ) ν (Q) ν,μ, (P) μ,ν as Matrix & (E j ) ν as Vector (M = N 2 N 1 ) (1 q M) (1 q M r) with Continuous o Indices μ, ν Matrix Multiplication = Integration with Dμ, Dν

where H p,q (z) = Theorem [Hatsuda Honda M Okuyama, Honda Matsumoto M] M] s GC Y k,m M(z) ( ) = det (M+r)x(M+r) H p,q( (z) E (1 + z 1 l p QP) 1 E M+q 1 z E (1 + z QP) 1 Q E lp aq M (M = N 2 N 1 ) (1 q M) (1 q M r) l p : p th leg length a q : q th arm length

Frobenius Symbol (a 1 a 2 a r l 1 l 2 l r+m ) U(N) or U(N N) U(N N+3) (320 975421) (3,2,0 9,7,5,4,2,1) or (6532 6421) (6,5,3,2 6,4,2,1) ( 1, 2, 3,3,2,0 9,7,5,4,2,1) 3320 975421)

where H p,q (z) = Theorem [Hatsuda Honda M Okuyama, Honda Matsumoto M] M] s GC Y k,m M(z) ( ) = det (M+r)x(M+r) H p,q( (z) E (1 + z 1 l p QP) 1 E M+q 1 z E (1 + z QP) 1 Q E lp aq M (M = N 2 N 1 ) (1 q M) (1 q M r) leg # arm if not distinguishing between (1+zQP) 1 or z(1+zqp) 1 Q

Example GC k,m=3 det 1 # 9 1 # 7 1 # 5 1 # 4 1 # 2 1 # 1 2 # 9 2 # 7 2 # 5 2 # 4 2 # 2 2 # 1 3 # 9 3 # 7 3 # 5 3 # 4 3 # 2 3 # 1 3 # 9 3 # 7 3 # 5 3 # 4 3 # 2 3 # 1 2 # 9 2 # 7 2 # 5 2 # 4 2 # 2 2 # 1 0 # 9 0 # 7 0 # 5 0 # 4 0 # 2 0 # 1

Especially, ABJM Wilson loop det " General Representation = det Hook Representations "

Especially, ABJM Wilson loop Without VEVs,... det "(General Representation) = det (Hook Representations)" Giambelli Formula Giambelli Formula A Well Known Classical Formula in Mathematics

Especially, ABJM Wilson loop What we have proved... Possible to Put... GC k,m In Giambelli Formula "Giambelli Compatibility" for ABJM & "(Generalized) Giambelli Compatibility" for ABJ

Representation as Fermion Representation Y as Fermion Excitation (Example) Hook Representation Hook Representation Fundamental Excitation

Representation as Fermion Hook Representation = Fundamental Excitation General Representation = Solitonic Excitaion " General Representation = det Hook Representations " " Solitonic Excitation = det Fundamental Excitation "

Fermion as String String Fluctuation Wilson loop in Fundamental Representation Fermion as String

Especially, Fractional brane ABJ Without Wilson Loop Insertion GC 1 # 2 1 # 1 1 # 0 det 2 # 2 2 # 1 2 # 0 k,m=3 3 # 2 3 # 1 3 # 0 ABJ Partition Function In terms of "Hook" Fractional Branes from Fundamental Strings?

Break Summary So far Giambelli Compatibility for ABJM Wilson loop Generalized Giambelli Compatibility for ABJ Fractional Brane as String Composite Hereafter Exact Instanton Expansion

3. Exact Instanton Expansion

ABJM Theory [Aharony Bergman Jefferis Maldacena] N=6 N6Chern Simons matter matter Theory adjoint U(N) bifundamental U(N) adjoint N x M2 on R 8 / Z k (= R + x S 7 / Z k )

Pictorially S 7 / Z k S 7 / Z k k CP 3 x S 1

Shorthand Notation ABJM Partition Function ABJM Grand Potential Z(N) = 1 k (N,N) N) exp J(log z)= [1] GC k,0(z)

Developments Free Energy F(N)= Log Z(N)in large N Limit Perturbative ti Sum F(N) N 3/2 Z(N) ( ) = Ai[N] ( exp N 3/2 ) [Drukker Marino Putrov] [Fuji Hirano M, KEK, Marino Putrov]

Developments (Cont'd) Worldsheet Instanton (F1 wrapping CP 1 CP 3 ) [Drukker Marino Putrov, Hatsuda M Okuyama] Membrane Instanton (D2 wrapping RP 3 CP 3 ) Bound dstatet [Drukker Marino Putrov, Marino Putrov, Hatsuda M Okuyama, Calvo Marino] (Basically From Numerical Studies) [Hatsuda M Okuyama]

All Explicitly In Topological Strings [Hatsuda M Okuyama, Hatsuda M Marino Okuyama] Marino J(μ)=J pert (μ eff )+J WS (μ eff )+J MB (μ eff ) J pert (μ)=cμ 3 /3+Bμ+A J WS (μ eff )=F T top (T eff 1,T eff 2,λ) J MB (μ eff )=(2πi) 1 λ [λf NS (T 1 eff /λ,t 2 eff /λ,1/λ)] F top (T 1,T 2,τ) =... T eff 1 =4μ eff /k iπ F NS (T 1,TT 2,τ) =... T eff 2 =4μ eff /k+iπ C=2/π 2 k, B=..., A=... λ=2/k μ ( 1) k/2 2e 2μ 4F (1,1,3/2,3/2;2,2,2;( 1) k/2 16e 2μ ) k=even μ eff 4 3 = μ+e 4μ 4F 3 (1,1,3/2,3/2;2,2,2; 16e 4μ ) k=odd

All Explicitly In Topological Strings [Hatsuda M Okuyama, Hatsuda M Marino Okuyama] Marino J(μ)=J pert (μ eff )+J WS (μ eff )+J MB (μ eff ) J pert (μ)=cμ 3 /3+Bμ+A J WS (μ eff )=F T top (T eff 1,T eff 2,λ) J MB (μ eff )=(2πi) 1 λ [λf NS (T 1 eff /λ,t 2 eff /λ,1/λ)] F(T 1,T 2,τ 1,τ 2 ): Free Energy of Refined Top Strings T 1,T 2 : Kahler Moduli τ 1,τ 2 : Coupling Constants Topological Limit F top (T 1,T 2,τ) = lim τ1 τ,τ 2 τ F(T 1,T 2,τ 1,τ 2 ) NS Limit F NS (T 1,T 2,τ) = lim τ1 τ,τ 2 0 2πiτ 2 F(T 1,T 2,τ 1,τ 2 )

All Explicitly In Topological Strings [Hatsuda M Okuyama, Hatsuda M Marino Okuyama] Marino J(μ)=J pert (μ eff )+J WS (μ eff )+J MB (μ eff ) J pert (μ)=cμ 3 /3+Bμ+A J WS (μ eff )=F T top (T eff 1,T eff 2,λ) J MB (μ eff )=(2πi) 1 λ [λf NS (T 1 eff /λ,t 2 eff /λ,1/λ)] F(T 1,T 2,τ 1,τ 2 ) = jl,j R n d1,d 2 N jl,j R d 1,d 2 χ n(d T +d T ) jl (q L ) χ jr (q R ) e 1 1 2 2 /[n(q 1 n/2 q 1 n/2 )(q 2 n/2 q 2 n/2 )] N jl j R d 1,d 2 :BPS Index of local P 1 x P 1 q 1 =e 2πiτ 1 q 2 =e 2πiτ 2 q L =e πi(τ 1 τ 2 ) q R =e πi(τ 1 +τ 2 ) j L,j R (Gopakumar Vafa or Gromov Witten invariants)

Methods 't Hooft Expansion [Drukker Marino Putrov] Perturbative WKB Expansion [Marino Putrov] Worldsheet Instanton Membrane Instanton Numerical Studies Cancellation Mechanism [Hatsuda M Okuyama]

Numerical Studies for k = 1, 2, 3, 4, 6 Compute Exact Values of Z(N) up to N max Read off Exact Values of J(μ) from Z(N) Numerically, After Subtracting Perturbative and Major Instanton Contribution Compare with Worldsheet Instanton

Instanton Effects Non Perturbative Part of Grand Potential J(μ) J k=1 (μ) = [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 8μ + [#μ 2 +#μ+#]e 12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e 2μ + [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 6μ +... J k=3 (μ) = [#]e [] 4μ/3 + [#]e [] 8μ/3 + [#μ μ 2 +#μ+#]eμ 4μ +... J k=4 (μ) = [#]e μ + [#μ 2 +#μ+#]e 2μ + [#]e 3μ +...... J k=6 (μ) = [#]e 2μ/3 + [#]e 4μ/3 + [#μ 2 +#μ+#]e 2μ +...

Instanton Effects Non Perturbative Part of Grand Potential J(μ) J k=1 (μ) = [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 8μ + [#μ 2 +#μ+#]e 12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e 2μ + [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 6μ +... J k=3 (μ) = [#]e [] 4μ/3 + [#]e [] 8μ/3 + [#μ μ 2 +#μ+#]eμ 4μ +... J k=4 (μ) = [#]e μ + [#μ 2 +#μ+#]e 2μ + [#]e 3μ +...... J k=6 (μ) = [#]e 2μ/3 + [#]e 4μ/3 + [#μ 2 +#μ+#]e 2μ +... WS(1) WS(2) WS(3)

Instanton Effects Worldsheet Instanton J k=1 (μ) = [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 8μ + [#μ 2 +#μ+#]e 12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e 2μ + [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 6μ +... J k=3 (μ) = [#]e [] 4μ/3 + [#]e [] 8μ/3 + [#μ μ 2 +#μ+#]eμ 4μ +... J k=4 (μ) = [#]e μ + [#μ 2 +#μ+#]e 2μ + [#]e 3μ +... Match well with Topological String... J k=6 (μ) = [#]e 2μ/3 + [#]e 4μ/3 + [#μ 2 +#μ+#]e 2μ +... Prediction of WS WS(1) WS(2) WS(3)

Instanton Effects Worldsheet Instanton, Divergent at Certain k J k=1 (μ) = [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 8μ + [#μ 2 +#μ+#]e 12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e 2μ + [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 6μ +... J k=3 (μ) = [#]e [] 4μ/3 + [#]e [] 8μ/3 + [#μ μ 2 +#μ+#]eμ 4μ +... J k=4 (μ) = [#]e μ + [#μ 2 +#μ+#]e 2μ + [#]e 3μ +... Match well with Topological String... J k=6 (μ) = [#]e 2μ/3 + [#]e 4μ/3 + [#μ 2 +#μ+#]e 2μ +... Prediction of WS WS(1) WS(2) WS(3)

Instanton Effects Worldsheet Instanton, Divergent at Certain k Divergence Cancelled by Membrane Instanton J k=1 (μ) = [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 8μ + [#μ 2 +#μ+#]e 12μ +... J k=2 (μ) = [#μ 2 +#μ+#]e 2μ + [#μ 2 +#μ+#]e 4μ + [#μ 2 +#μ+#]e 6μ +... J k=3 (μ) = [#]e [] 4μ/3 + [#]e [] 8μ/3 + [#μ μ 2 +#μ+#]eμ 4μ +... k=3 MB(2) J k=4 (μ) = [#]e μ + [#μ 2 +#μ+#]e 2μ + [#]e 3μ +... Match well with Topological String... J k=6 (μ) = [#]e 2μ/3 + [#]e 4μ/3 + [#μ 2 +#μ+#]e 2μ +... Prediction of WS WS(1) WS(2) WS(3) MB(1)

Divergence Cancellation Mechanism Aesthetically Reproducing the Lessons String Theory, Not Just 'a theory of strings' Practically Helpful in Determining Membrane Instanton

An Incorrect but Suggestive Interpretation Worldsheet Inst S 7 / Z k 1 Instanton k InstantonI Off Fixed Pt cf: Twisted Sectors in String Orbifold

Cancellation New Branch in WS inst Divergence Cancelled by MB Inst

Compact Moduli Space? Compactified by Membrane Instanton NonPerturbatively!? Perturbative WorldSheet Instanton Moduli

Another Implication J(μ)=J pert (μ eff )+J WS (μ eff )+J MB (μ eff ) J pert (μ)=cμ 3 /3+Bμ+A J WS (μ eff )=F T top (T eff 1,T eff 2,λ) J MB (μ eff )=(2πi) 1 λ [λf NS (T 1 eff /λ,t 2 eff /λ,1/λ)] F(T 1,T 2,τ 1,τ 2 ) = jl,j R n d1,d 2 N jl,j R d 1,d 2 χ n(d T +d T ) jl (q L ) χ jr (q R ) e 1 1 2 2 /[n(q 1 n/2 q 1 n/2 )(q 2 n/2 q 2 n/2 )] NonPerturbative Topological Strings on General Background by Requiring Divergence Cancellation [Hatsuda Marino M Okuyama]

Short Summary Summary Explicit Form of Membrane Instanton Exact Large N Expansion of ABJM Partition Function Divergence Cancellation Moduli Space of Membrane?

Summary & Further Directions ABJM Partition Function Exact Large N Expansion Divergence Cancellation Fractional lmembrane from Wilson Loop Generalization for M2 Orbifolds, Orientifolds, Ellipsoid/Squashed S 3 Implication of Cancellation for M5 Exploring Moduli Space of M theory

Thank you for your attention!